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Abstract

Suppose we are given the free product V of a finite family of finite or countable sets (Vi)i∈I and
probability measures on each Vi, which govern random walks on it. We consider a transient
random walk on the free product arising naturally from the random walks on the Vi. We
prove the existence of the rate of escape with respect to the block length, that is, the speed,
at which the random walk escapes to infinity, and furthermore we compute formulas for it.
For this purpose, we present three different techniques providing three different, equivalent
formulas.
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1. Introduction

Consider a transient Markov chain (Zn)n∈N0 on a state space V and a suitable
length function l on V representing a ‘word length’ with respect to the starting
point of the Markov chain. We are interested in whether the sequence of random
variables l(Zn)/n converges almost surely to a constant, and if so, to compute
this constant. If the limit exists, it is called the rate of escape, or the drift with
respect to l. In this paper, we study this question for random walks on general
free products.

To outline some background material, on the d-dimensional grid Zd, where
d ≥ 1, random walks can be described by the sum of n independent and identi-
cally distributed random variables, the increments of n steps. By the weak law
of large numbers the limit limn→∞ |Zn|/n, where | · | is the distance on the grid
to the starting point of the random walk, exists almost surely. Furthermore, this
limit is positive if the increments have non-zero mean vector.

It is well-known that the rate of escape exists also for transitive random walks
on finitely generated groups, where the random walks arise from a probability
measure on the group elements. This follows from Kingman’s subadditive ergodic
theorem; see Kingman [9], Derriennic [3] and Guivarc’h [7]. If l is the metric

c© 0 Australian Mathematical Society 0263-6115/2000 $A2.00 + 0.00

1



of the Cayley graph, then the limit limn→∞ l(Zn)/n exists almost surely and
is positive. There are many detailed results for random walks on groups and
wreath products: Mairesse [13] computed a explicit formula in terms of the
unique solution of a system of polynomial equations for the rate of escape of
random walks on the braid group. Lyons, Pemantle and Peres [11] gave a lower
bound for the rate of escape of inward-biased random walks on lamplighter
groups. Dyubina [4] proved that the drift on the wreath product A oZ/2 is zero,
where A is a finitely generated group. Erschler [5] investigated asymptotics of
the drift of symmetric random walks on finitely generated groups. An important
link between drifts and harmonic analysis was obtained by Varopoulos [19]. He
proved that for symmetric finite range random walks on groups the existence
of non-trivial bounded harmonic functions is equivalent to a non-zero rate of
escape. This leads to a link between the rate of escape and the entropy of
random walks, compare e.g. with Kaimanovich and Vershik [8] and Erschler [5].
The rate of escape has also been studied on trees: Cartwright, Kaimanovich
and Woess [1] investigated the boundary of homogeneous trees and the drift
on them. Nagnibeda and Woess [16, Section 5] proved that the rate of escape
of random walks on trees with finitely many cone types is non-zero and give a
formula for it.

For a restricted class of free products of finite groups, Mairesse [12] and Mairesse
and Mathéus [14] have developed a specific technique for computation of the
above limit with respect to the word length. These papers were the starting
point for the present investigation of arbitrary free products. We consider the
free product of finitely many sets, on which Markov chains are given, and con-
struct in a natural way a random walk on the free product. The techniques we
use for rewriting probability generating functions in terms of functions on the
factors of the free product were introduced independently and simultaneously
by Cartwright and Soardi [2], Woess [22], Voiculescu [20] and McLaughlin [15].

Our aim is to show the existence of the above rate of escape ` with respect to
the word length, and also to compute formulas for it. For this purpose, we will
present three different, equivalent formulas for ` using three different techniques.
In Section 3 we prove existence and a formula for ` by purely probabilistic
reasoning. In Section 4 we compute the proposed limit using double generating
functions and applying a theorem of Sawyer and Steger [17, Theorem 2.2]. The
third approach for the computation of ` in Section 5 works only for free products
of finitely generated groups and is based on a technique which was already used
by Ledrappier [10] and Furstenberg [6]. Section 6 presents sample computations
and in Section 7 we give additional remarks about extensions of these techniques
to further results.

2. Free Products

2.1. Free Products and Random Walks Let I := {1, . . . , r}, r ≥ 2.
Consider r random walks with transition matrices Pi on pairwise disjoint finite
or countable state spaces Vi, where i ∈ I. The corresponding single and n-step

transition probabilities are denoted by pi(x, y) and p
(n)
i (x, y), where x, y ∈ Vi.

For every i ∈ I we select an element oi of Vi as the ‘root’. To help visualize
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this, we think of graphs Xi with vertex sets Vi and roots oi such that there is
an oriented edge x → y if and only if pi(x, y) > 0. Furthermore, we shall assume

that for every i ∈ I and every x ∈ Vi there is an n ∈ N such that p
(n)
i (oi, x) > 0.

For the sake of simplicity we assume pi(x, x) = 0 for every i ∈ I and x ∈ Vi.

Let V ×
i := Vi \ {oi} for every i ∈ I. The next step is the construction of a new

Markov chain on the free product V := V1 ∗ · · · ∗ Vr , the set of ‘words’

(1) x = x1x2 . . . xn

with letters, also called blocks, from the sets V ×
i such that no two successive

letters come from the same Vi. The empty word o describes the root of V . If
u = u1 . . . um ∈ V and v = v1 . . . vn ∈ V with um ∈ Vi and v1 /∈ Vi, then uv
stands for their concatenation as words. We also define vo = ov = v for all
v ∈ V . We regard each Vi as a subset of V , identifying each oi with o.

We lift Pi to a transition matrix P̄i on V : if z ∈ V is o or has last letter not
in Vi, and if v, w ∈ Vi, then we set p̄i(zv, zw) := pi(v, w). Otherwise we set
p̄i(x, y) := 0. We choose 0 < α1, . . . , αr ∈ R with

∑
i∈I αi = 1. Then we obtain

a new transition matrix on V given by

P =
∑

i∈I

αiP̄i.

The random walk governed by P is described by the sequence of random vari-
ables (Zn)n∈N0 . The associated single and n-step transition probabilities are
denoted by p(x, y) and p(n)(x, y) for x, y ∈ V .

Let x = x1 . . . xm ∈ V \{o}. The type τ(x) of x is defined to be i if xm ∈ Vi. The
block length `(x) of x is defined to be m. We also set τ(o) := 0 and `(o) := 0.
We want to show existence of the P -almost sure limit ` = limn→∞ `(Zn)/n, the
rate of escape with respect to the block length, and to present formulas for it.
Let k ∈ N. Then x(k) := x1 . . . xj , where j = min{k, m}, is the truncation at
length k. We also write x⊥ := x1 . . . xm−1 for the truncation at length `(x)− 1,
if x 6= o. Furthermore we denote by x̃ := xm the terminal block of x, if m > 0,
and set õ := o. The cone rooted at x is the set

Cx :=
{
y ∈ V | y(m) = x

}
⊆ V.

If y ∈ Vi, then the set of successors of y is given by

S(y) :=
{
w ∈ Vi | pi(y, w) > 0

}

and the set of predecessors by

P(y) :=
{
w ∈ Vi | pi(w, y) > 0

}
.

We now introduce some probability generating functions. For this purpose,
let Ty := min{k ≥ 0 |Zk = y}, resp. Sy := min{k > 0 |Zk = y}, be the stopping
time of the first visit, resp. the first return to y ∈ V . Denote by Px the prob-
ability measure on V N0 that governs the random walk starting at x ∈ V . For
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z ∈ C and x, y ∈ V let

G(x, y|z) =
∑

n≥0

p(n)(x, y) zn, F (x, y|z) =
∑

n≥0

Px[Ty = n] zn,

U(x, y|z) =
∑

n≥1

Px[Sy = n] zn,

L(x, y|z) =
∑

n≥0

Px

[
∀k ∈ {1, . . . , n − 1} : Zk 6= x, Zn = y

]
zn.

The analogous functions for the random walks on the single factors Vi are de-
noted by Gi(u, v|z), Fi(u, v|z) and Li(u, v|z), where u, v ∈ Vi. We make the
basic assumption that the radius of convergence of G(o, o|z) is greater than 1,
which implies transience of our random walk on V . Thus, we may exclude the
case r = 2 = |V1| = |V2|. This convergence property is fulfilled if each pi is
reversible and due to non-amenability also for random walks on free products
of finitely generated groups, where the Pi depend only on a probability measure
on the single groups. Note that for |z| < 1,

∑
y∈Vi

Gi(x, y|z) = 1/(1 − z) for
every i ∈ I and all x ∈ Vi. This will be used several times in the sequel.

Recall the following equations:

Lemma 2.1. Let x, y ∈ V , w ∈ V \{o} such that w(1) /∈ Vτ(x), and z ∈ C. Then:

(i) G(x, x|z) =
1

1 − U(x, x|z)
,

(ii) G(x, y|z) = F (x, y|z) · G(y, y|z) ,

(iii) G(x, y|z) = G(x, x|z) · L(x, y|z) ,

(iv) F (o, xw|z) = F (o, x|z) · F (x, xw|z) ,

(v) L(o, xw|z) = L(o, x|z) · L(x, xw|z) ,

(vi) L(x, xw|z) = L(o, w|z).

Equations analogous to (i), (ii), (iii) hold for the generating functions on the
single factors Vi for every i ∈ I.

Proof. For (i) and (ii) see Woess [23, Lemma 1.13]. Equation (iii) is obtained
by conditioning with respect to the last visit at x before finally walking to y.
(iv) and (v) are obtained by conditioning with respect to the first resp. last visit
at x, which must be visited before finally walking to xw. (vi) holds, as due to
the tree-like structure of the free product the probability of walking from x to
xw in n steps without returning to x is the same as walking from o to w in n
steps without returning to o.

We now explain the correspondence between F (x, y|z) and Fi(x, y|z), resp.
L(x, y|z) and Li(x, y|z). Therefore define for i ∈ I and z ∈ C

H̄i(z) :=

∞∑

n=2

Po[So = n, Z1 /∈ Vi] z
n and ξi(z) :=

αiz

1 − H̄i(z)
;

see Woess [23, Proposition 9.18]. Note that H̄i(1) is the probability of starting
at some x ∈ Vi and returning to the same x without having visited a neighbour
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y ∈ S(x) of x. Similarly ξi(1) is the probability of starting at some x ∈ Vi

and at some time visiting a neighbour y ∈ S(x). Observe that for positive z the
functions H̄i(z) and ξi(z) are strictly increasing inside their radii of convergence,
which are greater than 1.

Lemma 2.2. Let i ∈ I, x, y ∈ Vi and z ∈ C. Then

(i) F (x, y|z) = Fi

(
x, y|ξi(z)

)
and (ii) L(x, y|z) = Li

(
x, y|ξi(z)

)
.

For the proof of (i) see Woess [23, Proposition 9.18 (c)]. Statement (ii) is proved
analogously.

Lemma 2.3. ξi := ξi(1) < 1 for all i ∈ I.

Proof. Let Hi(z) := U(o, o|z) − H̄i(z). By transience we have

U(o, o|1) =
∑

i∈I

Hi(1) < 1.

Furthermore
Hi(1) = αi

∑

s∈S(oi)

pi(oi, s) F (s, o|1)︸ ︷︷ ︸
≤1

≤ αi.

Hence,

ξi =
αi

1 −
∑

j∈I\{i} Hj(1)
≤

αi

1 −
∑

j∈I\{i} αj

=
αi

1 − (1 − αi)
= 1.

Observe that ξj < 1 for all j ∈ I \ {i}, if Hi(1) < αi for some i ∈ I. Assume
Hi(1) = αi for some i ∈ I. Then H̄i(1) = U(o, o|1) − Hi(1) < 1 − αi, and thus
there is j ∈ I \ {i} such that Hj(1) < αj . Thus ξi < 1. Since

Hi(1) = αi

∑

s∈S(oi)

pi(oi, s)F (s, o|1) = αi

we have F (s, o|1) = 1 for all s ∈ S(oi). But now we obtain the contradiction

F (s, o|1) = Fi(s, oi|ξi) < 1,

as ξi < 1 and Fi(s, oi|x), 0 ≤ x ∈ R, is strictly increasing with Fi(s, oi|1) ≤ 1.

2.2. Limit of the Random Walk As we have assumed transience for the
random walk on V, the random walk escapes to infinity in the sense that almost
surely every finite A ⊆ V is visited only finitely often. We shall now investigate
the route of the escape of the random walk on V , which provides the main tool
for further computations. Define for x ∈ V , i ∈ I with τ(x) 6= i and S ⊆ Vi the
set xS := {xy | y ∈ S}. Then we obtain:

Lemma 2.4. If x ∈ V and τ(x) 6= i then

Po

[
Zn ∈ xVi holds for infinitely many n

]
= 0.

5



Proof. By Lemmas 2.1 and 2.2,

∑

n≥0

Po[Zn ∈ xVi] =
∑

y∈Vi

G(o, xy|1)

=
∑

y∈Vi

G(o, o|1) L(o, x|1) Li(oi, y|ξi)

= G(o, o|1) · L(o, x|1) ·
∑

y∈Vi

Gi(oi, y|ξi)

Gi(oi, oi|ξi)

=
G(o, o|1) L(o, x|1)

Gi(oi, oi|ξi)

1

1 − ξi

< ∞.

The Borel-Cantelli lemma implies the proposed statement.

Now we are able to specify how the random walk on V escapes to infinity. Let V∞

denote the set of infinite words x1x2 . . . in which each of the letters xj belongs
to
⋃

i∈I V ×
i , no consecutive letters come from the same V ×

i , and infinitely many

letters come from each V ×
i . Then we obtain:

Proposition 2.5. `(Zn) tends to infinity Po-a.s., as n → ∞. Furthermore,
there exists a V∞-valued random variable Z∞, such that

lim
n→∞

Zn = Z∞ Po − a.s.,

with convergence in the sense that the length of the common prefix of Zn and
Z∞ tends to infinity.

Proof. We prove by induction that for each m ∈ N there is almost surely some
nm ∈ N with `(Znm

) = m and `(Zn) > m for all n > nm. By Lemma 2.4, the
random walk visits the state set

⋃
i∈I Vi finitely often Po-a.s.. Therefore there

is almost surely some n1 ∈ N such that Zn1 ∈
⋃

i∈I Vi Po-a.s. and Zn /∈
⋃

i∈I Vi

for all n > n1. Thus `(Zn1) = 1 and `(Zn) > 1 for all n > n1.
Assume now that `(Znm

) = m and `(Zn) > m for all n > nm and let
I ′ := I \ {τ(Znm

)}. Again by Lemma 2.4 the random walk visits the state set⋃
i∈I′ Znm

Vi finitely often Po-a.s.. Then there is almost surely some nm+1 ∈ N

such that Znm+1 ∈
⋃

i∈I′ Znm
Vi and Zn /∈

⋃
i∈I′ Znm

Vi for all n > nm+1. Thus
`(Znm+1) = m + 1 and `(Zn) > m + 1 for all n > nm+1. Thus `(Zn) tends to
infinity, as n → ∞.
Obviously the sequence (Zn)n∈N0 converges to an infinite word in V∞ with

Z
(m)
∞ = Znm

for all m ∈ N.

3. Exit Time Technique

In this section we investigate the random walk on V in detail, prove the existence
of ` and derive a formula for it. The following technique was motivated by
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Nagnibeda and Woess [16, Section 5]. Let k ∈ N. The exit time with respect to

the block length k is

ek := min
{
m ∈ N

∣∣∣ ∀n ≥ m : Z(k)
n constant

}
.

In particular e0 = 0. The exit point with respect to the block length k is Wk := Zek
.

Thus, ek is the first instant from which point the first k blocks remain con-
stant, and Wk = x if and only if at time ek − 1 the random walk is at state
x1 . . . xk−1s with some s ∈ P(xk), at time ek at state x, and thereafter remains
in the cone Cx.

As Zn converges almost surely to a random variable Z∞ with values in V∞, we
have ek → ∞ as k → ∞, almost surely. The k-th increment is ik := ek − ek−1

and the maximal temporary exit time at time n is defined as

k(n) := max
{
k ∈ N0 | ek ≤ n

}
.

Define now for i ∈ I, y ∈ V and n ∈ N0

k
(n)
i (o, y) := Po

[
∀j ∈ {0, . . . , n} : Zj /∈ V ×

i , Zn = y
]

and the corresponding generating function

(2) Ki(o, y|z) :=

∞∑

n=0

k
(n)
i (o, y) zn =

∑

n≥0

H̄i(z)n · L(o, y|z) =
L(o, y|z)

1 − H̄i(z)
.

Now we can prove:

Proposition 3.1. (Wk, ik)k∈N is a Markov chain with transition probabilities

Po

[
Wk+1 = wk+1, ik+1 = nk+1

∣∣Wk = wk, ik = nk

]

=
1 − ξτ(wk+1)

1 − ξτ(wk)
·
∑

s∈P(y)

[
k

(nk+1−1)

τ(wk) (o, s) · p(s, y)
]

for nk, nk+1 ∈ N, wk = x1 . . . xk ∈ V , wk+1 = wky, where y ∈
⋃

i∈I\{τ(wk)} V ×
i .

Proof. Define V̄i =
⋃

j∈I\{i} V ×
j . Let w0 = o, w1 = g1 ∈

⋃
i∈I V ×

i and

wi = wi−1gi with gi ∈ V̄τ(wi−1) for 2 ≤ i ≤ k.

For i ∈ {1, . . . , k} the inclusion [Wi+1 = wi+1] ⊆ [Wi = wi] holds, as wi+1 deter-
mines the element wi uniquely. Let n1, . . . , nk+1 ∈ N and write for m ∈ {k, k + 1}

[
W m

1 = wm
1 , im1 = nm

1

]
:=
[
∀j ∈ {1, . . . , m} : Wj = wj , ij = nj

]
.

This event can be described as follows: start at o, walk in n1 − 1 steps to a
predecessor of w1 inside Vτ(w1), then walk to w1; then stay inside Cw1 and walk
in n2−1 steps to a vertex in w1P(g2), from there to w2, and so on. More formally
we obtain, writing ns

1 =
∑s

t=1 nt:

Po[W
k
1 = wk

1 , ik1 = nk
1 ]

= Po

[
∀λ ∈ {0, . . . , k − 1}∀j ∈ {1, . . . , nλ − 1} :

Znλ
1 +j ∈ Cwλ

, Z
n

λ+1
1 −1 ∈ wλP(gλ+1), Zn

λ+1
1

= wλ+1

]
·
(
1 − ξτ(wk)

)
.
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Analogously,

Po[W
k+1
1 = wk+1

1 , ik+1
1 = nk+1

1 ]

= Po

[
∀λ ∈ {0, . . . , k − 1}∀j ∈ {1, . . . , nλ − 1} :

Znλ
1 +j ∈ Cwλ

, Z
n

λ+1
1 −1 ∈ wλP(gλ+1), Zn

λ+1
1

= wλ+1

]
·

Pwk

[
∀j ∈ {1, . . . , nk+1 − 2} : Zj ∈ Cwk

,
Znk+1−1 ∈ wkP(gk+1), Znk+1

= wk+1

]
·
(
1 − ξτ(wk+1)

)
.

Thus we obtain the conditional probabilities:

Po

[
Wk+1 = wk+1, ik+1 = nk+1 | W k

1 = wk
1 , ik1 = nk

1

]

=
1 − ξτ(wk+1)

1 − ξτ(wk)
· Pwk

[
∀j ∈ {1, . . . , nk+1 − 2} : Zj ∈ Cwk

,
Znk+1−1 ∈ wkP(gk+1), Znk+1

= wk+1

]

=
1 − ξτ(wk+1)

1 − ξτ(wk)
·
∑

s∈P(y)

[
k

(nk+1−1)

τ(wk) (o, s) · p(s, y)
]
.

Observe that the transition probabilities of the stochastic process (Wk, ik)k∈N

depend only on τk := τ(Wk), τ(Wk+1) and W̃k+1. Hence, the stochastic process(
W̃k , ik, τk

)
k∈N

is an irreducible Markov chain on the state space

A :=
{
(y, n, j)

∣∣ j ∈ I, y ∈ V ×
j , n ∈ N, ∃i ∈ I \ {j}∃s ∈ P(y) : k

(n−1)
i (o, s) > 0

}

with transition probabilities

q
(
(x, m, i), (y, n, j)

)
=

{
0, if i = j
1−ξj

1−ξi
·
∑

s∈P(y)

[
k

(n−1)
i (o, s) · p(s, y)

]
, if i 6= j

.

For convenience, we write q
(
(x, m, i), (y, n, j)

)
:= 0, if j ∈ I, y ∈ Vj , but

(y, n, j) /∈ A. As the probabilities q
(
(x, m, i), (y, n, j)

)
do not depend on x and

m, the sequence (τk)k∈N is also a Markov chain on the state space I with
transition probabilities

(3) q̂(i, j) :=
∑

y∈V ×

j

∑

n≥1

q
(
(x, m, i), (y, n, j)

)

for i, j ∈ I with i 6= j and q̂(i, i) = 0. Note that x ∈ Vi and m ∈ N can be
chosen arbitrarily, such that (x, m, i) ∈ A. As I is finite, (τk)k∈N possesses an
invariant probability measure ν : I → [0, 1], that is, for every j ∈ I

(4)
∑

i∈I

ν(i) · q̂(i, j) = ν(j) .

We now define for j ∈ I, y ∈ V ×
j and n ∈ N

π(y, n, j) :=
∑

i∈I

ν(i) · q
(
(x, m, i), (y, n, j)

)
,

8



which is an invariant probability measure of the stochastic process
(
W̃k , ik, τk

)
k∈N

,
that is, ∑

(x,m,i)∈A

π(x, m, i) q
(
(x, m, i), (y, n, j)

)
= π(y, n, j)

holds for all (y, n, j) ∈ A.

Proposition 3.2. There is a number Λ ∈ R, such that

ek

k

k→∞
−−−−→ Λ Po − a.s..

Proof. Consider the function g : A → N, (y, n, j) 7→ n. An application of the
ergodic theorem for positive recurrent Markov chains shows that

1

k

k∑

l=1

g
(
W̃l, il, τl

)
=

ek − e0

k
=

ek

k

k→∞
−−−−→

∫
g dπ Po − a.s. ,

if
∫

g dπ < ∞ holds. Hence it is sufficient to show finiteness of this integral.
Noting that

∫
g dπ =

∑

i∈I

ν(i) ·
∑

(y,n,j)∈A

n · q
(
(x, m, i), (y, n, j)

)

=
∑

i∈I

ν(i)

1 − ξi

∑

j∈I\{i}

αj(1 − ξj)
∑

n≥1

n
∑

y∈V
×

j

∑

s∈P(y)

k
(n−1)
i (o, s) · pj(s, y)

︸ ︷︷ ︸
(∗)

,

we now interpret the sum (∗) as a power series evaluated at 1. We have

∑

n≥1

n
∑

y∈V
×

j

∑

s∈P(y)

k
(n−1)
i (o, s) pj(s, y) zn−1

=
∂

∂z

[∑

n≥1

∑

y∈V
×

j

∑

s∈P(y)

k
(n−1)
i (o, s) pj(s, y) zn

︸ ︷︷ ︸
=:γi,j(z)

]
.

Now it is sufficient to show that the sum γi,j(z) has radius of convergence
Ri,j > 1 for all i, j ∈ I with i 6= j:

γi,j(z) =
∑

n≥1

∑

y∈V
×

j

∑

s∈P(y)

k
(n−1)
i (o, s) · pj(s, y) · zn

=
∑

n≥1

∑

s∈Vj

k
(n−1)
i (o, s) · zn −

∑

n≥1

∑

s∈P(oj)

k
(n−1)
i (o, s) · pj(s, oj) · z

n

= z ·
∑

y∈Vj

Ki(o, y|z)

︸ ︷︷ ︸
(∗∗)

−z
∑

s∈P(oj)

Ki(o, s|z) · pj(s, oj)

︸ ︷︷ ︸
(∗∗∗)

.
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From Equation (2) we obtain

∑

y∈Vj

Ki(o, y|z) =
∑

y∈Vj

L(o, y|z)

1 − H̄i(z)
=

1

1 − H̄i(z)

∑

y∈Vj

Lj

(
oj , y|ξj(z)

)
,

and also

∑

y∈Vj

Lj

(
oj , y|ξj(z)

)
=

1

Gj

(
oj , oj |ξj(z)

)
∑

y∈Vj

Gj

(
oj , y|ξj(z)

)

=
1

Gj

(
oj , oj |ξj(z)

) · 1

1 − ξj(z)
.

Thus the sum (∗∗) has radius of convergence greater than 1. Furthermore, by
(2) and Lemmas 2.1 and 2.2,

∑

s∈P(oj)

pj(s, oj) Ki(o, s|z)

=
1

1 − H̄i(z)

∑

s∈S(oj)

pj(s, oj)
Gj

(
oj , s|ξj(z)

)

Gj

(
oj , oj |ξj(z)

)

=
1(

1 − H̄i(z)
)
· Gj

(
oj , oj |ξj(z)

)
∑

s∈P(oj)

pj(s, oj) ξj(z) Gj

(
oj , s|ξj(z)

) 1

ξj(z)

=
Gj

(
oj , oj |ξj(z)

)
− 1(

1 − H̄i(z)
)
· Gj

(
oj , oj |ξj(z)

)
· ξj(z)

.

Thus the sum (∗ ∗ ∗) has radius of convergence greater than 1, and also γi,j(z),
whence

∫
g dπ is finite.

Using the above, we can rewrite γi,j(z) as

(5) γi,j(z) =
1

αi

·
ξi(z)

ξj(z)
·

(
1

(1 − ξj(z)) · Gj

(
oj , oj |ξj(z)

) − 1

)

and therefore

(6) Λ =
∑

i,j∈I,
i6=j

ν(i) · αj ·
1 − ξj

1 − ξi

· γ′
i,j(1).

The following theorem is now obtained precisely as in Nagnibeda and Woess
[16, proof of Theorem D]:

Theorem 3.3.
`(Zn)

n

n→∞
−−−−→ ` =

1

Λ
Po − a.s.

Finally, we show how to compute the invariant probability measure ν explicitly.
For this purpose, it is sufficient to compute the transition probabilities q̂(i, j)
for all i, j ∈ I. By solving the system of linear equations given by Equations (4)
ν is obtained. The next lemma proposes a formula for q̂(i, j):

10



Lemma 3.4. Let i, j ∈ I with i 6= j. Then q̂(i, i) = 0 and

q̂(i, j) =
αj

αi

·
ξi

ξj

·
1 − ξj

1 − ξi

·

(
1

(1 − ξj)Gj(ξj)
−1

)
, where Gj(ξj) := Gj(oj , oj |ξj).

Proof. By definition of Wk and Po[Z∞ ∈ V∞] = 1 it follows that q̂(i, i) = 0.
Considering (3) and the computations in the proof of Proposition 3.2 leads to
q̂(i, j) = (1 − ξj)/(1 − ξi) · αj · γi,j(1).

We now give an explicit formula for ν:

(7) ν(i) = c ·
αi (1 − ξi)

ξi

·
(
1 − (1 − ξi) Gi(ξi)

)
,

where c > 0 is chosen so that
∑

i∈I ν(i) = 1. This is indeed an invariant measure,
because, writing x(i) = 1− (1− ξi) Gi(ξi), the invariance condition on ν is just

∑

i∈I\{j}

x(i) =
x(j)
1

(1−ξj)Gj(ξj)
− 1

for each j ∈ I

or, equivalently, that ∑

i∈I

x(i) = 1.

The following lemma verifies that this equation holds.

Lemma 3.5. Let i ∈ I. Then

ρ(i) := Po

[
Z(1)
∞ ∈ V ×

i , ∀n ∈ N : Zn /∈
⋃

j∈I\{i}

Vj

]
=

1 − (1 − ξi) Gi(ξi)

G(o, o|1)
.

Proof. By transience, o is visited only finitely often Pe-a.s., that is,

∑

i∈I

G(o, o|1) ρ(i) = 1.

This yields

ρ(i) =
∑

y∈V
×

i

∑

j∈I\{i}

L(o, y|1) · ρ(j)

=
∑

y∈V
×

i

L(o, y|1) ·
(
G(o, o|1)−1 − ρ(i)

)

=
(
G(o, o|1)−1 − ρ(i)

) ∑

y∈V
×

i

Gi

(
oi, y|ξi

)

Gi

(
ξi

)

=
(
G(o, o|1)−1 − ρ(i)

)
·

(
1

(1 − ξi) · Gi(ξi)
− 1

)
.

This leads to the proposed equation.
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We summarize this section: if we know for each factor Vi, i ∈ I, the first visit
generating function Fi(x, oi|z), when starting at a predecessor x ∈ P(oi) of oi,
and the Green function Gi(oi, oi|z), it is possible to compute ξi(z) by solving
a finite system of characteristic equations. This is in fact only possible when
the generating functions are known and not too complicated. The measure ν
can then be computed by (7) and then ` found using ` = 1/Λ and (6). Sample
computations are presented in Section 6.

4. Double Generating Functions

In this section we compute the rate of escape ` for the random walk on V using
double generating functions. The main tool for our computation is the following
theorem:

Theorem 4.1 (Sawyer and Steger). Let (Yn) be a sequence of real-valued ran-
dom variables such that for some δ > 0,

E

(∑

n≥0

exp(−rYn − sn)

)
=

C(r, s)

g(r, s)
for 0 < r, s < δ,

where C(r, s) and g(r, s) are analytic for |r|, |s| < δ and C(0, 0) 6= 0. Denote by
gr and gs the partial derivatives of g with respect to r and s. Then

Yn

n

n→∞
−−−−→ ` =

gr(0, 0)

gs(0, 0)
almost surely.

For the proof, see Sawyer and Steger [17, Theorem 2.2].

Setting Yn = `(Zn), w = e−r and z = e−s, to find ` in our context it is sufficient
to investigate the double generating function

E(w, z) :=
∑

x∈V

∑

n≥0

p(n)(o, x)w`(x)zn =
∑

x∈V

G(o, x|z)w`(x)

and to apply Theorem 4.1. To this end, introduce further double generating
functions. Write V × := V \ {o} and define

L(w, z) := 1 +
∑

n≥1

∑

x=x1...xn∈V ×

n∏

j=1

w Lτ(xj)

(
oτ(xj), xj

∣∣ξτ(xj)(z)
)

and for i ∈ I

L+
i (w, z) :=

∑

x∈V
×

i

Li

(
oi, x

∣∣ξi(z)
)
w ,

Li(w, z) := L+
i (w, z)

(
1 +

∑

n≥2

∑

x2,...,xn∈V ×,
τ(x2)6=i

n∏

j=2

w Lτ(xj)

(
oτ(xj), xj

∣∣ξτ(xj)(z)
))

.
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Thus we have the equation

L(w, z) = 1 +
∑

i∈I

Li(w, z).

If 0 ≤ w, z < 1, the convergence of the series L(w, z) follows by L(w, z) ≤ E(w, z).
Hence, L+

i (w, z) and also Li(w, z), i ∈ I, converge if |w|, |z| < 1. The next lemma
provides another representation of L(w, z).

Lemma 4.2. Let w, z ∈ R with 0 ≤ w, z < 1. Then:

L(w, z) =
1

1 −L∗(w, z)
, where L∗(w, z) =

∑

i∈I

L+
i (w, z)

1 + L+
i (w, z)

.

Proof. Let w, z ∈ R with 0 < w, z < 1. First we have

Li(w, z) = L+
i (w, z) ·

(
1 +

∑

j∈I\{i}

Lj(w, z)
)

for all i ∈ I,

and from convergence of L(w, z) we get

Li(w, z) = L+
i (w, z) ·

(
L(w, z) −Li(w, z)

)
.

As L+
i (w, z) ≥ 0 holds, the last equation is equivalent to

Li(w, z) =
L+

i (w, z)

1 + L+
i (w, z)

L(w, z) .

Thus

L(w, z) = 1 +
∑

i∈I

Li(w, z) = 1 +
∑

i∈I

L+
i (w, z)

1 + L+
i (w, z)

L(w, z).

As L(w, z) < ∞, we get
∑

i∈I

L+
i (w, z)

1 + L+
i (w, z)

< 1 .

and the result follows.

Corollary 4.3. Let w, z ∈ R with 0 ≤ w, z < 1. Then

E(w, z) =
G(o, o|z)

1 −L∗(w, z)
.

Proof. Let w, z ∈ R with 0 < w, z < 1. Applying Lemma 4.2 yields the
proposed equation:

E(w, z) =
∑

x∈V

G(o, o|z)L(o, x|z)w`(x)

= G(o, o|z)
(
1 +

∑

n≥1

∑

x=x1...xn∈V ×

L(o, x|z)w`(x)
)

= G(o, o|z) · L(w, z) .
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We can now conclude and compute a formula for the rate of escape `. Rewriting
L∗(w, z) after some manipulations involving Lemma 2.1 yields

L∗(w, z) =
∑

i∈I

w
(

1
1−ξi(z) − Gi

(
oi, oi|ξi(z)

))

w
1−ξi(z) + (1 − w)Gi

(
oi, oi|ξi(z)

) .

Now we define

C(w, z) := G(o, o|z) and

g(w, z) := 1 −
∑

i∈I

w
(

1
1−ξi(z) − Gi

(
oi, oi|ξi(z)

))

w
1−ξi(z) + (1 − w)Gi

(
oi, oi|ξi(z)

) .

and we have

E(w, z) =
C(w, z)

g(w, z)
for 0 ≤ w, z < 1.

The constraints required for an application of Theorem 4.1 are obviously ful-
filled, as G(o, o|z) has radius of convergence greater than 1 and ξi < 1. We apply
it now, where gw and gz denote the partial derivatives of g with respect to w
and z, respectively. Hence, we can conclude

`(Zn)

n

n→∞
−−−−→ ` =

gw(1, 1)

gz(1, 1)
Po − a.s. .

Simplifications yield the following formula for `, where we write ξi = ξi(1) and
Gi(ξi) := Gi(oi, oi|ξi):

(8) ` =

∑
i∈I

[(
1 − (1 − ξi) Gi(ξi)

)
· Gi(ξi) · (1 − ξi)

]

∑
i∈I

[
ξ′i(1) ·

(
Gi(ξi) − (1 − ξi) G′

i(ξi)
)] .

Observe that ξi, Gi(ξi) > 0, ξi < 1 and Gi(ξi) < (1 − ξi)
−1. Thus ` > 0.

5. Free Products of Groups

In this section we present a third technique for the computation of the rate
of escape ` of the block length for the random walk on the free product. This
technique is restricted to the case of a free product of groups. Therefore let
Γi, i ∈ I, be non-trivial finitely generated groups. We assume that the groups
have pairwise trivial intersections, but they may be isomorphic. Denote by ei the
identity on Γi. The elements of the free product Γ := Γ1∗· · ·∗Γr are represented
as words in the sense of (1) and e is identified with the empty word.

We can define a group operation on Γ: the product of u, v ∈ Γ is the con-
catenation of the words u and v with possible cancellations and contractions
in the middle to get the representative form of the product word. We exclude
the case r = 2 = |Γ1| = |Γ2|. This ensures that the free group product is non-
amenable, yielding that each of our constructed random walks on Γ is transient
and G(e, e|z) has radius of convergence greater than 1. (See Woess [23, Theorem
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10.10, Proposition 12.4, Corollary 12.5]). We write Γ×
i = Γi \ {ei} for i ∈ I.

Furthermore we write Γ∞ = V∞ and Γ× := Γ \ {e}.

The random walk on Γ is constructed as follows: standing at x ∈ Γ we allow
walking to xg with g ∈

⋃
i∈I Γ×

i in one step. Choose probability measures µi on

Γ×
i for each i ∈ I such that µi defines an irreducible random walk on Γi, that

is, pi(x, y) = µi(x
−1y) for all x, y ∈ Γi. Let α1, . . . , αr > 0 with

∑
i∈I αi = 1.

Then we define the transition probabilities as

p(x, xg) := αi · µi(g)

for all x ∈ Γ, g ∈ Γ×
i , and we set p(x, y) := 0 otherwise. As the transition

probabilities depend only on the increment g ∈ Γ×
i we write µ(g) := p(x, xg)

for all g ∈
⋃

i∈I Γ×
i , and µ(g) := 0 otherwise. Analogously, the n-step transition

probabilities are given by the convolution powers µ(n) of µ.

By Theorem 2.5 the random walk converges Pe-a.s. to a random variable Z∞

with values in Γ∞. Denote by ν the distribution of Z∞. Let

Ei =
{
x1x2 · · · ∈ Γ∞

∣∣ τ(x1) = i
}

for i ∈ I.

Then ν is uniquely determined by its values on the Borel sets B of the form
xEi = {xh | h ∈ Ei} with i ∈ I, x ∈ Γ and τ(x) 6= i. We will now give a formula
for these values:

Lemma 5.1. Let i ∈ I, x ∈ Γ with τ(x) 6= i. Then

ν(xEi) = Pe[Z∞ ∈ xEi] = F (e, x|1)
(
1 − (1 − ξi) Gi(ei, ei|ξi)

)
.

Proof. The proof of this lemma is extrapolated from Woess [21, Theorem 4 c],
where one can find an incorrect formula, which we correct here. First we have

ν(xEi) = F (e, x|1) · ν(Ei).

Recall that we have by vertex-transitivity Gi(oi, oi|z) = Gi(y, y|z) for all i ∈ I
and all y ∈ Γi. By Lemma 3.5 we obtain

ν(Ei) = G(o, o|1) · ρ(i) = 1 − (1 − ξi) Gi(ei, ei|ξi).

This leads to the proposed formula.

Now we reformulate our problem for finding a formula for `. For this purpose,
we apply a technique which was used by Ledrappier [10, Section 4b] for free
groups.

By Corollary 3.3 and Lebesgue’s Dominated Convergence Theorem we have
Pe − a.s.

lim
n→∞

E[`(Zn)]

n
= lim

n→∞

∫
`(Zn)

n
dPe =

∫
lim

n→∞

`(Zn)

n
dPe =

∫
` dPe = `.

Thus it is sufficient to prove convergence of the sequence

(
E[`(Zn+1)] − E[`(Zn)]

)
n∈N
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and to compute its limit, which then must equal `. First we have

E[`(Zn)] =
∑

h∈Γ

`(h) µ(n)(h)

and
E[`(Zn+1)] =

∑

g,h∈Γ

`(gh) µ(g) µ(n)(h).

On the other hand,

E[`(Zn)] =
∑

g∈Γ

µ(g) E[`(Zn)] =
∑

g,h∈Γ

µ(g) `(h) µ(n)(h).

Thus we obtain

E[`(Zn+1)] − E[`(Zn)] =
∑

g∈Γ

µ(g)
∑

h∈Γ

(
`(gh) − `(h)

)
µ(n)(h)

=
∑

g∈Γ

µ(g)

∫

Γ

(
`(gZn) − `(Zn)

)
dPe.

Define now the random variables

Yn := `(gZn) − `(Zn)

for any given g ∈
⋃

i∈I Γ×
i . We have Yn ∈ {−1, 0, 1} for all n ∈ N. By vertex-

transitivity gZn converges to gZ∞. Hence, Yn converges to a random variable
Y∞ with values in {−1, 0, 1} depending only on g and the first block of Z∞.
In other words, Yn becomes constant, if n is big enough. If Z∞ = x1x2 . . . , we
obtain for given g ∈

⋃
i∈I Γ×

i :

Y∞ =





0 , if τ(x1) = τ(g) and x1g 6= e

−1 , if τ(x1) = τ(g) and x1g = e

1 , if τ(x1) 6= τ(g)

.

By Lebesgue’s Dominated Convergence Theorem, we infer that
∫ (

`(gZn) − `(Zn)
)
dPe

n→∞
−−−−→

∫
Y∞ dPe.

Consider the function

f :

(⋃

i∈I

Γ×
i

)
× Γ∞ → {−1, 0, 1} : (g, x1x2 . . . ) 7→ `(gx1) − `(x1)

and its projections fg : Γ∞ → {−1, 0, 1} : w 7→ f(g, w) for every g ∈
⋃

i∈I Γ×
i .

Observe that each fg is measurable and thus
∫

Γ∞

Y∞ dPe =

∫

Γ∞

f(g, Z∞) dν =

∫

Γ∞

fg(w) dν(w) .

Denote by Eh the event that Z∞ has as first block the element h ∈
⋃

i∈I Γ×
i and

denote E 6=i the event that Z∞ starts with a block element not of type i ∈ I.
Then we obtain for g ∈ Γi

ν(Eg−1 ) = F (e, g−1|1) ·
(
1 − ν(Ei)

)
= F (e, g−1|1) · (1 − ξi) · Gi(ei, ei|ξi)
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and
ν(E 6=i) = (1 − ξi) · Gi(ei, ei|ξi)

)
.

Writing Gi(z) for Gi(ei, ei|z), as before, we can conclude:

E[`(Zn+1)] − E[`(Zn)]

n→∞
−−−−→

∑

g∈
S

i∈I
Γ×

i

µ(g)

∫

Γ∞

fg(w) dν(w)

=
∑

g∈
S

i∈I
Γ×

i

µ(g)
(
−ν(Eg−1) + ν(E 6=i)

)

=
∑

i∈I

αi (1 − ξi) Gi(ξi)
(
1 −

∑

g∈Γ×

i

µi(g) Fi(ei, g
−1|ξi)

︸ ︷︷ ︸
=

Gi(ξi)−1

ξi·Gi(ξi)

)

=
∑

i∈I

αi

1 − ξi

ξi

(
1 − (1 − ξi) Gi(ξi)

)
.

Thus we get the rate of escape of the block length as

(9) ` =
∑

i∈I

αi

1 − ξi

ξi

(
1 − (1 − ξi) Gi(ξi)

)
.

Observe that the technique presented in this section can be extended to a free
product of an infinite, countable number of groups. All the required properties
of the generating functions used also hold in this case. Furthermore, Yn is again
bounded such that finiteness of ` is ensured. Thus the same computations prove
the same formula for ` if I = N.

6. Examples

We present two sample applications of our formulas for the rate of escape of the
block length. First we look at a free product arising from non-Cayley graphs
and then we look at a free product of infinite groups. Note that both examples
go beyond previously investigated graph structures for the computation of `.

6.1. Free Product arising from Non-Cayley-Graphs Consider the sets
V1 = {A, B, C, D, E, F, o1}, V2 = {G, H, o2} and V3 = {I, J, o3} and the random
walks on these sets. Their transition probabilities are sketched in Figure 1.
Note that none of the graphs in this figure is a Cayley graph. Consider now
the corresponding random walk on the free product V = V1 ∗ V2 ∗ V3, where
α1 = 5/9 and α2 = α3 = 2/9.

We obtain the following generating functions:

U1(o1, o1|z) =
3

5
z2 +

2

5
z3,

G1(o1, o1|z) =
1

1 − U1(o1, o1|z)
=

1

1 − 3
5z2 − 2

5z3
,
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Figure 1. Some non-Cayley graphs

F1(A, o1|z) = F1(E, o1|z) =
1

2
z +

1

2
z2,

F1(C, o1|z) = z2, F1(D, o1|z) = F1(F, o1|z) = z,

G2(o2, o2|z) =
1

1 − z2
,

F2(G, o2, z) = F2(H, o2|z) = z,

H̄1(z) =
4

9
zξ2(z),

H̄2(z) = H̄3(z) =
2

9
zξ2(z) +

5

9
·
1

5
z
(
3ξ1(z) + 2ξ1(z)2

)
.

Note that H̄2(z) = H̄3(z) follows by symmetry. The Green function G(o, o|z) of
the corresponding random walk on V has radius of convergence greater than 1.
This can be shown by constructing recursive equations using H̄1(z) and H̄2(z)
and numerical evaluation. Consider

ξ1(z) =
5
9z

1− H̄1(z)
=

5
9z

1 − 4
9zξ2(z)

and

ξ2(z) = ξ3(z) =
2
9z

1 − H̄2(z)
=

2
9z

1 − 2
9zξ2(z) − 1

9z
(
3ξ1(z) + 2ξ1(z)2

) .

Substituting ξ1(z) into ξ2(z) we have to solve an equation in the variable ξ2(z).
Solving this equation with mathematica we obtain four continuous solutions,
but only one solution satisfies ξ2(1) < 1. Hence, we get ξ2(z) as this solution
and obtain ξ1(z) from this ξ2(z). We find that

ξ1(1) ≈ 0.66571 and ξ2(1) = ξ3(1) ≈ 0.37231.

We compute ` using Theorem 3.3. The transition matrix of the Markov chain
(τk)k∈N of the alternating vertex types is

(
q̂(i, j)

)
1≤i,j≤3

=




0 0.5 0.5
0.62769 0 0.37231
0.62769 0.37231 0




and from this we obtain the corresponding invariant probability measure ν with

ν(1) = 0.38563 and ν(2) = ν(3) = 0.30718.
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Now we are able to compute the rate of escape of the block length to the random
walk on V . We obtain

` ≈ 0.33089.

If ` is computed by Equation (8), then the numerical approximated result and
the above result coincide in the first 50 decimal numbers. So numerical approx-
imations do not lead to a distortion of the result.

6.2. Z2 ∗ Z/2 Consider V1 = Z2 and the simple random walk on it given by
µ1

(
(±1, 0)

)
= µ1

(
(0,±1)

)
= 1/4. Also, consider the group V2 = Z/2 and the

simple random walk on it given by µ2(12) = 1. We are interested now in the
simple random walk on V = V1 ∗ V2, where α1 = 4/5 and α2 = 1/5. For the
computation of ` we use Equation (9). Therefore it is sufficient to compute ξ1, ξ2

and G1

(
(0, 0), (0, 0)|ξ1

)
. For this purpose, we use the computations and results

in Woess [23, pages 100, 105, 109]; compare also with Soardi [18].

Before we can compute these values, we have to introduce some auxiliary func-
tions. In the following let the subindex 0 correspond to the random walk on V .
Denote

Wi(z) = z · Gi(o, o|z) for i ∈ {0, 1, 2}.

As Wi(z) is strictly increasing, there is an inverse function W−1
i (z) such that

W−1
i (Wi(z)) = z holds. By [23, Theorem 9.10] we have

Gi(o, o|z) = Φi

(
zGi(o, o|z)

)
, where Φi(t) =

t

W−1
i (t)

∀i ∈ {0, 1, 2}.

By [23, Example 9.15 (3)],

W1(z) =
1

4π2

∫

(−π,π]2

2z

2 − z · (cosx1 + cosx2)
dx,

where x = (x1, x2). Furthermore, by [23, Theorem 9.19] we have the equation

Φ0(t) = Φ1(α1t) + Φ2(α2t) − 1.

By [23, Example 9.15 (1)] we have

Φ2(t) =
1

2

(√
1 + 4t2 + 1

)
.

This yields

Φ1

(4

5
W (z)

)
= G(o, o|z) −

1

2

(√
1 +

4

25
W (z)2 − 1

)
.

Inverting this equation and multiplication with 4/5 · W (z) leads to

4
5W (z)

Φ1

(
4
5W (z)

) =
4
5W (z)

G(o, o|z) − 1
2

(√
1 + 4

25W (z)2 − 1
) .

Applying W1 onto both sides of this equation yields

4

5
W (z) = W1

(
4
5W (z)

G(o, o|z) − 1
2

(√
1 + 4

25W (z)2 − 1
)
)

.
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Figure 2. Graphs of W1(z) and (4 − 5z)z/(4 − 10z + 6z2)

Note that we have

(10) W1

(
ξ1(z)

)
=

4

5
W (z).

and thus

ξ1(z) =
4
5W (z)

W (z)
z

−
(

1
2

√
1 + 4

25W (z)2 − 1
) .

Substituting y = 4/5 · W (z) we obtain

ξi = ξ1(1) =
y

5y
4 −

(
1
2

√
1 + 1

4y2 − 1
)

or equivalently

y =
(4 − 5 ξ1) ξ1

4 − 10 ξ1 + 6 ξ2
1

Substituting y into Equation (10), we have to solve

(4 − 5 ξ1) ξ1

4 − 10 ξ1 + 6 ξ2
1

= W1(ξ1)

in the unknown variable ξ1. The solution can be computed only numerically.
Considering the graphs of the functions (4 − 5z)z/(4 − 10z + 6z2) and W1(z)
we see that there is only one possible intersection point greater than 4/5. See
Figure 2. Using the bisection method and numerical integration and evaluation
we obtain

ξ1 ≈ 0.84426, and also W (1) =
5

4
y ≈ 1.40724.

This yields

G1

(
(0, 0), (0, 0)|ξ1

)
=

4
5W (1)

ξ1(1)
≈ 1.33347.

By

ξ1 =
4
5

1 − 1
5ξ2

.

we obtain

ξ2 ≈ 0.26212, and G2(0, 0|ξ2) =
1

1 − ξ2
2

≈ 1.07378.

Now we have computed all necessary characteristical numbers and the rate
of escape of the block length of the simple random walk on Z2 ∗ Z/2 can be
computed by Equation (9) as

` ≈ 0.23386.
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7. Remarks

We can extend our considerations in order to compute other types of typical
rates of escapes concerning the random walk on the free product:

I. For x = x1 . . . xn ∈ V and i ∈ I the partial block length of x with respect

to Vi is given by

`i(x) :=
∣∣{j | j ∈ {1, . . . , n}, xj ∈ Vi

}∣∣.

As `i(Wk)/k converges for k → ∞ to ν(i), which is the invariant probabil-
ity measure on I with respect to the Markov chain (τ(Wk))k∈N, we obtain
the partial rate of escape of the block length

`i(Zn)

n

n→∞
−−−−→ ν(i) · ` Po − a.s..

II. The set V carries a Markovian distance defined by

d(x, y) := min
{
n ∈ N | p(n)(x, y) > 0

}
,

where x, y ∈ V . Note that in general d(·, ·) is not necessarily symmetric.
The Markovian length is defined as |x| = d(o, x). We can extend the con-
siderations of Section 3 for the proof of the existence of the rate of escape
of the Markovian length, that is

λ = lim
n→∞

1

n
|Zn|.

This yields also a formula for λ given by

λ = ` · σ, where σ =
∑

i,j∈I,
i6=j

ν(i)
αj

αi

ξi

ξj

1 − ξj

1− ξi

∑

m≥1

m ·
∑

y∈Sj(m)

Lj(oj , y|ξj)

and Si(m) =
{
x ∈ Vi

∣∣ |x| = m
}

for i ∈ I and m ∈ N.
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