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Abstract. We combine model-based testing and mutation testing to au-
tomatically generate a test suite that achieves a high mutation adequacy
score. The original model representing the system under test is mutated.
To generate test cases that detect whether a modelled fault has been im-
plemented, we perform a refinement check between the original and the
mutated models. Action systems serve as formal models. They are well-
suited to model reactive systems and allow non-determinism. We extend
our previous work by two techniques to improve efficiency: (1) a strat-
egy to efficiently handle a large number of mutants and (2) incremental
solving. A case study illustrates the potential of our improvements. The
runtime for checking approximately 200 mutants could be reduced from
20 to 3 seconds. We implemented our algorithms in two versions: one
uses a constraint solver, the other one an SMT solver. Both show similar
performance.

1 Introduction

We combine model-based testing [33] and classical mutation testing [24, 19] in
order to automatically generate test cases that achieve a high mutation adequacy
score. As pointed out by Jia and Harman in their recent survey on mutation
testing [26], “practical software test data generation for mutation test adequacy
remains an unresolved problem”. Furthermore, they identified a “pressing need”
to address this problem.

Fig. 1 gives an overview of our approach. The left-hand side (non-grey parts)
refers to model-based testing: it is assumed that the source code of the system
under test (SUT) is not accessible (black-box testing). Therefore, a tester devel-
ops a formal model describing the expected behaviour of the SUT. This model is
assumed to be correct with respect to some properties derived from the require-
ments. This can be assured, e.g. via model checking. It serves as input for our
test case generation tool, where it is used to generate the input stimuli and as
a test oracle for the expected behaviour. The resulting tests are automatically
executed. If all tests pass, we have conformance between the model and the SUT.
However, since exhaustive testing is impractical, we have to select a proper sub-
set of possible test cases. We accomplish this by combining this model-based
testing approach with mutation testing. As we have no access to the source code
of the SUT, we mutate our model of the SUT (cf. grey parts in Fig. 1). Then,
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Fig. 1. Model-based mutation testing

given the original model and a set of mutated models, we automatically generate
test cases that kill the model mutants. The generated tests are then executed on
the SUT and will detect if a mutated model has been implemented. Hence, our
model-based mutation testing approach is fault-centred. It tests rather against
non-conformance than for conformance - we are rather aiming for falsification
than for verification.

In our approach, equivalent model mutants are singled out automatically.
In contrast to the original idea of program mutation [24, 19], where a given set
of test cases is analysed, here we generate a test suite that will kill all (non-
equivalent) model mutants. This is non-trivial, since it involves an equivalence
(conformance) check between original and mutated models (cf. Fig. 1), which we
focus on in this paper. Since, equivalence is undecidable in general, we restrict
ourselves to bounded domains.

Though the problem of checking for equivalence of two systems is hard enough
already, we do also allow non-determinism in our models. In a non-deterministic
model, a given (sequence of) input stimuli may cause several possible output
observations. Non-determinism arises due to abstraction that is frequently re-
quired in good test models. When comparing two non-deterministic models (an
original and a mutant in our case), equivalence is not sufficient any more. Hence,
the conformance relation needs to be an order or preorder relation. Refinement
is such an order relation [20]. We implemented a refinement checker for non-
deterministic models in order to enable the generation of test cases that are able
to detect whether a faulty model has been implemented in the SUT.

In principle, this model-based mutation testing approach could be imple-
mented with existing tools, like model checkers [21]. We refrained from that as
model checkers are more general and therefore more complex than necessary.
Thus, adaptions to optimise existing model checkers for our particular needs
would probably not be beneficial. Furthermore, for generating test cases we need
access to the internals of the state space. The counterexample trace is insufficient
for non-deterministic models.

Previous Work. A first implementation of our model-based mutation test-
ing approach has been implemented in our tool Ulysses. It is basically checking
input-output conformance [32] of two action systems and performs an explicit
forward search of the state spaces. Our experience with the tool shows that the
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performance of explicit enumeration of the state space involves high memory
consumption and runtimes. In [5] we illustrated that this is even the case for
rather small models involving parameters. To overcome this and allow the han-
dling of complex models, we work on an efficient tool using symbolic handling of
data. We already presented some aspects of our work previously: we explained
the basic refinement checking approach [5], pointed out problems that need to be
handled [6], and presented techniques that considerably improved the efficiency
of our approach [4]. The main contributions of this paper are two further im-
provements on efficiency: the efficient handling of a large number of mutants and
the implementation of incremental solving in constraint logic programming. We
implemented our approach and our improvements in Prolog using a constraint
solving library. We conducted a first case study on a car alarm system that
shows the benefits of our improvements: the execution time could be reduced
from approximately 20 to about 3 seconds. This is a reduction of about 85%. In
addition, we also tried an implementation using SMT solving for our case study,
but could not identify a further performance gain.

The rest of this paper is organised as follows: In Section 2, we introduce
preliminaries, i.e., our modelling language and our notion of refinement. In Sec-
tion 3, we explain our refinement checking approach and present two techniques
to increase its efficiency in Section 4. Their implementations are discussed in
Section 5. In Section 6, we report on our case study. In Section 7, we cover
related work and we conclude in Section 8.

2 Preliminaries

2.1 Action Systems

Our chosen modelling formalism are action systems [9], which are well-suited
to model reactive and concurrent systems [10]. They have a formal semantics
with refinement laws and are compositional [11]. Many extensions exist, e.g.
object-oriented action systems [14], but the main idea is that a system state is
updated by guarded actions that may be enabled or not. If no action is enabled,
the action system terminates. If several actions are enabled, one is chosen non-
deterministically. Hence, concurrency is modelled in an interleaving semantics.

Syntax. There exist various versions of Back’s original action system nota-
tion [9]. The syntax we use is defined as follows:

M ::= D as :– actions(A), dood(P ).

D ::= type(t,X) :– X in n1..n2. var([v], t). state def([v]). init([c]).

A ::= L :: g => B

L ::= l | l(X)

B ::= v := e | g => B | B;B | B [] B

e ::= v | c | e+ e | ...

P ::= E | E [] P

E ::= l | [X : t]l(X)
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It contains some Prolog elements, since our refinement checking tool is imple-
mented in Prolog. An action system model M consists of basic definitions D,
action definitions A, and a do-od block P . D comprises the definition of types t,
the declaration of variables v of type t, the definition of the system state as a
variable vector v, and the definition of the initial state as a vector of constants c.
An action A is a labelled guarded command with label L, guard g and body B.
Actions may have a list of parameters X. The body of an action may assign an
expression e to a variable v or it may be composed of (nested) guarded commands
itself. Actions may be composed by sequential composition ; or non-deterministic
choice []. The do-od block P provides the event-based view on the action system.
It composes the actions by their action labels l via non-deterministic choice.

Example 1. The following code snippet is part of an action system modelling
a car alarm system. It defines the action ’AlarmOn’, which turns on the flash
lights and the signal-horn in case an alarm has been triggered.

1 type ( bool , X) :− X in 0 . . 1 .
2 var ( [ f , s ] , boo l ) .
3 state def ( [ f , s , . . . ] ) .
4 in i t ( [ 0 , 0 , . . . ] ) .
5 as :−
6 actions (
7 ’AlarmOn ’ : : ( f #= 0 #/\ s #= 0) => (
8 ( ( f := 1 ; s := 1) % ( ( f := 0) ; s := 1)
9 [ ]

10 ( s := 1 ; f := 1) ) ,
11 . . . ) ,
12 dood ( ’AlarmOn ’ [ ] . . . ) .

All data types in our action systems are integers with restricted ranges. Line 1
defines the type ’bool’ with two possible values: 0 or 1. Line 2 declares two vari-
ables with name f and s which are of type bool. They are used to indicate whether
the flash lights and the sound (signal horn) are turned on. Line 3 defines the list
of variables that make up the state of the action system. The initial values for
the state are defined in Line 4. The actions block (Lines 6 to 11) defines named
actions, which consist of a name, a guard and a body (name :: guard => body).
The action ’AlarmOn’ (Lines 7 to 10) models the activation of the alarms. This
is only possible if both alarms are turned off before (guard in Line 7). It is not
specified in which order the two alarms are turned on. This is modelled by the
non-deterministic choice ([ ]) of two sequential compositions (;). Either, Line 8
turns on the flash first and afterwards the sound or Line 11 first turns on the
sound and then the flash. The do-od block (Line 13) connects previously defined
actions via non-deterministic choice. Basically, the execution of an action system
is a continuous iteration over the do-od block.

Our overall goal is to generate a test case that is able to detect certain faults.
For this purpose, we mutate our models and perform a refinement check between
the original and the mutated model. The comment (%) in Line 8 represents a
possible mutation. It assigns the variable f the value 0 instead of 1. This leads
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to a difference in the behaviour of the original action system (the specification)
and the mutated one. The original activates two alarms (flash and sound), i.e.,
it sets the variables f and s to true. The mutated action system cannot always
establish this behaviour. Although it results in the correct post-state by choosing
Line 10, it might also end up in a wrong post-state by executing the mutated
statement of Line 8. In this case, the flash will not be turned on. This scenario
is a counterexample to refinement. It allows us to derive a test case that checks
whether the modelled fault has been implemented in a SUT.

Semantics. The formal semantics of action systems is typically defined in terms
of weakest preconditions. However, we found a relational predicative semantics
being more suitable for our constraint-based approach. In [6], we gave reasons
for our choice. Our formal semantics of actions is defined as follows:

l :: g => B =df g ∧ B ∧ tr′ = tr ̂ [l]

l(X) :: g => B =df ∃ X : (g ∧ B ∧ tr′ = tr ̂ [l(X)])

g => B =df g ∧ B

x := e =df x′ = e ∧ y′ = y ∧ ... ∧ z′ = z

B(v, v′);B(v, v′) =df ∃ v0 : (B(v, v0) ∧ B(v0, v
′))

B [] B =df B ∨ B

The state-changes of actions are defined via predicates relating the pre-state of
variables v and their post-state v′. Furthermore, the labels form a visible trace
of events tr that is updated to tr′ whenever an action runs through. Hence, a
guarded action’s transition relation is defined as the conjunction of its guard g,
the body of the action B and the adding of the action label l to the previously
observed trace. In case of parameters X, these are added as local variables to the
predicate. An assignment updates one variable x with the value of an expression e

and leaves the rest unchanged. Sequential composition is standard: there must
exist an intermediate state v0 that can be reached from the first body predicate
and from which the second body predicate can lead to its final state. Finally, non-
deterministic choice is defined as disjunction. The semantics of the do-od block
is as follows: while actions are enabled in the current state, one of the enabled
actions is chosen non-deterministically and executed. An action is enabled in
a state if it can run through, i.e. if a post-state exists such that the semantic
predicate can be satisfied. The action system terminates if no action is enabled.
The labelling of actions is non-standard and has been added in order to support
an event-view for testing.

Example 2. The predicative semantics of the action ’AlarmOn’ in Example 1 is:

f = 0 ∧ s = 0 ∧ (1)

(∃f0, s0 : (f0 = 1 ∧ s0 = s ∧ f ′ = f0 ∧ s′ = 1) ∨ (2)

∃f0, s0 : (f0 = f ∧ s0 = 1 ∧ f ′ = 1 ∧ s′ = s0)) ∧ (3)

act′ = 1 (4)
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Our relational semantics for an action is defined as g ∧ B ∧ tr′ = tr ̂ [l].
Equation 1 represents the guard g. Equations 2 and 3 represent the action’s
body B. Equation 2 refers to Line 8 of Example 1, Equation 3 to Line 11. Each
represents a sequential composition: there must exist an intermediate state v0
(here f0 and s0) that can be reached from the first body predicate and from which
the second body predicate can lead to its final state (f ′ and s′). Assignments
update one variable with the value of an expression and leave the rest unchanged,
e.g., the semantics of f := 1 at the end of Line 11 in Example 1 is f ′ = 1 ∧ s′ =
s0. Equation 2 and 3 are connected via disjunction, which represents the non-
deterministic choice between the sequential compositions. Finally, Equation 4
deals with the recording of the trace: each iteration of the do-od block may
execute at most one action. Hence, our trace can be reduced to one variable
act′. To make this formal semantics processable by constraint solvers, strings
are encoded as integers, i.e., the label ’AlarmOn’ is represented by the constant
1. For the same reason, quantifiers are eliminated by substitutions (see [4] for
details) resulting in the following constraints:

f = 0 ∧ s = 0 ∧ ((f ′ = 1 ∧ s′ = 1) ∨ (f ′ = 1 ∧ s′ = 1)) ∧ act′ = 1

This is how our tool generates the constraints. Further simplifications are pos-
sible, but not implemented: as both cases of the disjunction are equivalent, they
may be reduced to one:

Co = (f = 0 ∧ s = 0 ∧ f ′ = 1 ∧ s′ = 1 ∧ act′ = 1)

This expresses what was intended to be modelled: the action ’AlarmOn’ is
executed if neither sound nor flash are activated yet and turns on both alarms.
In disjunction with the semantics of the other actions, which are only indicated
by . . . in Example 1, Co represents the transition relation of the action system.

Analogously, the simplified semantics of the mutation given in Example 1 is:

Cm = (f = 0 ∧ s = 0 ∧ ((f ′ = 0 ∧ s′ = 1) ∨ (f ′ = 1 ∧ s′ = 1)) ∧ act′ = 1)

2.2 Conformance Relation

Once the modelling language with a precise semantics is fixed, we can define what
it means that a SUT conforms to a given reference model, i.e. if the observations
of a SUT confirm the theory induced by a formal model. This relation between
a model and the SUT is called conformance relation.

In model-based mutation testing, the conformance relation plays an addi-
tional role. It defines if a syntactic change in a mutant represents an observable
fault, i.e. if a mutant is equivalent or not. However, for our non-deterministic
models an equivalence relation is not suitable as pointed out in [6]. An abstract
non-deterministic model may do more than its concrete counterpart. Hence, use-
ful conformance relations are relations relying on some ordering from abstract to
more concrete models. One of these order relations is refinement, which uses im-
plication to define conformance. A concrete implementation I refines an abstract
model M , iff the implementation implies the model. The following definition of
refinement relies on the Unifying Theories of Programming (UTP) of Hoare and
He [25] giving M and I a predicative semantics.
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Definition 1. (Refinement) Let v = 〈x, y, . . . 〉 be the set of variables denoting
observations before execution and v′ = 〈x′, y′, . . . 〉 denoting the observations
afterwards. Then

M ⊑ I =df ∀v, v′ : I(v, v′) ⇒ M(v, v′)

In [3] we developed a mutation testing theory based on this notion of refinement.
The key idea is to find test cases whenever a mutated model MM does not refine
an original model MO, i.e. if MO 6⊑ MM . Hence, we are interested in counterex-
amples to refinement. From Definition 1 follows that such counterexamples exist
if and only if implication does not hold:

∃v, v′ : MM (v, v′) ∧ ¬MO(v, v′)

This formula expresses that there are observations in the mutant MM that are
not allowed by the original model MO. We call a state, i.e. a valuation of all
variables, unsafe if such an observation can be made.

Definition 2. (Unsafe State) A pre-state u is called unsafe if it shows wrong
(not conforming) behaviour in a mutated model MM with respect to an original
model MO. Formally, we have: u ∈ {v | ∃ v′ : MM (v, v′) ∧ ¬MO(v, v′)}

We see that an unsafe state can lead to an incorrect next state. In model-based
mutation testing, we are interested in generating test cases that cover such unsafe
states. Hence, our fault-based testing criteria are based on unsafe states. How
we search for unsafe states in action systems is discussed in the next section.

3 Refinement Checking

In [5] we already gave an overview of our refinement checking approach. Fig. 2
depicts our process to find an unsafe state. The inputs are the original action
system model ASO and a mutated version ASM . Each action system consists of
a set of actions ASO

i and ASM
j respectively, which are combined via the non-

deterministic choice operator. The observations in our action system language
are the event traces and the system states before (v, tr) and after one execution
(v′, tr′) of the do-od block. Then, a mutated action system ASM refines its
original version ASO if and only if all observations possible in the mutant are
allowed by the original. Hence, our notion of refinement is based on both, event
traces and states. However, in an action system not all states are reachable from
the initial state. Therefore, reachability has to be taken into account.

We reduce the general refinement problem of action systems to a step-wise
simulation problem only considering the execution of the do-od block from reach-
able states:

Definition 3. (Refinement of Action Systems) Let ASO and ASM be two
action systems with corresponding do-od blocks PO and PM . Furthermore, we
assume a function “reach” that returns the set of reachable states for a given
trace in an action system. Then

ASO ⊑ ASM =df ∀v, v′, tr, tr′ : ((v ∈ reach(ASO, tr) ∧ PM ) ⇒ PO)
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Fig. 2. Process for finding an unsafe state

This definition is different to Back’s original refinement definition based on state
traces [11]. Here, also the possible event traces are taken into account. Hence,
also the action labels have to be refined.

Negating this refinement definition and considering the fact that the do-od
block is a non-deterministic choice of actions Ai leads to the non-refinement
condition for two action systems:

∃v, v′, tr, tr′ : (v ∈ reach(ASO, tr) ∧ (AM
1 ∨ · · · ∨AM

n ) ∧ ¬AO
1 ∧ · · · ∧ ¬AO

m)

By applying the distributive law, we bring the disjunction outwards and obtain
a set of constraints for detecting non-refinement.

Theorem 1. (Non-refinement) A mutated action system ASM does not re-
fine its original ASO, iff any action AM

i of the mutant shows trace or state-
behaviour that is not possible in the original action system:

ASO 6⊑ ASM iff

n∨

i=1

∃v, v′, tr, tr′ : (v ∈ reach(ASO, tr) ∧AM
i ∧ ¬AO

1 ∧ ... ∧ ¬AO
m)

We use this property in our refinement checking process (Fig. 2), which is com-
posed of several steps. At first, we normalise the original action system AS and
the mutated action system ASM . We require action systems to be in a normal
form corresponding to the disjunctive normal form (DNF) in predicate logic.
This means that non-deterministic choice is always the outermost operator and
not allowed in nested expressions. This is necessary for quantifier elimination,
which is in turn required for the use with constraint solvers which do not support
quantifiers in general. For a detailed description we refer to [4].

The next step find mutated action performs a syntactic check on ASnorm and
ASMnorm to find out which action has been mutated. We then use Theorem 1
for which only one of the sub-constraints of the form AM

i ∧¬AO
1 ∧· · ·∧¬AO

m can
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be fulfilled: the one where AM
i is the encoding of the just found mutated action.

Hence, we are able to construct a non-refinement constraint, which is the sub-
constraint containing the mutated action. It describes the set of unsafe states.
Finally, the step check reachability and non-refinement performs a reachability
analysis on the original action system and uses the non-refinement constraint to
test each reached state whether it is an unsafe state. Note that the syntactic check
fails to identify mutants that are syntactically inequivalent but behaviourally
equivalent. These mutants could be skipped for reachability analysis and could
be detected via a semantic analysis using Theorem 1. However, this semantic
check has turned out the be more costly than the syntactic check followed by a
reachability analysis [4].

Our process either results in the verdict equivalent, which means that the
mutated action system conforms to the original, or in an unsafe state and a
sequence of actions leading to this state. In the latter case it is possible to derive
a test case. As test case generation is out of the scope of this paper and remains
future work, it is only indicated by a dotted box in Fig. 2. For a more details on
our individual process steps and the used algorithms, we refer to [5, 4].

Example 3. We continue Example 1 to illustrate our refinement checking process.
The action ’AlarmOn’ is already in normal form. Non-deterministic choice is
the outermost operator and not nested in any other expressions. Our syntactic
comparison reveals that the action ’AlarmOn’ has been mutated. The semantics
of the original (Co) and the mutant (Cm) have already been constructed in
Example 2. By combining them, we get the non-refinement constraint:

Cm ∧ ¬Co = (f = 0 ∧ s = 0 ∧ ((f ′ = 0 ∧ s′ = 1) ∨ (f ′ = 1 ∧ s′ = 1)) ∧ act′ = 1)∧

¬(f = 0 ∧ s = 0 ∧ f ′ = 1 ∧ s′ = 1 ∧ act′ = 1)

Note that existential quantification of the state variables is implicitly performed
by the constraint solver. The next step is the reachability analysis starting from
the action system’s initial state (f = 0, s = 0). Using this in the non-refinement
constraint, we have:

(0 = 0 ∧ 0 = 0 ∧ ((f ′ = 0 ∧ s′ = 1) ∨ (f ′ = 1 ∧ s′ = 1)) ∧ act′ = 1)∧

¬(0 = 0 ∧ 0 = 0 ∧ f ′ = 1 ∧ s′ = 1 ∧ act′ = 1)

By simplification, we get:

(((f ′ = 0 ∧ s′ = 1) ∨ (f ′ = 1 ∧ s′ = 1)) ∧ act′ = 1) ∧ ¬(f ′ = 1 ∧ s′ = 1 ∧ act′ = 1)

This constraint has one solution: f ′ = 0, s′ = 1, act′ = 1. It reveals wrong
observations after the initial state. Originally, both f ′ and s′ should be set to
1, but the mutant only sets s′, but not f ′. Hence, already the initial state (f =
0, s = 0) is an unsafe state and there is no need to continue reachability analysis
in this simple example.
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4 Efficiency

We presented techniques to improve the efficiency of our approach before [4]. Two
of them are already incorporated in the description of our process in the previous
section. The first one regards quantifier elimination. The second concerns the
syntactic analysis to identify the mutated action. In the following, we present
two further techniques to save computation time.

4.1 Pre-computation of Reachable States

So far, our refinement check between one original action system and a set of
corresponding mutants has been implemented as described in Alg. 1. The input
is one original action system (as) and a set of corresponding mutated action
systems (mutants). Note that all action systems are supposed to be in normal
form. The result is a map unsafes linking the mutants and their unsafe states.
The algorithm iterates over the set of mutants (Line 4). For each mutant, it
explores the state space of the original action system as (Line 6). The procedure
findNextState implements a breadth-first search for successor states of state s,
whereas it does not explore any state more than once (by maintaining a list of
visited states). To ensure termination, it stops exploration at a user-specified
depth limit. At each call, it returns the next reached state. This state is then
tested whether it is an unsafe state (Line 8). If this is the case, the state space
exploration is stopped and the next mutant is processed, where again state
space exploration is performed. Note that we omitted the recording of the traces
leading to the unsafe states for the sake of simplicity.

An advantage of Alg. 1 is that the state space is explored on demand, i.e.,
it is only explored until an unsafe state is found and not further. Given a small
set of mutants, this algorithm is appropriate. When dealing with a large set of
mutants, it is not that clever any more as the same state space is explored again
and again. An alternative is to pre-compute all reachable states up to a given
depth and then search for unsafe states in this set. Exploring the full state space
to the maximum bound is not really an overhead as it has to be done for each
equivalent mutant anyway. Given a large set of mutants, the probability that it
contains at least one equivalent mutant is rather high.

Alg. 2 describes the refinement check with a pre-computed state space. It
takes the same input as Alg. 1 and results in the same output. Again, all action
systems are supposed to be in normal form. In contrast to Alg. 1, Alg. 2 only ex-
plores the state space once and then reuses the reached states during mutation
analysis. The procedure findAllStates (Line 2) works analogously to the find-
NextState procedure of Alg. 1, but does not return one reachable state after the
other. Instead, it returns the full set of reachable states at once. Afterwards, iter-
ation over the mutants starts (Line 3), where each of the reached states (Line 4)
is tested whether it is an unsafe state (Line 5). Once an unsafe state is found, we
save the result (Line 6), stop searching for unsafe states (Line 7), and proceed
with the next mutant without exploring the state space again.
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Alg. 1 chkRef (as,mutants) : unsafes

1: unsafes := [ ]
2: visited := [ ]
3: s := getInitState(as)
4: for all asm ∈ mutants do

5: repeat

6: s := findNextState(as, s, visited)
7: visited := visited ∪ s

8: until unsafe(s, as, asm)
9: unsafes.add(asm, s)
10: end for

11: return unsafes

Alg. 2 chkRef1 (as,mutants) : unsafes

1: unsafes := [ ]
2: states := findAllStates(as)
3: for all asm ∈ mutants do

4: for all s ∈ states do

5: if unsafe(s, as, asm) then
6: unsafes.add(asm, s)
7: break

8: end if

9: end for

10: end for

11: return unsafes

4.2 Incremental Solving

Incremental solving is a technique to efficiently solve several constraints c1, ..., cn
that have large parts in common. The constraints are related to each other
by the adding and/or the removal of small parts. Incremental solving exploits
the findings made during solving the constraint ci for solving the subsequent
constraint ci+1 [34].

Our refinement checking process (Fig. 2) is well suited to exploit incremen-
tal solving. Alg. 2 incr is a more detailed version of Alg. 2 and gives additional
details on the application of incremental solving. In Line 1, the original action
system is translated. The resulting constraint system represents its transition
relation (trans rel). It is posted to the constraint/SMT solver’s store (Line 2).
The used interface for posting and retracting constraints acts as a stack, where
constraints can be pushed or popped. Additionally, the interface provides a solve
method. If the current store is satisfiable, it succeeds and a model may be re-
trieved. Otherwise, the constraints in the store are unsatisfiable and it returns
false. The solve method is used in findAllStates (Line 3), where the transition
relation of as is already in the solver’s store. The procedure findAllStates starts
at the initial state of as and recursively searches for all possible successor states.
As the state space is now fully explored (up to a given depth limit), the transition
relation is not needed any more and can be removed from the store (Line 4). In
exchange, the negated transition relation is required for each refinement check
with a mutant (cf. Theorem 1). It is added to the store in Line 5. The actual
refinement check starts in Line 7. It iterates over the set of mutants. In Line 9,
findMutatedAction syntactically compares the original and the mutated action
system. Thereby, it identifies the mutated action am, which represents the second
part of our non-refinement constraint (cf. Section 3). It is translated into con-
straints (Line 10) and added to the solver’s store (Line 11), which now contains
the complete non-refinement constraint for the current mutant. Lines 12 to 20
search for an unsafe state in the list of reachable states. Each state s is used as
the pre-state v of the non-refinement constraint (Line 13). If it is satisfiable, we
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Alg. 2 incr chkRefIncremental(as,mutants) : unsafes

1: trans rel := trans(as)
2: solver .push(trans rel)
3: states := findAllStates(as, solver)
4: solver .pop()
5: solver .push(¬trans rel)
6: unsafes := [ ]
7: for all asm ∈ mutants do

8: u := nil

9: am := findMutatedAction(as, asm)
10: mut act := trans(am)
11: solver .push(mut act)
12: for all s ∈ states do

13: solver .push(v = s) //s=unsafe?
14: if solver .solve() then
15: u := s

16: solver .pop()
17: break

18: end if

19: solver .pop()
20: end for

21: unsafes.add(asm, u)
22: solver .pop()
23: end for

24: return unsafes

just found an unsafe state - a state from which the mutant behaves in a way that
is not specified by the original (Lines 14 and 15). In this case we stop iterating
over the states (Line 17). In any case, the constraint v = s is removed from the
store (Line 16 and Line 19 respectively). Line 21 inserts the mutant asm and
the found unsafe state into the map unsafes. If no unsafe state could be found,
nil is inserted and the mutant is considered to be equivalent up to the specified
depth limit. In order to process the next mutant, the part of the non-refinement
constraint that is specific to the current mutant has to be removed from the
store (Line 22).

Alg. 2 incr shows that both the reachability analysis as well as the check for
unsafe states are well suited to exploit incremental solving. During reachability,
the transition relation is solved again and again - only the pre-states change
(Line 3). While testing states whether they are unsafe, the non-refinement con-
straint has to be solved repeatedly - again with changing pre-states (Line13).
Each non-refinement constraint contains the negated original (Line 5). Thus,
when processing several mutants, there is a common part remaining in the store.

Incremental solving in Alg. 1 works analogously. Hence, we do not go into
detail here. Note that we will use Alg. 1 incr to refer to the incremental version
of Alg. 1 in the following.

5 Implementations

We implemented two versions of our refinement checking process (Fig. 2). The
first version implements the repeated exploration of the state space, the second
the pre-computation of the state space. Both incorporate incremental solving
techniques. Hence, they implement Alg. 1 incr and Alg. 2 incr.

Our implementations are highly depending on the used solvers as they con-
sume a large amount of our overall execution time. There’s a strong competition
within the constraint solving and SMT solving communities. Consider for exam-



Fast Refinement Checking 13

ple the yearly SMT competition1. Therefore, the solvers are constantly enhanced
to outperform others.

For this reason, we followed two parallel tracks in terms of solving techniques
and also programming languages. The first implements the two algorithms in
SICStus Prolog2 (version 4.1.2) and uses the integrated constraint solver clpfd
(Constraint Logic Programming over Finite Domains) [18]. The second track
is implemented in the Scala programming language3 and uses an SMT solver
(Z34, version 4.0 for Mac OS X). While clpfd uses a specific input language, Z3
allows the use of SMT-LIB v25. It is supported by most SMT solvers and hence
facilitates the use of several different solvers. We also experimented with CVC36,
MathSAT 57 and SMTInterpol8, but Z3 was the most efficient for our problem.
We restrict ourselves to linear integer arithmetic (QF LIA logic in SMT-LIB).

In SICStus Prolog, the use of the constraint solver is very simple as its
functionality is provided as a library. In order to use Z3 in Scala, we use JNA
(Java Native Access)9 to make the C API of Z3 accessible in Java. As Scala
code is compiled to Java byte code, there is a strong interoperability with Java.
Within Scala, Java libraries may be called directly and vice versa.

Incremental solving is directly supported by Z3. Its C API offers methods to
push and pop clauses and to solve the clauses in the store. In Prolog, the clpfd
library does not directly offer such an interface. Nevertheless, incremental solving
can be implemented using constraint logic programming and backtracking.

In the following, we report on our experiences with our implementations.

6 Case Study: A Car Alarm System

To test our implementations, we used a simplified version of a car alarm sys-
tem (CAS) by Ford. It already served as an industrial demonstrator in the MO-
GENTES project10. It can be considered as representative for embedded systems
and has become a benchmark example within our research group.

Requirements. The following requirements served as the basis for our model:

R1 Arming. The system is armed 20 seconds after the vehicle is locked and the
bonnet, luggage compartment, and all doors are closed.

R2 Alarm. The alarm sounds for 30 seconds if an unauthorised person opens
the door, the luggage compartment, or the bonnet. The hazard flasher lights
will flash for five minutes.

1 smtcomp.sourceforge.net
2 http://www.sics.se/sicstus/
3 http://www.scala-lang.org/
4 http://research.microsoft.com/projects/z3/
5 http://www.smtlib.org/
6 http://www.cs.nyu.edu/acsys/cvc3/
7 http://mathsat.fbk.eu/
8 http://ultimate.informatik.uni-freiburg.de/smtinterpol/
9 https://github.com/twall/jna

10 https://www.mogentes.eu
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AlarmSystem_StateMachine

Alarm

Activate Alarms /entry 
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry 
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock
Open

Lock Close

Close LockOpen Unlock

Fig. 3. UML state machine of the car alarm system

R3 Deactivation The anti-theft alarm system can be deactivated at any time,
even when the alarm is sounding, by unlocking the vehicle from outside.

Fig. 3 shows a UML state machine of our CAS. From the state OpenAndUn-
locked one can traverse to ClosedAndLocked by closing all doors and locking
the car. As specified in requirement R1, the alarm system is armed after 20
seconds in ClosedAndLocked. Upon entry of the Armed state, the model calls
the method AlarmArmed.SetOn. Upon leaving the state, which can be done
by either unlocking the car or opening a door, AlarmArmed.SetOff is called.
Similarly, when entering the Alarm state, the optical and acoustic alarms are
enabled. When leaving the alarm state, either via a timeout or via unlocking the
car, both acoustic and optical alarm are turned off. Note that the order of these
two events is not specified, neither for enabling nor for disabling the alarms.
Hence the system is not deterministic. When leaving the Alarm state after a
timeout (cf. requirement R2) the system returns to the Armed state only in case
it receives a Close signal. Turning off the acoustic alarm after 30 seconds, as
specified in requirement R2, is reflected in the time-triggered transition leading
to the Flash sub-state of the Alarm state. Here, the elapsing of time is modelled
by explicit transitions using time triggers.

Mutations. We modelled the CAS described above as an action system and then
manually created first order mutants of the model. We applied three mutation
operators: (1) We set all possible guards to true (34 mutants). (2) We swapped
equal and unequal operators (52 mutants). (3) We incremented all integer con-
stants by 1, whereas we took the smallest possible value at the upper bound of
a domain, in order to avoid domain violations (116 mutants). Additionally, we
also included the original action system as an equivalent mutant. This gave us
a total of 207 mutants.

Variations. As in our previous works [5, 4], we use four slightly different versions
of our CAS model: (1) CAS 1 : the CAS as introduced above with parameter
values 20, 30, and 270 for waiting, (2) CAS 10 : the CAS with parameter values
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multiplied by 10 (200, 300, and 2700), (3) CAS 100 : the CAS with parameters
multiplied by 100, and (4) CAS 1000 : the CAS with parameters multiplied by
1000. These extended parameter ranges shall test the capabilities of our symbolic
approach.

Extended Model. Additionally, we built another extended version of the basic
car alarm system (CAS 1 ). We parameterised the Lock and Unlock events with
a PIN code. If the PIN code is correct when (un)locking the car, everything
behaves as usual. If someone tries to (un)lock the car with an incorrect PIN
code, the same mechanisms as when opening the car in the Armed state are
triggered. This means that the system traverses to the Alarm state and the flash
and sound alarms are turned on. Again, this state is left via timeouts or via
unlocking the car with the correct PIN. For this CAS PIN version, the timeouts
are always 20, 30 and 270 seconds respectively. Nevertheless, there are also two
variants: one with a Boolean PIN code and one with a PIN code consisting of
three digits (0-999). Again, we applied our three mutation operators explained
above, which gave us 245 mutants. We also included the original action system
as an equivalent mutant resulting in a total of 246 mutants.

Technical Details. In the following, we present results on these six versions of the
car alarm system obtained by (a) our Prolog implementation using a constraint
solver and (b) our Scala implementation using the Z3 SMT solver. All of our
experiments were conducted on a machine with a dual-core processor (2.8 GHz
Intel Core i7) and 8 GB RAM with a 64-bit operating system (Mac OS X v10.7).

6.1 Results

Table 1 shows the runtimes for our CAS case study. All values are given in
seconds and state the time needed for refinement checking of the original action
system with all of its mutants. It gives numbers for the Prolog implementation
using a constraint solver and the Scala implementation using an SMT solver
(Section 5). The values in Table 1 are also illustrated in the diagram in Fig. 4.

The Prolog implementation yields the following results. Alg. 1 incr achieves
runtimes from 2.82 to 8.55 seconds for the four CAS versions each with 207
mutants. For the two CAS versions with a PIN code (245 mutants in each case),
it needs 3.52 and 5.93 seconds respectively. Hence, the runtimes are not constant
with increasing domains of the parameters. Alg. 2 incr performs better. It is
faster and the runtime is constant. Note that the most-constrained heuristic has
been used for variable selection during constraint solving as our experiments in
[4] indicate that it is a reasonable choice.

For the Prolog implementation, we reported earlier results for CAS 1 to
CAS 1000 in [4]. At that time, our implementation used Alg. 1, i.e., it did not ex-
ploit incremental solving and did not pre-compute and reuse the state space. The
computation times for refinement checking of 207 mutants were about 20 sec-
onds for each CAS version. Hence, incremental solving led to faster runtimes,
but reduced scalability. By Alg. 2 incr, constant runtimes could re-established.
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solver that is only accessible via non-Java APIs (C, Python, ...). This introduces
some overhead compared to the native constraint solving support in Prolog.
Additionally, the implementations were written by different programmers. The
individual styles of programming may also have influenced the comparability of
the results.

We are aware that the results from our case study may not generalise. We
reported on our experience with this kind of models, which we think are repre-
sentative for most typical embedded systems. Nevertheless, the scalability of our
approach on the CAS does not necessarily have to be representative for other
types of models.

7 Related Work

To our knowledge, our test case generation approach is the first that deals with
non-deterministic systems, uses mutations, and is based on constraint solving
techniques. Nevertheless, there exist various works overlapping in one or several
aspects. There are constraint-based test case generation approaches on the source
code level, where no non-determinism has to be considered. A mutation-based
approach is [35] for example. Java-like programs are mutated and transformed
into constraints via SSA form to generate distinguishing test cases. Gotlieb et
al. do not use mutations, but structural criteria for test data generation via SSA
form. In [22], they work with constraint solving, in [23] with CLP.

Regarding black-box techniques, one of the first models to be mutated were
predicate-calculus specifications [17] and formal Z specifications [31]. Later on,
model checkers were available to check temporal formulae expressing equiva-
lence between original and mutated models. In case of non-equivalence, this
leads to counterexamples that serve as test cases [8]. Most test case generation
approaches using model checkers deal with deterministic systems. Nevertheless,
there also exist works considering non-determinism and the involved difficulties.
[28] suggests to synchronise non-deterministic choices in the original and the
mutated model via common variables to avoid false positive counterexamples.
[15] proposes two approaches that cope with non-determinism: modular model
checking of a composition of the mutant and the specification, and incremental
test generation via observers and traditional model checking. [27] also considers
non-determinism. It uses the model checker/refinement checker FDR (Failures-
Divergence Refinement) for the CSP process algebra [29] to generate test cases.
However, this approach is not mutation-based.

Other model-based mutation testing techniques considering non-determinism
include two ioco (input-output conformance [32]) checkers for LOTOS specifica-
tions [7] and (qualitative) action systems [16]. Both are not symbolic, but rely
on explicit state space enumeration.

In our symbolic approach we use constraint/SMT solvers that support incre-
mental solving. Incremental solving has already been applied to many problem
domains. One very prominent application is bounded model checking [34, 30].
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8 Conclusion

We enhanced our refinement checking approach for non-deterministic action sys-
tems in two ways. Firstly, we presented a more efficient way of processing a large
number of mutants. Secondly, we exploited incremental solving techniques. We
implemented both improvements in two implementation tracks: the first one uses
Prolog and constraint solving, the second Scala and the SMT solver Z3. First
case studies with a car alarm system showed that our two improvements signif-
icantly reduced runtime. Previous results [4] could be improved by up to 85%.
Our case study also indicates that both SMT and constraint solvers are able to
cope with refinement checking problems.

The ultimate goal of our work is to enable test case generation that targets
specific faults. Thereby, a mutation adequacy score that is as high as possible
shall be achieved. This paper dealt with the necessary, underlying conformance
check. Future work will attach to this and generate the desired test cases.

Of course, we are aware that our results may not generalise. To give further
evidence for the effectiveness and scalability of our approach, we already work on
further case studies. Regarding effectiveness, one very important aspect of our
model-based mutation testing approach are the used fault models. So far, we only
applied three manual mutation operators for action systems. We aim for integrat-
ing our refinement checking implementations into an already existing framework.
It uses UML models, which are mutated and then translated into action systems.
In [1, 2], this framework has already been used successfully with an explicit con-
formance checking tool. Nevertheless, scalability was an issue and motivated this
work. Regarding scalability of our new approach, also counterexample-guided ab-
straction refinement techniques similar as in SLAM [12] or BLAST [13] may be
an interesting topic for future work.
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23. Gotlieb, A., Botella, B., Rueher, M.: A CLP framework for computing structural
test data. In: 1st Int. Conf. on Computational Logic (CL 2000). LNCS, vol. 1861,
pp. 399–413. Springer (2000)

24. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering 3(4), 279–290 (July 1977)

25. Hoare, C., He, J.: Unifying Theories of Programming. Prentice-Hall Int. (1998)
26. Jia, Y., Harman, M.: An analysis and survey of the development of mutation

testing. IEEE Transactions on Software Engineering 37(5), 649–678 (2011)
27. Nogueira, S., Sampaio, A., Mota, A.: Guided test generation from csp models. In:

5th Int. Colloquium on Theoretical Aspects of Computing (ICTAC 2008). LNCS,
vol. 5160, pp. 258–273. Springer (2008)

28. Okun, V., Black, P.E., Yesha, Y.: Testing with model checker: Insuring fault visibil-
ity. In: Mastorakis, N.E., Ekel, P. (eds.) 2002 WSEAS Int. Conf. on System Science,
Applied Mathematics & Computer Science, and Power Engineering Systems. pp.
1351–1356 (2003)

29. Roscoe, A. W.: Model-checking CSP, chap. 21. Prentice-Hall (1994)
30. Shtrichman, O.: Pruning techniques for the SAT-based bounded model checking

problem. In: 11th IFIP WG 10.5 Advanced Research Working Conf. on Correct
Hardware Design and Verification Methods. pp. 58–70. CHARME ’01, Springer
(2001)

31. Stocks, P.A.: Applying formal methods to software testing. Ph.D. thesis, Depart-
ment of computer science, University of Queensland (1993)

32. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

33. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing ap-
proaches. Software Testing, Verification and Reliability (2011)

34. Whittemore, J., Kim, J., Sakallah, K.: SATIRE: A new incremental satisfiability
engine. In: Proc. of the 38th annual Design Automation Conf. pp. 542–545. DAC
’01, ACM (2001)

35. Wotawa, F., Nica, M., Aichernig, B.K.: Generating distinguishing tests using the
Minion constraint solver. In: Workshops Proc. of the 3rd Int. Conf. on Software
Testing, Verification and Validation (ICST 2010). pp. 325–330. IEEE Computer
Society (2010)


