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Abstract

Neurons in the brain are able to detect and discriminatersiadipatio-temporal patterns in the firing
activity of presynaptic neurons. It is open how they canrdarachieve this, especially without the help
of a supervisor. We show that a well-known unsupervisedliagralgorithm for linear neurons, Slow
Feature Analysis (SFA), is able to acquire the discrimorattapability of one of the best algorithms
for supervised linear discrimination learning, the Fishierear Discriminant (FLD), given suitable input
statistics. We demonstrate the power of this principle bywshg that it enables readout neurons from
simulated cortical microcircuits to learn without any sopigion to discriminate between spoken digits,
and to detect repeated firing patterns that are embedded Biteam of noise spike trains with the same
firing statistics. Both these computer simulations and beptetical analysis show that slow feature
extraction enables neurons to extract and collect infaomahat is spread out over a trajectory of firing
states that lasts several hundred ms. In addition, it esaid@rons to learn without supervision to
keep track of time (relative to a stimulus onset, or the atitin of a motor response). Hence these
results elucidate how the brain could compute with trajéesoof firing states, rather than only with
fixed point attractors. It also provides a theoretical basisinderstanding recent experimental results on
the emergence of view- and position-invariant classifosatf visual objects in inferior temporal cortex.

1 Introduction

The brain is able to extract an astonishing amount of infaiondrom its environment without a supervisor
or teacher that tells the brain how an external stimulus khbe classified. Experimental data show that
one method which the brain uses in order to learn the categtavn of external objects without a supervisor
is the temporal slowness learning principle, which exglthie fact that temporally adjacent sensory stimuli
are likely to be caused by the same external object. Moregelycexperimental results from the lab of
DiCarlo (Cox et al., 2005; Li and DiCarlo, 2008) (see DiCaatud Cox, 2007, for a review) show that this
simple heuristic is sufficient for the formation of positiaand view-invariant representations of visual ob-
jects in higher cortical areas. This was tested in cleveegrpents by altering the probability that different
objects caused temporally adjacent firing states in primr@yal cortex (the external visual stimuli were
swapped during the transient blindness while a saccade erdermed). Human subjects were reported
to merge different visual objects — presented at differetiha locations — into single visual percepts as a
result of this manipulation of the temporal statistics afual inputs. Also the firing response of neurons
in monkey area IT was reported to change accordingly. Aswtrethese data it was hypothesized in (Li
and DiCarlo, 2008) that “unsupervised temporal slowneamiag may reflect the mechanism by which
the visual stream builds and maintains tolerant objectasgmtations”. But a rigorous theoretical basis for
the emergent discrimination capability of this unsupesditemporal slowness learning principle proposed
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Figure 1. Blockdiagram of SFA. The algorithm is applied to altirdimensional time serieg. It consists of an
optional expansion step which computes a number of fixettstahlinear combinationg of the components af.
Later in this article we will show that this step can be parfed by a cortical microcircuit of neurons. If this step
is left out,z = x. In the next step, the expanded inpubas to be whitened such that the components of the signal
v have zero mean, unit variance, and are decorrelated. THesfamaselects from this whitened signal the direction
of minimal temporal variation, i.e., the least principahgoonent of the temporal derivative The projection onto
this direction yields the slowest featuge. Multiple slow featuresy = (y1,y2,...) are obtained from orthogonal
projection directions which form the eigenvectors of theastance matrixvv™),, ordered by increasing eigenvalue.

by (Li and DiCarlo, 2008) has been missing. Such theorefmahdation, which relates the statistics of
the sequence of external stimuli to the emergent discritiinacapability of this unsupervised learning
method, is provided in this article.

There have been a number of approaches to learn invariamseptations in an unsupervised manner
from the contingency of temporally adjacent inputs, i.g.elstracting features that vary on a slow time
scale (e.g., Foldiak, 1991; Mitchison, 1991; Becker anutéti, 1992; Stone and Bray, 1995). We focus on
one particularly transparent computational mechanisnufsupervised temporal slowness learning: Slow
Feature Analysis (SFA), introduced by (Wiskott, 1998; Véiskand Sejnowski, 2002). SFA transforms
a (usually high-dimensional) time serigsinto an outputy, and minimizes the temporal variation gf
under the additional constraints of zero mean and unit maggto avoid the trivial constant solution). The
temporal variation of the outputis defined as the average of its squared temporal derivaitje, where
(-)¢ denotes averaging over time. In other words, SFA finds that¢tfan' g out of a certain predefined
function space that produces the slowest possible output g(x). This optimization problem is hard
to solve in the general case (see Wiskott, 2003), but if tleélave function space is constrained to linear
combinations of a whitened input, the problem has an eleggduation in the form of an eigenvalue problem
in the covariance matrix of input time derivatives. More gsely, the slowest output is produced by the
eigenvector of this matrix that corresponds to #meallesteigenvalue. This results in the standard SFA
algorithm as presented in (Wiskott, 1998; Wiskott and Sepia, 2002) (see blockdiagram in Figure 1),
which contains an optional expansion step that computesrdauiof fixed nonlinear combinations of the
components ok. Such nonlinear expansion boosts the power of any substlijuear processing (like a
kernel for support vector machines (Scholkopf and Smal@22). This nonlinear expansion enables SFA
to effectively choose from a much larger set of functigr{sontaining also nonlinear projections fraa),
even if the last processing step in the blockdiagram of Eduiis constrained to be linear.

The restriction to linear functions in the last step of SFwak that this processing step could in prin-
ciple be carried out in a biological neural system by readoyrojection neurons that extract information
from a cortical microcircuit. A linear function is a reasdid@ approximation to the expressive capabil-
ity of a readout neuron. The last step of SFA, the selectiothefleast principal component of the input
time derivatives, could in principle be solved by anti-Hevblearning on the differential input and out-
put signals (Mitchison, 1991). Furthermore Sprekeler e{2007) have shown that this is equivalent to
choosing the principal component of a low-pass filtered inwhich can in principle be solved by standard
Hebbian learning. In addition they have shown that an erpanmtally supported synaptic plasticity rule,
spike-timing-dependent plasticity (STDP), could in pipie enable spiking neurons to learn this process-
ing step without supervision, provided that the presyraipiputs are preprocessed in a suitable manner.

INote that this function is a static input-output mappif@) = g(x(t)), which at any time transforms the inpuk(¢) into an
output valuey(t) instantaneously.



This result suggests, that the gap between the abstractexffAimg principle for linear neurons that we
examine in this article and neurophysiological data on pyinglasticity could eventually be closed. How-
ever, this analysis leaves open the question how the firspt@oessing stages could be carried out by a
biological neural system. We will show that a standard mddek generic cortical microcircuit could
carry out the first processing step in the diagram of Figurer tHe case where the time seriesonsists of
multiple low-pass filtered spike trains. The question remdiow the second processing step of Figure 1,
the whitening, could be implemented by a neural circuit.é8aMearning methods that achieve whitening
through a network of neurons have been proposed (Good#&l0;ick and Redlich, 1993) (see chapter 8
of Dayan and Abbott, 2001). There also exist experimentia daich suggest that the response of cortical
neurons to natural external stimuli tends to be quite detated (see e.g., Vinje and Gallant, 2000).

We establish in section 2 a relationship between the unsigeel SFA learning method and a com-
monly used learning method for supervised classificatiamlieg: the Fisher Linear Discriminant (FLD).
More precisely, we show that SFA approximates the discratigm capability of the FLD in the sense that
both methods yield the same projection direction, which lsainterpreted as a separating hyperplane in
the input space. This approximation holds for a simple cimalion the temporal statistics of the input
time series to SFA: The probability that two successive dasare from different classes has to be low.
Through its tendency to produce a slowly varying output, Slefomatically clusters those inputs together
that often occur in immediate consecution, and classifiesiths different samples from the same category.

SFA is a learning method that does not require explicit suipem in the sense that the input patterns
are given together with the target classification (label#g show instead that it suffices to provide SFA
with a very weak or implicit supervisor in the sense that gssive input patterns tend to belong to the
same class. Li and DiCarlo (2008) have referred to this astpervised temporal slowness learning” and
for brevity we use the termansupervised learningp this article.

SFA may also elucidate a puzzle regarding internal codesangputational mechanisms of the brain.
A number of experimental data have challenged the clasgieal of coding and computation in the brain,
which was based on the assumption that external stimulirgednal memory items are encoded by firing
states of neurons, which assign a certain firing rate to a eurmbneurons that is maintained for some
time interval. This classical view of neural coding has tbeaantage that one can apply a variety of readily
available computational models from computer science atificel neural networks in order to model
computation in the brain. However, numerous recent expartal data suggest that many types of natural
sensory stimuli, as well as internally generated tracegfisodic memory, are encoded by characteristic
trajectories (or sequences) of different firing states afroas that stretch over several hundred ms. This
result has been found both for (seemingly) static extetivaksi such as odors (Mazor and Laurent, 2005;
Broome et al., 2006) (see Rabinovich et al., 2008, for a vevend tastes (Jones et al., 2007), and for
intrinsically time-varying external stimuli such as nabauditory and visual stimuli (see Buonomano
and Maass, 2009, for a review). In addition, numerous erpantal data on replay of episodic memory
from hippocampus to cortex point to sequences of differeimgfistates, rather than single firing states of
networks of neurons, as a common form of traces of episodimong in hippocampus and cortex (see
e.g., Euston et al., 2007; Ji and Wilson, 2008). These exyerial data give rise to the question, how
the brain can compute with such temporally dispersed inébion in the form of trajectories of firing
states. At the latest at the top-level of information preagg in the brain, where percepts are formed and
decisions are made, the ubiquitous distribution of saliefurmation over a sequence of different firing
states (stretching over several hundred ms) has to be étjeahd compressed into a much shorter time
interval. The theoretical analysis provided in this agiekplains why, and under what conditions, this is
possible with SFA learning.

In section 3 we test the theoretically predicted emergesaraination capability of SFA by applying
it to the output of a simulated network of spiking neuronsrengrecisely, a detailed model for a laminar
cortical microcircuit (Hausler and Maass, 2007) based ata kfom (Thomson et al., 2002) and from the
lab of Markram (Gupta et al., 2000). We injected spike trahegt simulate the response of the cochlea
to different spoken digits as inputs to the simulated caltmicrocircuit, and examined whether linear
readouts that receive as input a whitened version of tharuamisly varying firing response (in the form
of low-pass filtered spike trains) from neurons in this citcan learn without supervision to discriminate
between different spoken digits. This experiment turnedmbe successful, and it also revealed a possible
functional advantage of this processing scheme: Linealoaeneurons learned not only without supervi-



sion to discriminate between different spoken digits, beltprovided correct predictions of the currently
spoken digit already while the digit was still being spokérhis is what we refer to as “anytime com-
puting”: An “anytime computation” is a special form of an ovd computation, which can be prompted
at any time to provide its current best guess of a proper autguintegrating as much information about
previously arrived input pieces as possible. In anotheegrpent, SFA was able to both detect and identify
spike patterns within a continuous stream of Poisson infgtin this information was available already
during the presentation of a pattern. This feature, whicprédicted by the theoretical analysis of SFA
learning, could enable subsequent processing stages brdhreto begin higher level computational pro-
cessing already before the trajectory of network statessltharacteristic for a particular sensory stimulus
has ended. This feature might remove one obstacle for égtaiy a computational model for hierarchical
processing of sensory information in the cortex: if eaclgstaaits with its processing until the trajectory
of firing states in the lower area has ended, and then creat@lssquent trajectory as a result of its own
computational processing, the resulting total computetiime becomes too long. If however readout neu-
rons can transmit “at any time” their current guess regayde identity of the circuit input, other areas to
which these readout neurons project can start their cortipntd processing right away. During the sub-
sequent few hundreds of ms they could in addition colledhfrrevidence which they will receive from
the same readout neurons, for or against the initial guass$hi$ computational paradigm the stream of
sensory stimuli could generally be processed in real tinith, significant processing delays arising only in
the case of ambiguous sensory stimuli.

2 A theoretical basis for the emergent discrimination capabity of
SFA

In this section, we first give a definition of SFA and FLD. Wenh@esent a criterion on the temporal
statistics of training examples which clarifies when SFAragpnates FLD. Finally, we show how the
SFA objective is influenced by applying it to a sequence oflelm@jectories of points instead of just to a
sequence of individual training examples.

Slow Feature Analysis (SFA) SFA extracts the slowest componenfrom a multi-dimensional input
time seriesx by minimizing the temporal variation (y) of the output signal (Wiskott and Sejnowski,
2002),

min  A(y) := (3, 1)

under the additional constraints of zero me&y){ = 0) and unit variance({;?); = 1). The notation(-);
is used in this article to denote averaging over time. If iplédtslow features are extracted an additional
constraint ensures that they are decorrelated(); = 0) and ordered by decreasing slowness.

If we assume that the time serigshas zero mean(x), = 0) and if we only allow linear functions
y = wl'x the problem simplifies to the following objective

min  Jgpa(w) := 2
The matrix (xxT); is the covariance matrix of the input time series gsa”); denotes the covariance
matrix of time derivatives of the input time series (or timéfatences, for discrete time). The weight
vectorw which minimizes the quotientin (2) is the solution to the getized eigenvalue problem

GxTYw = MxxT),w 3
corresponding to the smallest eigenvalud hat is, we consider only the linear part of SFA here andiigno
the nonlinear expansion step in Figure 1 for the moment @.e- x). Note that the whitening step is made
implicit here in the formulation of (2), like in (Berkes andiskott, 2003).



Fisher’s Linear Discriminant (FLD) The FLD is a different data analysis method. It is appliedrigle
data pointsx, rather than time series. Furthermore it requiteseledtraining examplesx, c¢), where
c € {1,---,C} is the class to which this example belongs (we will first foonghe cas€ = 2). Hence
it is a method forsupervisedearning. The goal is to find a weight vecter so that the class of new
(unlabeled) test examples can be predicted from the valwe’of (predicting thatx belongs to class 2 if
wTx > 6 for some threshold, else thai belongs to class 1).

FLD searches for that projection directienwhich maximizes the separation between classes while at
the same time minimizing the variance within classes, theminimizing the class overlap of the projected

values: .
w'Spw
J = — 4
max FLD(W) WTSWW ( )
For two point sets5; andSy with meanse, andp,, S is the between-class covariance matrix given by
the separation of the class means

Sp = (1 — M)ty — o))", (5)

andSyy is the within-class covariance matrix given by

Swo= > (x—p)x—p)" + D (x—po)(x— )" 6)

xXES1 xXES2

Again, the vectow optimizing (4) can be viewed as the solution to a generalggdnvalue problem,
SBW = /\Sww, (7)

corresponding to thiargesteigenvalue\. Figure 3A illustrates the idea of FLD. It finds that directier
that optimizes the separability between the projectedesbf different classeS; andS: by additionally
taking into account the within-class variances. Choosiegdirectionw’ that only maximally separates
the class means results in an overlap of the projected vallies FLD had been introduced in (Fisher,
1936). Good descriptions can be found in (Duda et al., 20@hdp, 2006).

2.1 Application to a classification problem with two classes

SFA and FLD receive different data types as inputs: unlabgiee series for SFA, in contrast to labeled
single data pointsx, ¢) for the FLD during training, and unlabeled single data ppinduring evaluation
of its resulting generalization capability after training

Therefore, in order to apply the unsupervised SFA learniggréithm to the same classification problem
as the supervised FLD, we have to convert the labeled tigisamples into a time series of unlabeled
data points that can serve as an input to the SFA algorithnthdrfollowing we create such a training
time series from the classification problem by choosing ahdane step a particular point frorf; U
So. We investigate the relationship between the weight vefciond by Fisher’s Linear Discriminant on
the original classification problem and the weight vectarrfd by Slow Feature Analysis applied to the
resulting training time series. The idea is that if we crahgetime series in such a way that most of its
transitions, i.e., pairs of consecutive points, consigmnt pairs from the same class, SFA should learn to
be invariant to points from the same class and to extractihéen class label of data points as a slowly
varying feature of the time series.

First, we consider a classification problem with 2 classes, assume we are given two point sets
Sl, Sy C R”,

Sy ={xjli=1,...,N}, (8)
Sy ={x3[j=1,...,N}, (9)

wherex; andx? denote the data points of class 1 and 2, respectively (natdtitese points are unlabeled,
since the superscripts 1 and 2 are not “visible” for the dtbars; it may also occur that! = x?). For
simplicity we assume that both sets are of the same/Siz&éVe choose the following Markov model (see



Figure 2: Markov model describing the generation of the trijpne series to SFA from a two-class FLD problem. The
statec corresponds to the clasgé from which the current point in the time series is drawn. Aftee selection of each
point the class of the next point is determined accordindpédtansition probabilities between the states.

Figure 2) to create a time serigs out of these two point setS; and S,: First, we choose one of the
two classes with equal probability. Then we select a randomtfrom the corresponding se${ or .S5).

This is then the first point in the input time serigs, Next, we switch the class with a certain probability
p (or leave it unchanged with probability— p) and choose a point from the resulting class as the next
input point,xs. This is repeated until the time series has a certain preztbfangthl’. The states in the
underlying Markov model correspond to the class from whighdata point is currently drawn. After each
drawing, the class is either switched with probabilityor left unchanged with probability — p. The
stationary distribution of this Markov model is

11
T = (575) (20)

Because we have chosen the initial distributiph= 7 we can say that at any time the current point is
drawn from class 1 or class 2 with probability2.

In this case we can express the matri¢es”), and (xx”); of the SFA objective (2) in terms of
the within-class and between-class scatter matrices dflttie(4), Sy andSp (for a derivation see ap-
pendix A.1):

1 1

<XXT>t = WSW + ZSB’ (11)
1

(xxT), = NSW +p-Sg. (12)

Note that only(xx”); depends om, whereagxx’); does not.

For smallp we can neglect the effect &g on (xx”); in (12). In this case the time series consists
mainly of transitions within a class, whereas switchinglesn the two classes is relatively rare. Therefore
the covariance of time derivatives is mostly determinedtsy within-class scatter of the two point sets,
and both matrices become approximately proportiofak” ); ~ 1/N - Sy,. Moreover, if we assume that
Sy (and thereforéxx”');) has only nonzero eigenvalues, we can rewrite the SFA digeas

1
min J. W) < max @—————
sra(w) Tora(w)
o wl (xxT)w
max ——————
. wT (xxT),w
T
(a1,02) 1 N w Spw
ax 2+ 4 wI'Syw
< max JFLD(W). (13)

In the third line we inserted the expressions fax”); (11) and the approximation fax?); (12) for
smallp. That is, in this case where switching between differenss#a is rare compared to transitions
within a class, the weight vector that yields the slowespatifunction is approximately equal to the
weight vector that is optimal in separating the two clasaedbhé sense of FLD.
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Figure 3: Relationship between unsupervised SFA and sigeeh¥LD for a two-class problem in 2DA] lllustration

of the concept of FLD. Shown are two point sets and histografwalues obtained by projecting points onto two dif-
ferent directionsyv, the direction resulting from FLD, ang’, the direction of maximal separation of the class means.
(B) Sample point sets with 250 points for each class, drawn fwondifferent Gaussian distributions. The green arrow
and the green dashed line indicates the weight veetor(p) and a corresponding hyperplane, respectively, resulting
from the application of FLD to the two-class problem. Thecklarrow and the black solid line shows the weight
vector Wwsra) and a hyperplane resulting from SFA applied to the timeesegenerated from these training points
as described in the tex?(= 5000, p = 0.2). The black dotted line displays an additional SFA hyperpleesulting
from a time series generated with= 0.45. All hyperplanes are placed onto the mean value of all tngjmoints. C)
Output of the SFA algorithm (slowest feature) applied tost tiene series consisting of 100 points from class 1 (blue)
and 100 points from class 2 (red; colors a8 These test points were drawn from the same Gaussianbdistms as

in B, but were not used for training. Each value of the trace spwads to a projection of a point onto the weight vector
of the slowest featurew(sr4 in B). The dashed line at O corresponds to points on the solid IBfp&rplane shown

in B. (D) Dependence of the error between the weight vectors fourfeLityand SFA on the switching probability:
This error is defined as the average angle between the weggtdrg obtained on 100 randomly chosen classification
problems. Error bars denote the standard error of the meawd @pproximations can still be achieved with rather
high values ofy (up to 0.5).

Figure 3 demonstrates this relationship on a sample twes@eoblem in two dimensions. We interpret
the weight vectors found by both methods as normal vectohg/pérplanes in the input space. Since an
additional bias value is required to determine a unique Iplpae for each weight vector, we place the



hyperplanes in Figure 3B simply onto the mean vAlueof all training data points (i.e., the hyperplanes
are defined asr”x = @ with § = w” 1). One sees that the weight vector found by the applicaticBFes

to the training time series; generated withh = 0.2 is approximately equal to the weight vector resulting
from FLD on the initial sets of training points. The deviaticomes from the fact that the covariance matrix
of time differences{xx");, is not solely determined by the within-class scatter (in(&¢@g)), because the
time series switches several times between the classes.

We interpret the slowest feature found by the SFA algorittenttee hypothesis of a linear classifier
(h(x) = sign(wi(x — w))). Figure 3C shows the prediction of this hypothesis for ensest points
from each class, drawn from the same distribution as thaitrgipoint setsS; andSs. It can be seen that
the output of the slowest feature of this test time seriesdwhorresponds just to the projection of its
points onto the weight vectar s 4) takes on distinct values for different classes. This destrates that
SFA has extracted the class of the points as the slowestnggigature by finding a direction that separates
both classes, and that this ability generalizes to testtpaiot used for training.

Figure 3D quantifies the deviation of the weight vector reésglfrom the application of SFA to the
time series from the one found by FLD on the original pointse Mge the angle between both weight
vectors as an error measure. For each valuewé generate 100 random classification problems such as
the one shown in Figure 3B and calculate the average anghebatthe vectors obtained by both methods
on these problems (see appendix B.1 for details). Sincagneos$the vectors is arbitrary, we always took
the smaller of the two possible angles. Thus, an angl# oheans perfect equivalence, and the maximal
achievable angle (i.e., error) #°. It can be seen that jf is low, i.e., transitions between classes are rare
compared to transitions within a class, the angle betweenréltors is small and SFA approximates FLD
very well. The angle increases moderately with increagireyen with higher values gf (up to 0.45) the
approximation is reasonable and a good classification bgltveest feature can be achieved. As soon as
p reaches a value of about 0.5, the error grows almost immegitt the maximal value di0°. It can be
seen from equations (11) and (12) that foe= 0.5 the covariance of time derivative&x”');, becomes
proportional to the covariance of the inp(tx”);, which means that every possible vectois a solution
to the generalized eigenvalue problem (3), resulting inemage angle of abodt°. With p = 0.5 points
are drawn randomly from the union of the two point sets, irefently of the class previously chosen, i.e.,
the class information is neglected altogether. For valdes>» 0.5 switching between classes becomes so
frequent that SFA cannot extract the class information amgmesulting in vectors orthogonal to the FLD
vector.

2.2 Application to classification problems with more than two classes

The results in the previous section can also be extended tratte of” classes(’ > 2), showing the equiv-
alence between the space spanned by'thel slow features extracted by SFA and thie- 1-dimensional
subspace resulting from the application of a generalizedime of Fisher’'s Linear Discriminant (Duda
et al., 2000).

Again, we start from a classification problem withdisjoint point setsS. ¢ R*, ¢ =1,...,C,

S(: = {X?|i:15"'7NC}7 (14)

wherex{ denote the data points of classIn contrast to the previous section we consider here themor
general case that the number of points in each class is@liffetet V. denotes the number of data points
in classe, and letNy = 25:1 N. be the total number of points. From these point sets we genarame
seriesx; analogously as in the previous section, using a generalizaf the Markov model in Figure 2
with C statesS = {1, 2,...,C}. We define the transition probability from state S to statej € S as

N; o .

a- <= if 4

Py={ W e (15)
I_E]ngpik |fl:]7

2Note that for this particular choice of time series generathe expected mean of the training time series is equaletdatial

mean of the training data points. Since SFA subtracts thenrakthe training time series beforehand, this value is mdpp® in the
SFA output.




with some appropriate constdnt > 0. It is easy to show (see appendix A.2) that

N1 N Nc
T=\——,—, .,

Ny’ Ny’ "7 Nr
is a stationary distribution of this Markov model. This medhat the probability that any point in the time
series is chosen from a particular class is proportionai¢osize of the corresponding point set compared
to the number of total points.

For this particular way of generating a time series from tifuk points we can calculate the following

expressions for the covariance matrices of the input and tiarivatives in terms of the within-class and
between-class covariances (see appendix A.2):

(16)

1 1
T\ __
(ex)e = 5-Sw + 3-8, (17)
2 2a
.. T __Z aa ) 1
B = 7 Sw o+ i Se (18)

Note that equations (17) and (18) are similar to (11) and.(1&ain, (xx”); depends om, whereas
(xxT); does not. Note that the commonly used definition for the betaelass scatter matrig (see e.qg.,
Duda et al., 2000) for the multi-class case is slightly défg from the two class case (5). For small
i.e., when transitions between classes are rare compateahgitions within a class, we can approximate
<XXT>t ~ Q/NT . SW

We recall the definition of SFA as a generalized eigenvaladlem (3) and insert (17) and (18) for
negligiblea:

GxTY W = (xxT),WA

g 2 o w- s WAL S, WA
Ny w Ny w + Ny B
& 2Syy WAL =Sy W + SpW
& SpW =Sy W 2A~!' —EJ, (19)
whereW = (wy,...,w,) is the matrix of generalized eigenvectors ahd= diag(\,...,\,) is the

diagonal matrix of generalized eigenvalues. We used thengstion thatSy- (and thereforédxx”); and
(xxT);) are positive definite, i.e., all eigenvalugsare strictly positive A~! exists). The last line of
(19) is just the formulation of FLD as a generalized eigenggbroblem (see (7)). More precisely, the
eigenvectors of the SFA problem are also eigenvectors dfltiieproblem, i.e., th& — 1 slowest features
extracted by SFA applied to the time serigsspan the subspace that optimizes separability in terms of
Fisher’s Linear Discriminant. Note that the eigenvaluasespond by

ATEP = A;FA -1, (20)
which means the order of eigenvalues is reversed, sincégahealues\?"“ are positive. The slowest
feature (corresponding to the smallest eigenvalue in tedifire of (19)) is the weight vector which achieves
maximal separation (largest eigenvalue in the last linel 6j)

This similarity of the subspace found by FLD on the initiaimtcsets and by SFA on the time series
is demonstrated in Figure 4. Panel B shows the projectioh@fiata points shown in panel A onto the
2-dimensional subspace resulting from FLD, while Paneld@sphe trajectory of the two slowest features
found by SFA applied to a test time series generated fromtpairawn from the same distributions as
the original points in panel A. One sees that both projestiare almost identical, which means that the
subspace that maximizes separability in terms of Fishegigkto the subspace spanned by the slowest
features of our particular time series. Note that there isentloan one particular pair of directions which
span the same 2-dimensional subspace. Therefore, whilerthods extract the same subspace, the exact
projections might look different (e.g., the signs of indiual eigenvectors may be flipped, or the projections
could be rotated against each other, if the eigenvalued@se to degenerate).

SForC = 2andN; = N2 = Nt /2 the class is switched at each time with probabifity= a,/2 and left unchanged with
probability 1 — p.



original input points FLD projection SFA projection

Figure 4: Relationship between SFA and FLD for a three-qgiesblem in 3D. A) Sample point sets with 250 points
for each class, drawn from three different Gaussian distidins. B) Point sets projected onto the 2-dimensional
subspace found by FLD (colors and markers a&)nThe FLD maximizes the between-class scatter while miziimgi

the within-class scatterC() Phase plot of the two slowest features found by SFA apptiedtest time series consisting

of 100 points from each class, which were drawn from the sames&ian distributions as A&, but not used for training.
The training sequence for SFA was generated from the ingatpm A as described in the tex¥(= 5000, a = 0.5).

This corresponds to a projection of these test points o stifbspace spanned by the two slowest features. The color
encodes the class of the respective point in the test segealors as irA,B). Note the similarity between panedss
andC.

2.3 Application to trajectories of training examples

In sections 2.1 and 2.2 we have shown that SFA approximagesidissification capability of FLD if the
probability is low that two successive points in the inpuidiseries to SFA are from different classes. In
order to generate a time series from the classification problwe chose at each time step the class of
the points with a certain probability according to a Markowdsl, but apart from that class information,
however, each point was chosen independently from the gigggoint in the time series. The optimal
response to such a time series is to produce a constant sesgdaring periods where only points from a
single class are presented (see also Berkes, 2006). Thiexamately piecewise constant function will
become more smooth as the size of the function space insrdageit will remain a step function. This
classification capability of SFA relies on the fact that SEe&seach possible transition between two points
from the same class approximately equally often, and tbhezgiroduces a similar output for each point
from that class.

What happens if these time series consist of whi@gctoriesof single points, e.g., repeated occur-
rences of characteristic sequences of firing states in heiucaits? In this section we investigate how the
SFA objective changes when the input time series consisisjefctories of points instead of individual
points only.

2.3.1 Repetitions of a fixed trajectory

First, we consider a time series consisting of multiple repetitions of a fixed predefined dcapry
t = = (X1,X2,..., %) Of T n-dimensional points;, which are embedded into noise input. Initially the
trajectory points<k are drawn from a certain distribution. Between any two ri¢joeis of this trajectory
noise input is presented, which consists of a random numfgesiots drawn from the same distribution,
but independently at each time step.

It is easy to show (see appendix A.3) that for such a time séhnie SFA objective (2) reduces to

wlS,w

in J & —
min  Jgpa(Ww) < max WT T ow

(21)
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where
- 1 T
= = > (RaXf + Xk1Xf) (22)
T-14

is the covariance matrix of the trajectotywith t delayed by one time step, i.e., it measures the temporal
covariances (hence the ind&of t with time lag 1. Such time-delayed correlation matricesshaigo been
introduced in (Blaschke et al., 2006, 2007) to show the imtahip between SFA and second-order ICA.
Note that in the standard classification problems descrivediously the time series; had no temporal
correlations apart from the class information at all, icmnsecutive points were uncorrelated given their
class labels.

That is, choosing the weight vecter that produces the slowest output is equivalent to choosiag t
vector that maximizes the temporal correlations of the outjuring instances of the trajectoty In other
words,w is the (generalized) eigenvector®f which corresponds to the largest eigenvalue of this matrix.
Since the transitions between two successive points of#jectoryt occur much more often in the time
seriesx; than transitions between any other possible pair of poBE#\ has to respond as smoothly as
possible during in order to produce the slowest possible output, whereasibeage response to noise
samples should ideally be zero. This means that SFA is aldlettrt these repetitions oy responding
during such instances with a distinctive shape.

Figure 5A shows the response of SFA, which was trained on aeseg of 100 repetitions of a fixed
trajectoryt, interleaved with random intervals of noise input from tlaene distribution. It can be seen
that during each instance 6fSFA responds with the same smooth curve. Due to the intemitioise
input, this curve has to be cyclic and have zero mean. Tylyitiails response is similar to a section of a
sine wave, which is theoretically the slowest possible sasp for the general SFA optimization problem
(1) (Wiskott, 2003). The smoothness of this sine wave ailifjcdepends on the number of trajectory
repetitions (the proportion of time trajectories are prasd compared to noise), the dimensionality of the
state space, and the complexity of the function space (wkichnstrained to be linear here). For display
purposes we have chosen an overfitting regime in Figure Seghe dimensionality of the state space is
larger than the length of the trajectory. In this exampleA &kso responds with an increased amplitude
during trajectory presentations. This can be explainedbyact that the slowest signal with a constrained
variance is one which distributes this variance to timesmih&aries more slowly (i.e., during trajectory
repetitions).

2.3.2 Several classes of trajectories

Next, we consider a classification problem given by two sétsajectories,7;, 7> < (R™)7T, i.e., the
elements of each st are sequences & n-dimensional points We assume that all those points are
distinct and thafZ; and7; are of the same siz&. Moreover, we emphasize that we draw the trajectories
from distributions with different meangy, andu,, as we did in the point discrimination examples. We
generate a time series according to the same Markov modal Eigiire 2. However, we do not choose
individual points at each time step; rather we generate aesemp of trajectories: Initially, we choose a
class from which the first trajectory is draw#, or 75, and draw a random trajectory from this set. After
each trajectory, we select a new trajectory of points afterdrevious one has ended. The class of this new
trajectory is determined according to the transition philitees in Figure 2.

For this time series consisting of such a trajectory seqei@veccan now express the matridesc” ),
and (xxT'); of the SFA objective (2) as (see appendix A.3)

1 1

T

= ——=S -S 23
(xx" )¢ ONT w 5B (23)
iy 1 T-1 .

The matricesSy, andS g describe here the within-class and between-class scdttbe ¢-LD objective
(4) applied to point set§; and.S,, which are composed of the individual points of the trajee®in 7y

4The generalization t6 classes is analogous to section 2.2.
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SFA response to a repeating trajectory large separation
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Figure 5: Relationship between SFA and FLD for time serigssiting of trajectories. ) SFA response to a time
series consisting of a single repeating trajectory of trajrexamples. A trajectoryis generated by randomly selecting

T = 10 points from the uniform distribution of binary vector§), 1}™ (n = 50). Repetitions of this trajectory

t (shaded areas) are interleaved with a random number (draiformly between 10 and 30) of individual single
points drawn from the same distribution. The input timeesethat was used for training SFA consisted of 100 such
repetitions oft; a sample SFA response with 3 repetitions is shov). Glassification problem with two classes of
artificial trajectories in 2D (blue7:, and red;72), each consisting of 20 trajectories of 100 points. Theschasans are
denoted by, andu,. In both panels the trajectories were drawn from the santelalition, but in the left panel the
class labels were chosen in order to yield a large separhgbmeen the class means, whereas in the right panel this
separation is small. The dashed line indicates a hyperglamesponding to the weight vector obtained by application
of FLD to the individual points of the trajectories. The sidine is the hyperplane found by SFA on a random sequence
of 1000 trajectories. Both hyperplanes are placed onto #emvalue of the trajectories. Note that the result of SFA is
independent op (here,p = 0.5).

and7s, respectively. Note that the covariance mattix’), in (23) is equal to the case where the time
series was composed of individual points instead of trajges (see equation (11)). However, the temporal
correlations induced by the use of trajectories has an teffedhe covariance of temporal differences
(xxT); in (24) compared to (12). First, it additionally dependsiagm the temporal covariance matrix
3>.,, which is in this case the average temporal covariance \with tag 1 of all available trajectories ify
and7s. Second, the switching probabilipyenters with a factot /7", which becomes apparent when noting
that whenever a trajectory is selectddpoints from the same class are presented in succession.tAdus
effective switching probability ip/7". Note that forl’ = 1 andX, = 0 equations (11) and (12) follow as
a special case.

Equations (23) and (24) suggest that even for a small valpeloé objective of SFA cannot be solely
reduced to the FLD objective, but rather that there is a t@fflbetween the tendency to separate trajec-
tories of different classes (as explained by the relatidwbenS g andSyy) and the tendency to produce
smooth responses during individual trajectories (deteemiby the temporal covariance matbi):

[ 1 - N
wl (xxT)w N w {WSW} wooT-1 wlis,w

~ - 25
wl(xxT),w wl(xxT),w 7 whiixxT)y,w’ (25)

min JSFA(W) =

where the approximation is valid;if/ 7 is smalP. Thatis, the SFA objective can be written as the difference
between two terms. The weight vecterwhich minimizes the first term is equal to the weight vectanfd

by the application of FLD to the classification problem of thdividual trajectory points (note th&p
enters (25) througkxx”');, cf. eq. (13)). The weight vector which maximizes the secmoh is the one
which produces the slowest possible response during ihatatitrajectories. The factd” — 1)/7 is the
proportion of transitions between successive points irtithe series that belong to the same trajectory. If
the separation between the trajectory classes is large @@upo the temporal correlations (i.e., the first

5Note that the values of both numerators are in the same rargrIbS; is already a normalized covariance matrix (22) whereas
Sw (6) needs to be normalized by a factigtNT'.
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term in (25) dominates for the resulting) the slowest feature will be similar to the weight vectorridu

by FLD on the corresponding classification problem. On thephand, as the temporal correlations of

the trajectories increase, i.e., the trajectories thevmesdbecome smoother, the slowest feature will tend to
favor exploiting this temporal structure of the trajecasriover the separation of different classes (in this
case, eq. (25) is dominated by the second term for the raguit).

In the point discrimination example SFA derives its clasatfion capability from seeing each pos-
sible transition between two points approximately equalfien. This is not the case anymore when a
sequence of trajectories is presented: now there are papsints from the same class which have too
few transitions between them because most transitionsaatsetween randomly chosen points, but within
pre-defined trajectories. Furthermore, since the effedivitching probability of the classes of two con-
secutive trajectories is reduced p¢T, the SFA objective (25) becomes essentially independettieof
switching probabilityp, if the trajectories are sufficiently long. This means, tiinet SFA output does not
depend on the temporal order of the trajectories any motkerathe result is completely determined by
the set of trajectories used for training. That is, by usirigree series consisting of trajectories instead of
individual points one loses the possibility to control thassification problem to be learned by changing
the temporal statistics of the input. All possible classelibgs of a given set of trajectories lead to the
same direction learned by SFA. The class labelling which ithis case approximated by SFA according
to (25) is the one which has the maximal separability in teofitbie FLD, i.e., the one which corresponds
to a scatteSy which minimizes the first term in (25). This is demonstratedrigure 5B, which shows
two classification problems with artificial trajectoriesosien from the same distribution of points, but with
different assignment of class labels: one with a large amdmith a small separation between the means of
the trajectory classes. It can be seen that while the FLDyaiiads a separating hyperplane, SFA always
approximates that classification problem with the larggasation. However, even if the slowest feature
is not able to separate the classes, later SFA componeritd) fulnd orthogonal directions to the previous
ones, might be useful. For example, in the right panel of FEdiB the second slowest feature would find
a separating hyperplane.

In theory, the optimal response of SFA in this trajectoryrepée would again be a piecewise constant
function. However, if we introduce zero or noise input begwéwo trajectories the optimal response would
be half sine waves during presentations of individual ttges, which are the typical SFA responses
shown in (Wiskott and Sejnowski, 2002; Wiskott, 2003). Iétimeans of the trajectory classes (e,
andpu, in Figure 5B) are equal, there would be no effect to discratgrclasses in terms of Fisher’s Linear
Discriminant, because the first term in (25) vanishes. Harghe theoretical analysis in (Wiskott, 2003)
predicts that even in that case of equal class means SFAstilides a certain discrimination capability
through the decorrelation constraint of multiple slow teas: a feature that responds with half sine waves
of different amplitudes for different patterns also var#swly and can still be decorrelated to other re-
sponses. Thus, with an infinite function space SFA alwaydyxres a feature that responds with a different
amplitude for each individual pattern. That is, in geneff@hSvill try to distinguish all trajectories, but if
the available function space is limited it might respondwifie same amplitude to all trajectories which
are similar, i.e., belong to the same class.

2.4 When does linear separation of trajectories of network tates suffice?

Linear SFA can at best achieve a linear separation of ti@jiest of points. Although linear separation
of complex trajectories of points is difficult in low dimeosis, mathematical arguments imply that linear
separation of such trajectories becomes much easier irehdjmensions. Consider artificial trajectories
which are simply defined as a sequence of random points dranforonly from the d-dimensional hy-
percubg0, 1]¢. Each point in this space corresponds to the vector of firttiyities of thed presynaptic
neurons of a readout at a particular tiheEach linear readout neuron defines a hyperplane in this stat
space by the particular setting of its weights. It assighsesl for points on one side of this hyperplane
and values 0 to points on the other side of the hyperplane. tfajectories are called linearly separable
if they lie on different sides of some hyperplane. Figure &@wss an example of such a pair of linearly
separable trajectories in 3 dimensions. However, suchfageseparation of randomly drawn trajectories
is very unlikely in this low-dimensional space.

Figure 6B shows that the situation changes drastically & moves to higher-dimensional spaces. The
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Figure 6: Probability of linear separability increaseshnliigher dimensionality of the state spac@é.) Two sample
trajectories (green and blue curve) defined by connectindamly drawn points from a 3-dimensional cube. These
trajectories can be separated by a hyperplane (gray syidadi@ed by the synaptic weights of a linear discriminator.
(B) Probability of linear separability of two randomly drawmajectories of length 100 (black curve, left scale), and
average minimum Euclidean distance between any two pofritsese two trajectories (green curve, right scale), as
a function of the dimensiod. Trajectories are defined as a sequence of random pointsxdsaiformly from the
d-dimensional unit cube.

black curve indicates the probability that any two randomhigwn trajectories of length 100 (i.e., each
trajectory is defined by connecting 100 random points dramifounly from the d-dimensional unit cube)
are linearly separable i@ dimensions, for different values df(see appendix B.2). One sees that as soon
as the dimension grows beyond 100, any two such trajectoeiesme linearly separable with almost 100%
probability. This holds for any lengthof trajectories: ford = [, the probability of separation is 0.5 (see
also Cover, 1965), il > [ the probability converges very fast to 1. In other wordspadir readout neuron
with d presynaptic inputs can separate almost any pair of trajestthat are each defined by connecting
less thani randomly drawn points.

The green curve in Figure 6B shows the average of the minimtdrite between such a pair of trajec-
tories, which is defined as the minimal Euclidean distant@éen any point of trajectory 1 and any point
of trajectory 2. This distance also grows with increasingelsiofi. Thus, at higher dimension it is
not only more likely that any two trajectories of the lengtk d can be separated by a linear readout, but
they can also be separated with an increasing “safety-migfrgim the hyperplane. This implies that noisy
variations of the same trajectories can be correctly diassby the same linear readout, which hints to a
better generalization capability of linear readout nesrfar higher dimensions.

3 Application to unsupervised training of linear readouts from a cor-
tical microcircuit model

In the previous section we have shown that Slow Feature Aigaban directly be used for unsupervised
linear discrimination of different point sets, if a time &aris generated from these point sets in a way that
the class is a slowly varying feature. Furthermore, we haaiesve how this property is affected if this time
series consists of a sequence of trajectories instead widindl points. Now we turn our attention to SFA
as a possible mechanism for training readouts of a biolbgigaocircuit. The sequence of states that such
a recurrent network undergoes in response to a specific lstinfiorms a trajectory in state space. When
presented with a sequence of such trajectories SFA shoald &g able to extract information about the

5Note that the length of the main diagonal of-@limensional hypercube, i.e., the largest possible distiretween any two points
from the hypercube, is/d.
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stimulus in a similar way.

We have argued in the section 2.3 that the application of SFduth a sequence of trajectories of
network states differs from the application to individualmqts of a classification problem. In the latter case,
a different input pattern has been presented at every siimyéestep, whereas in the former case a single
trajectory forms a sequence of input patterns from the sdass.cDue to the temporal correlations of these
trajectories we do not expect that the slowest feature avpayfectly extracts the class of the trajectories,
as it did for the example with individual points in Figure 3atRer, we predict that the class information
will be distributed over multiple slow features. If multgslow features are extracted, the featyres the
slowest feature under the additional constraint to be detaied to all slower features, ..., y;—1. This
means that the slowest features are ordered by decreasimgess, i.e.y; is the slowest featurey, is the
second slowest feature, and so on. In the following, featyrevith a higher index are also called “higher
order” features.

When computing with state trajectories in order to be ablexwact reliable information about the
stimulus, we want readouts of the circuit to produce an imfative output not only at the end of the
trajectory, but already while the trajectory is still beipgesented to the readout. Furthermore, this output
should be as temporally stable as possible throughout thetidn of a trajectory, hence providing an
“anytime classification” of the stimulus. This requirementemporal stability renders SFA a promising
candidate for training readouts in an unsupervised fadidiscriminate “at any time” between trajectories
in response to different stimulus classes. In the followirgwill discuss several computer simulations of a
cortical microcircuit of spiking neurons where we trainedwamber of linear SFA readoutsn a sequence
of network state trajectories, each of which is defined byldhepass filtered spike trains of those neurons
in the circuit that provide synaptic input to the readoutnoeu Such recurrent circuits typically provide a
temporal integration of the input stream and project it inogdrly into a high-dimensional space (Maass
et al., 2002), thereby boosting the expressive power ofubsequent linear SFA readouts. In the setup of
Figure 1 the circuit therefore provides the mapping fromitiutsx to the expanded signais i.e., the
trajectories of network states. The readouts then compateslbwest featureg from these trajectories.
Note, however, that the whitening step is performed imfjiéh the SFA optimization (2). As a model for
a cortical microcircuit model we use the laminar circuitrfrgHausler and Maass, 2007) consisting of 560
spiking neurons organized into layers 2/3, 4, and 5, witletegpecific connection probabilities obtained
from experimental data (Gupta et al., 2000; Thomson et @02

3.1 Detecting Embedded Spike Patterns

In the first experiment we investigated the ability of SFA &teatt a repeating firing pattern within noise
input of the same firing statistics. We recorded circuitdcapries in response to a sequence of 200 repe-
titions of a fixed spike pattern which are embedded into ainantus Poisson input stream. The input to
the circuit consisted of 10 input spike trains. The pattéself is defined as fixed Poisson spike trains of
length 250ms and of rate 20Hz, the same rate as the backgRmisgbn input (in the following also called
noise input). We then trained linear SFA readouts on thedifnsional circuit trajectories, defined as the
low-pass filtered spike trains of the spike response of dl€urons of the circuit (we used an exponential
filter with 7 = 30ms and a sample time @ms). The period of Poisson input in between two such patterns
was also randomly chosen; it was drawn uniformly betweenmriand 500ms.

Figure 7A shows a sample test stimulus consisting of a segueitfour pattern instances interleaved
by random intervals of noise input, as well as the circuipmesse to this test stimulus and the 5 slowest
features,y; to ys, in response to the trajectory obtained by low-pass filtetimis circuit response. At
first glance, no clear difference can be seen between the Fwr&ponses during periods of pattern
presentations and during phases of noise input. The sloturEsaare of course nonzero during noise
input since the circuit response is quite similar to the oese during patterns. However, we found that
if we take the mean over the responses of multiple differeigenphases, the average SFA output cancels
away whereas a characteristic response remains duringrpgitesentations (see Figure 7C). This effect
is predicted by the theoretical arguments in section 2.3camdto some extent be seen in phase plots of
traces that are obtained by a leaky integration of the slofeesures in response to a test sequence of 50

7We interpret the linear combination defined by each slowufeaas the weight vector of a hypothetical linear readout.
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Figure 7: Unsupervised learning of the detection of spikégpas. A) From top to bottom: sample stimulus sequence,
response spike trains of the network, and slowest featurés. stimulus consists of 10 channels and is defined by
repetitions of a fixed spike pattern (blue shaded regionsgware embedded into random Poisson input of the same
rate. The pattern has a length of 250ms and is made up by Ra@pée trains of rate 20Hz. The period between two
patterns is drawn uniformly between 100ms and 500ms. Tip®rse spike trains of the laminar circuit of (Hausler and
Maass, 2007) are shown separated into layers 2/3, 4, andeébndrnhbers of neurons in the layers are indicated on the
left, but only the response of every 12th neuron is plottdtbv# are the 5 slowest features, to ys, for the network
response shown above. The dashed lines indicate values @&)@®hase plots of low-pass filtered versions (leaky
integration, = 100ms) of individual slow features in response to a test seq@h&0 embedded patterns plotted
against each other (blue: traces during the pattern, gnaynglrandom Poisson input). Note that equal increments in
x- and y-direction have the same length, i.e., a circle isutar. (C) Average response of the two slowest featutgs,
andy-2, during the 250ms spike pattern (blue) and a preceding 25@ise period (white). Note that the spike pattern
is fixed, but the noise is drawn anew each time. The averageéakas over 50 pattern repetitions not used for training,
as those irB. The dashed line denotes the value O; the shaded area gxlitet standard deviation across these 50
repetitions. D) Phase plots of two featurgs and - obtained from three randomly chosen orthogonal projestion
(compare with the top panel B).

embedded patterns (see Figure 7B). The slowest featureaspdspace where the response during pattern
presentations can be nicely separated from the responsegydwise input. Concerning this separability,
SFA yields a significant improvement over randomly choseedr functions, as shown in Figure 7D. That
is, by simple threshold operations on the low-pass filteresions of the slowest features one can in
principle detect the presence of patterns within the caootirs input stream. Furthermore, this extracted
information is not only available after a pattern has beasented, but already during the presentation of
the pattern, which supports the idea of “anytime computing”
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One interesting property of this setup is that if we apply SH#&ctly on the stimulus trajectories, we
basically achieve the same result. In fact, the applicdtidhe circuit trajectories is the harder task because
of the variability of the response to repeated presentatafrthe same pattern and because of temporal
integration: The circuit integrates input over time makthg response during a pattern dependent on the
noise input immediately before the start of the pattern.ufég’C shows these two effects. The standard
deviation during the noise input is due to different stinsugpike trains which are drawn anew each time.
On the other hand, the variability during the pattern présgons results from the inherent noise of the
network, i.e., from different responses to the same stiswukigure 7C shows that the standard deviation
during patterns is smaller than during noise. However, atdfart of the pattern it does not decrease
immediately, but gradually, due to temporal integratiorhafmeans that even though the average SFA
response becomes different from zero just after the patteset, the output still depends on the previous
noise input. Figure 7C suggests that this forgetting timéhefcircuit, the time after which the output of
the laminar circuit does not depend on the noise any mor¢Jéast 50ms.

3.2 Recognizing Isolated Spoken Digits

In the second experiment we tested whether SFA is able toidisate two classes of trajectories as
described in section 2.3. We performed a speech recogridigusing the dataset considered originally
in (Hopfield and Brody, 2000, 2001) and later in the contexiofogical circuits in (Maass et al., 2002,
2004) as well as in (Verstraeten et al., 2005) and in (Legémst al., 2008). This isolated spoken digits
dataset consists of the audio signals recorded from 5 speakenouncing the digits “zero”, “one”, ...,
“nine” in ten different utterances (trials) each. We pregassed the raw audio files with a model of the
cochlea (Lyon, 1982) and converted the resulting analofleagrams into spike trains that serve as input
to our microcircuit model (see appendix B.3.2 for detail3his biologically realistic preprocessing is
computationally more expensive than the original encodised in (Hopfield and Brody, 2000), but it has
been shown that it can drastically improve the performarice @rcuit for a specific speech recognition
task (Verstraeten et al., 2005). Figure 8A shows sampleleaghams, stimulus spike trains, and response
spike trains for two utterances of digits “one” and “two” thetsame speaker.

First, we tried to discriminate between trajectories irp@sse to inputs corresponding to utterances of
digits “one” and “two”, of a single speaker (speaker 2, asnsho Figure 8). We split the 20 available
samples (2 digits< 10 utterances) into 14 training and 6 test samples (i.eegthtterances of each digit
is kept for testing). To produce an input to SFA, we generétaeh these 14 training samples a random
sequence of 100 input patterns, recorded for each pattemetiponse of the circuit, and concatenated the
resulting trajectories in time. Note that the same patteiprésented many times. Here we did not switch
the classes of two successive trajectories with a certaibalility because, as explained in the previous
section, for long trajectories the SFA response is independf this switching probability. Rather, we
trained linear SFA readouts on a completely random trajgcequence.

We then trained linear SFA readouts on the 560-dimensidraalittrajectories, defined as the low-pass
filtered spike trains of the spike response of all 560 neudditise circuit. All responses were recorded for
the same amount of time such that all trajectories had the samgth; after the circuit activity had stopped,
the trajectories descended back to zero. Once there is@enoise) input between trajectories the result of
SFA becomes independent of the temporal order of the t@jestbecause only adjacent time steps play a
role. However, according to section 2.3 this is anyway treedar sufficiently long trajectories. Note that
the network responses for repeated presentations of the samulus were different due to the inherent
noise in the network that was used to model the backgrounafgimactivityin vivo (see appendix B.3.2).

Figure 8B shows the 5 slowest featurgs,to y5, ordered by decreasing slowness in response to the
trajectories corresponding to the three remaining testaitices for each class, digit “one” and digit “two”.
As a measure of slowness we used the ingeka signaly(t) defined in (Wiskott and Sejnowski, 2002),

_r
o
This is a slightly different measure than (1), and denotesitimber of oscillations of a sine wave with the

sameA-value. We found that the two slowest featurgsandy-, responded with shapes similar to half
sine waves during the presence of a trajectory (each 500rageatory starts and lasts for several 100ms),

n(y) : A(y). (26)
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Figure 8: SFA applied to unsupervised digit recognitiond@ingle speakerA) From top to bottom: sample cochlea-
grams, input spike trains, response spike trains of thearitvand traces of different linear readouts. Each cochiseag
has 86 channels with analog values between 0 and 1 (red, nglael near 0). Stimulus spike trains are shown for two
different utterances of the given digit (black and greer kack spike times correspond to the cochleagram shown
above). The response spike trains of the laminar circuihf(blausler and Maass, 2007) are shown separated into
layers 2/3, 4, and 5. The numbers of neurons in the layers@Bg 1112, and 280, respectively, but only subsets of
these neurons are plotted (14, 10, 24). The responses tathstimulus spike trains in the panel above are shown
superimposed with the corresponding color. Each readacéttorresponds to a weighted sux) ¢f network states of

the black responses in the panel above. The trace of the sid@ature (“SF1”, blue line; se®) is compared to traces

of readouts trained by FLD (green line) and SVM with linearrie? (red line) to discriminate at any time between the
network states of the two classes. All weight vectors arenadized to length 1. The dashed line denotes the threshold
of the respective linear classifieBY Response of the 5 slowest featuggsto ys of the previously learned SFA in
response to trajectories of the three test utterances df@ass not used for training (blue, class 1; red, class 2§ Th
slowness index) (26) is calculated from these output signals. The amglienotes the deviation of the projection
direction of the respective feature from the direction foloy FLD. The thick curves in the shaded area display the
mean SFA responses over all three test trajectories for €ask. C) Phase plots of individual slow features plotted
against each other (thin lines: individual responseskthites: mean response over all test trajectories). Note tha
equal increments in x- and y-direction have the same lemngtha circle is circular.

which is in fact the slowest possible response under theuvamiance constraint. Higher order features
partly consisted of full sine wave responses, which are ltheest possible responses under the additional
constraint to be decorrelated to previous slow features.

In this example already the slowest featyreextracts the class of the input patterns almost perfectly:
it responds with positive values for trajectories in resgwto utterances of digit “two” and with negative
values for utterances of digit “one”, and generalizes tk#kadvior to unseen test examples. As a measure
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for the discriminative capability of a specific SFA respanise., its quality as a possible classifier, we
measured the angle between the projection direction quoreting to this slow feature and the direction of
the FLD. Since each slow feature as well as the weight vebtdrdpecifies the projection direction of the
FLD is only determined up to the sign, we only report the seralblue. These angular values therefore
vary betweer0° and90°. It can be seen in Figure 8B that the slowest feagyrés closest to the FLD.
Hence, according to (25), this constitutes an example wiherseparation between classes dominates, but
is already significantly influenced by the temporal coriela of the circuit trajectories.

We call this property of the extracted features, to respaifférdntly for different stimulus classes,
the Whatinformation (Wiskott and Sejnowski, 2002). The secondvelst featureys, on the other hand,
responds with half sine waves whose sign is independenteopé#ttern identity. One can say that, in
principle,y» encodes simply the presence of a circuit response. ThiyEeal example of a representation
of Whereinformation (Wiskott and Sejnowski, 2002), i.e., the ‘feah location” regardless of the identity
of the pattern. Full sine wave responses would further eatle position within the trajectory. The other
slow featuresys to y5 do not extract eithe¥What or Whereinformation explicitly, but rather a mixed
version of both. For repeated runs of the same experimehtaiiferent training utterances the explicit
What andWhereinformation ofy; andys are reliably extracted, but the exact shape of the highegrord
features might differ depending on the particular trainiigrances.

Figure 8C shows phase plots of these slow features showrgird-BB plotted against each other. In
theory, in the phase plot of two features encodiigatinformation the responses should form straight
lines from the origin in a pattern-specific angle. In the ¢hpots involving featurey; it can be seen
that these response directions are distinct for differezitgpn classes. On the other hand, phase plots
of two features encodingVhereinformation ideally form loops in the phase space, indeleen of the
identity of the pattern, where each point on this loop cqrogsls to a position in the trajectory. This
can only be seen to some extent in the plotvs y3, but not explicitly because in this example no two
features encod@&/hereinformation alone. Similar responses have been the@ailgtipredicted in (Wiskott,
2003) and found in simulations of a hierarchical (nonlin&#A network trained with a sequence of one-
dimensional trajectories (Wiskott and Sejnowski, 2002)rtirermore, we found that the response vector
r(t) :== (y1(t),...,ys(t)), which is composed of the values of all 5 slowest featuregattcular point in
time, clusters at different directions for different class The average angle between two response vectors
from different classes is around 90 degrees throughouttnation of a trajectory. This effect arises from
the decorrelation constraint and is also a theoreticalre$(wiskott, 2003).

Note that the information extracted by SFA about the idgmtithe stimulus is provided not only at the
end of a specific trajectory, but is made available right fittvn start. After sufficient training, the slowest
featurey; in Figure 8B responds with positive or negative values iatiig the stimulus class during the
whole duration of the network trajectdtyThis supports the aforementioned idea of “anytime conmuylti
Moreover, as a measure for the performance of SFA we candr#iear classifier on the extracted features,
i.e., at each point in time the response veat@, composed of the values of the 5 slowest features at
that time, and labelled with the class of the correspondiagettory, serves as one data point for the
classification. The performance that a particular clagsiieable to achieve can be viewed as a lower
bound for the information that the extracted slow featu@s/ey about the trajectory class. Applied to the
features of Figure 8B, sampled every 1ms, an SVM with linesn&l achieves a classification performance
of 98% (evaluated by 10-fold cross validation). Note aght this is an “anytime” classification, since
samples during the whole duration of the trajectories atertanto account.

The bottom panel of Figure 8A shows readout traces of thriferdnt linear discriminators applied
to specific test trajectories, one from each class. Each poima trace represents a weighted sum of the
network states at a particular time, just before the thriesbperation of the corresponding linear classifier.
That is, a value above (below) zero means that the state ttitha is classified to belong to class 2
(class 1) by this particular linear discriminator. Here, iwterpret the slowest feature extracted,from
Figure 8B, as a linear discriminator with this particularigie vector and the average over the training
time series as the discrimination threshold. We compardrtee of this “SFA classifier” to traces of
linear readouts trained as Fisher’s discriminant and Stpector Machine (SVM) (Scholkopfand Smola,

8Since the optimal SFA response is not a piecewise constave,duut a sequence of half sine waves, an even better diserion
would be the direction of the response veat¢r) which theoretically stays constant throughout a trajgc@viskott, 2003).
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Figure 9: SFA applied to unsupervised speaker-indepertigittrecognition and digit-independent speaker recogni-
tion. Both panels show the response of the 5 slowest feajurésys of the previously learned SFA in response to
trajectories of three test utterances of each class notfasé@ining. Trajectories are padded with zeros such thahe
trajectory has the same length. The slowness ind@6) is calculated from these output signals. The angiienotes

the deviation of the projection direction of the respecfea&ture from the direction found by FLD. The thick curves in
the shaded area display the average SFA responses oveaitdbée test trajectories for each clasg.) SFA applied

to speaker-independent digit recognition. Shown are tepawrses for three random test trajectories of digit “one”
(blue) and digit “two” (red) from three different speakessveell as the average SFA response over all 30 available test
trajectories. B) SFA applied to digit-independent speaker recognitiorov@hare the responses for three random test
trajectories of speaker 1 (blue) and speaker 2 (red) froeethifferent digits as well as the average SFA response over
all 60 available test trajectories.

2002) to discriminate between the network states of trajes of different class@sBoth FLD and SVM

are trained on the same input as SFA, which consists of theomnketstates sampled with¢ = 1ms of

100 trajectories chosen randomly as described above (bubuwse without the information about the
temporal sequence of states). The discrimination thresfayl both SFA and FLD was chosen as the
average over all training points. It can be seen that in thi®ethe slowest feature, which has been learned
in an unsupervised manner, is able to achieve a perfectagparcomparable to those of the supervised
methods of FLD and SVM. That is, if we interpret the weightteeof this slowest feature as the weight
vector of a linear discriminator, this classifier achievgseaformance of almost 100% on deciding which
class of input stimuli has caused these unseen networkisdgetories, even in an “anytime” manner, i.e.,
during the whole duration of the trajectories.

Figure 9A shows the responses of SFA trained on a sequenc@Qofr&jectories corresponding to
utterances of digits “one” and “two” of all 5 speakers. Frome tL00 available samples (2 digits 5
speakers< 10 utterances) we have used 70 for training and kept the rengaB0 for testing. The response
of the learned SFA to trajectories in response to three ailhesting utterances for each of the two classes,
as well as the mean SFA response over all 30 test utteraneagbfclass, is shown in Figure 9A. It can be
seen that, qualitatively, the performance decreases catpathe case where only a single speaker is used
(see Figure 8B). No single feature extracts the class irdtion alone, but significandvhatinformation
is still represented: First, the slowest featyreresponds more strongly to trajectories corresponding to
samples with digit “one”. Second, featuygresponds with negative values only for trajectories in oese
to digit “two”, whereas for those of digit “one” it consistéyhas an initial positive response. Again feature
11 has the smallest angular distance to the FLD direction, éveis larger than in Figure 8B.

Similarly, we can apply SFA to a sequence of trajectoriegsponse to utterances of speakers 1 and 2
(but now with all 10 digits) try to extract information abaihie speaker feature, independent of the spoken

9Note that the absolute scale of different readout tracegivelto each other is arbitrary since only the directiontaf weight
vectors are relevant. In this presentation all three weigltors are normalized to length 1, in order to be comparabéach other.
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nonlinear expansion # dimensions| classifier performance
none (stimulus) 20 (10) 75%
guadratic 65 81%
cubic 285 83%
laminar circuit 560 (100) | 88%

Table 1: Performance values of a linear classifier trainethenslow features in response to different nonlinear ex-
pansions of the input, for the speaker recognition expartnre Figure 9B. The nonlinearity implicitly provided the
laminar circuit is compared to a quadratic and cubic exgamsi the stimulus, as well as to the naked stimulus. The
second column gives the dimensionality of the state spamadad by the respective nonlinear projection. The num-
bers in brackets denote the effective dimensions used ito $f@A, after PCA is applied (see appendix B.3.3). The
quadratic (cubic) kernel contains all monomials up to ded&3) of the 10 effective stimulus dimensions (Wiskott
and Sejnowski, 2002). Performance values are evaluate@4gid cross validation.

digit. Now there are 200 available samples (10 digit speakers< 10 utterances), where we have used
140 for training and kept the remaining 60 for testing. F&8B shows the responses of the learned SFA to
3 trajectories of these test utterances, as well as thegw&BA response over all 60 test trajectories. Due
to the increased number of different samples for each cfasséch speaker there are now 10 different
digits) this task is more difficult than the speaker-indegestt digit recognition. No single slow feature
extractsWhatinformation alone; the closest feature to the FLD is featyy. To some extent alsg,
extracts discriminative information about the stimulus.

In these experiments, the separation between the clasqaegsed by the first term in (25)) obviously
decreases compared to the single-speaker case. In suctatositwhere the distance between the class
means is very small, the tendency to extract the trajectiassdtself as a slow feature becomes negligible.
In that case the theory predicts that SFA tries to distingeach individual trajectory due to the decorrela-
tion constraint, and clusters similar trajectories beeaafghe finite (linear) function space. It can be seen
in Figure 8 that higher-order features start to discrimérizgtween different samples of the same class. This
demonstrates that multiple SFA responses are importartd@hettively convey discriminative information
about the class of the trajectory currently being preseraed that in these examples one should view SFA
as a powerful preprocessing stage for a subsequent clasisificrather than a classifier itself.

It is important to note that the different classificationuksin Figures 9A and 9B are not obtained due
to a different temporal order of the trajectories within trening input (i.e., whether the speaker is varying
more slowly than the digit, or vice versa), but due to the use different training set of trajectories. The
result of SFA does not depend on the temporal order of thedtajies within the training input because of
the intermittent zero phases, and is therefore comple&tigrchined by the training set of trajectories.

The performance of a linear classifier trained on the 5 slb¥ezgures in response to all available test
trajectories to predict the class label of the stimulus i%90r the speaker-independent digit recognition
(Figure 9A) and slightly lower (88%) for the digit-indepesrdt speaker recognition (Figure 9B). If linear
SFA is applied directly to the 20-dimensional trajectoésained by low-pass filtering the stimulus spike
trains directly, the same classifier achieves a performaf@bdout 75%. This indicates that the circuit
provides a useful nonlinear combination of input composenable 1 compares these performance values
to different nonlinear expansions of the stimulus for thiperiment. It can be seen that the laminar circuit
yields a better performance than a cubic kernel, even tholugimumber of dimensions already have the
same order of magnitude. Other than the quadratic and cupiansion, which are static, the circuit
additionally provides a temporal integration of the stiogivhich might provide a significant performance
improvement in this case.

Note again that these are performance values for an unsepdranytime” speech recognition task. A
comparable performance has been achieved in (Maass eD@4l) @n a different task (digit “one” against
all other digits) on the encoding by (Hopfield and Brody, 2089 training the readout weights with a
linear SVM. The performance values reported in (Verstnaeteal., 2005) are not for “anytime” speech
recognition in the sense that snapshots across diffenaet tioints of network trajectories are used for
training the readout, but a majority vote across differdassifiers trained at different time points is used
to predict the currently spoken digit. If the decision abwhich stimulus class has been presented should
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not be made “anytime”, but only at the end of each stimulagttory, almost perfect performance can be
achieved by integrating the slow features during the donatif a trajectory, i.e., by accumulating evidence
for or against a given speaker or digit.

Finally, we note that the qualitative performance of SFA.(ihow “good” the features look, or in which
order the features are extracted) depends on the smootbh#estrajectories that are used for training.
The circuit model of (Hausler and Maass, 2007) typicallgws a bursting behavior, which is mostly due
to the short-term dynamics of synapses. Thus the perforenah8FA can even be improved by using a
circuit model that generates smoother trajectories of agkwtates. Also, we obtain similar results if we
apply SFA directly on a sequence of the high-dimensiondbgneochleagrams shown in Figure 8A.

4 Discussion

4.1 SFA as a principle for neural computation

We have shown in this article that Slow Feature Analysis (S&&n in principle be used for learning
unsupervisedor implicitly supervised) linear discrimination. SFA (¥kott and Sejnowski, 2002) belongs
to a family of algorithms for learning invariant represeidas from temporalinput sequences, which
maximize the “slowness” of their output signals (e.g.,dté@k, 1991; Mitchison, 1991; Becker and Hinton,
1992; Stone and Bray, 1995). This objective is based on thengstion that signals that encode invariant
representations, such as the location or identity of anabidjethe visual field, vary on a much slower time
scale than raw sensory signals, such as the intensity ofish@hinput at a single fixed point on the retina,
for example. Therefore, the extraction of slow featuresefquickly varying input signal is likely to yield
invariant properties of this input signal. The unique asdout SFA is its appealing formulation as an
eigenvalue problem in the covariance matrices of the (pbssionlinearly expanded) multi-dimensional
input signal.

This formulation has allowed us to establish a relationblipveen this unsupervised learning rule and a
powerful supervised method for classification, Fisherisdar Discriminant (FLD), which can be expressed
as a similar eigenvalue problem. In particular, we have destrated that by converting the input to a
classification problem (two labeled point sets) into an belad time series in a special way, SFA is able to
closely resemble the result of FLD on this classificatioriybemn. More precisely, if two consecutive points
in the time series are likely to be chosen from the same classthe switching probability between the
classes is low), both methods yield similar projection clins, which can be interpreted as hypotheses of
linear discriminators (i.e., separating hyperplanes)e Buthis tendency that temporally contiguous points
are from the same class SFA is able to learn to become invddatifferent points within a class, but to
respond differently for points from different classes,,ite extract the class as a slowly varying feature.

In this paper we have basically considered three cases ti€afipn of SFA for pattern recognition: (i)
point discrimination, (ii) trajectory discrimination vtitdifferent means, and (iii) trajectory discrimination
with identical means. In case (i), the point discriminafitime class membership is implicitly encoded
in the temporal sequence of samples that serves as inputAoT3ie optimal response is a piecewise
constant function during periods where points from the salags are presented, and for a linear function,
converges to the result of FLD on the original classificafiwoblem. Regarding case (ii), the trajectory
discrimination with different means, we have analyzed hbe/ $FA objective changes if it is applied to
a time series that consists of a sequence of such trajestofigraining examples instead of individual
points that are independently chosen at each time step. prewmsely, we have considered a trajectory
classification problem, which consists of sets of point eeges rather than sets of individual points. We
generated a time series from this classification problemabglomly choosing trajectories from these two
sets and by concatenating them into a single sequence. W fbat for such a sequence of sufficiently
long trajectories the result of SFA becomes independent@fttass switching probability between two
successive trajectories, thus of the temporal order of thjedtories within the time series. Applied to
such a time series, the optimization problem of SFA can be&etgkeas a composition of two effects: the
tendency to extract the trajectory class as a slow featutlelantendency to produce a smooth response
during individual trajectories. The first effect can be désed by the scatter matrices of the FLD, whereas
the second effect depends on the temporal correlationh (inie lag 1) of the trajectories.
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Case (iii) occurs when the class means are so close toghttehtey are almost identical. In this case
the effect of the FLD vanishes. If the trajectories are iefred with zero (or noise) input the optimal
solution to SFA would be to respond with a half sine wave tdhdaajectory. For that case, (Wiskott and
Sejnowski, 2002; Wiskott, 2003) explain the emergencesdrithinative information in the SFA responses
by the decorrelation constraint: a feature that respontis different amplitudes for different patterns also
varies slowly and can still be decorrelated to other feattinat exhibit the same response for each pattern.
Thus, with an infinite function space SFA always producestufe that responds with a different amplitude
for each individual pattern. If the available function spalimited (e.g., linear, as in our case) SFA might
cluster similar trajectories, e.g., those that belong ®ghme class, by responding to them with similar
amplitude.

In the context of biologically realistic neural circuitgstability of an unsupervised learning mechanism
is of particular interest, because it could enable readeutans, which typically receive inputs from a large
number of presynaptic neurons of the circuit, to extracirfrihe trajectory of network states information
about the stimulus that has caused this particular sequsrstates — without any “teacher” or reward. In
previous simulation studies of neural circuit models, sdrfaning of readouts of biological microcircuits
has mostly been performed in a supervised manner (Maass 2082, 2004; Legenstein et al., 2005) or in
a reward-based trial-and-error setting (Legenstein e2a08).

We have tested the potential biological relevance of thasiieg principle in computer simulations of
a quite realistic model of a cortical microcircuits (Héershnd Maass, 2007). More precisely, we have
tested whether SFA would enable projection or “readout’raes to learn without supervision to detect
and discriminate salient input streams to the microcirctiitese readouts were modelled as linear neurons,
i.e., we have neither used a particular nonlinear expan®\skott and Sejnowski, 2002), which would
have likely suffered from the curse of dimensionality whepléed to these high-dimensional trajectories,
nor an explicit kernel (Bray and Martinez, 2003). Rather,ivage taken advantage of the kernel property
of the circuit itself, which provides intrinsic nonlineanmbinations of input components by its recurrent
connections, and thereby boosts the expressive power dfssequent linear readout.

In particular, we have shown that SFA is able to detect a ftapgpapike pattern within a continuous
stream of Poisson input with the same firing statistics inrssupervised manner. Furthermore, we demon-
strated that the recognition of isolated spoken digits ssfme using a biologically realistic preprocessing
for audio samples. SFA was able to almost perfectly discratg between two digits of a single speaker,
and to a lesser extent also to extract information aboutpb&en digit independent of the speaker as well
as the speaker independent of the spoken digit.

The laminar circuit transforms the input spike trains ireadifferent ways. First, it provides a nonlin-
ear expansion of the input by projecting it into a higher dasienal space through its recurrent connections.
We have shown in one of the speech discrimination taskshileatitcuit significantly improves the perfor-
mance of a subsequent linear SFA readout compared to thewtese this readout is directly applied to
the stimulus spike trains. Moreover, the circuit perfornagtér than a static quadratic or cubic expansion
of the stimulus (see Table 1). The second effect of the dirstid provide temporal integration. While this
may be benefitial in the spoken digits tasks, it certainlyredases the performance in the pattern detection
task because it makes the response of the circuit at thefiaginf a pattern depend on the noise input
immediately before (see Figure 7C). The third effect is tiieerent noise of the network, i.e., its property to
respond differently each time the same stimulus is prederiteis noise models the background synaptic
inputin vivo (Destexhe et al., 2001). SFA should perform better if thigrisic noise is low.

We find that the response of the learned SFA readouts to a seg|aéd test trajectories contains both
What and Whereinformation, i.e., they encode the class of the trajectuyrently presented (pattern
identity) as well as the current position within a trajegt@location within a pattern). This is in agree-
ment with the objective of SFA, because both the locationidedtity vary on a slower time scale than
the raw sequence of network states. The extracted featemelstd be sections of sine waves, which are
the slowest possible responses under the constraintstofamance and decorrelation. Features encoding
Whereinformation usually detect the presence of the trajeetofand encode the current position within
the trajectory) independent of their identity and respoiitth wimilar shapes to each trajectory. Such infor-
mation is very useful for neural systems, since it allowstitie keep track of time relative to a stimulus
onset or the initiation of a motor response (Buonomano andikyi2994; Buonomano and Maass, 2009).
The fact that such timing information becomes automaticaiailable through unsupervised SFA could
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in fact point to a general advantage of coding and computiitly trajectories of firing states, rather than
with single firing states (as many classical theories of aecwmputation propose). Obviously the ability
to keep track of time on the time scale of a few hundred ms isrgisd for biological organisms, e.g.,
for motor control. In contrast, features encodWMthatinformation discriminate between different types
of trajectories and respond differently for different das of trajectories. The response vector defined by
the slowest features at a particular point in time takes @ti§ip directions for each trajectory class; we
have found that the average response vectors of differaases are around 90 degrees apart. These prop-
erties of SFA have been theoretically predicted in a thohoagalysis of this algorithm (Wiskott, 2003). In
(Wiskott and Sejnowski, 2002), they have been also founeinputer simulations, where a hierarchical
SFA network has been trained with a sequence of short onerdiional trajectories. There, the particu-
lar organization of sequential quadratic SFA stages pes/tie nonlinear function space, from which the
function is chosen that generates the slowest possibleibintn the input signal. In our case this function
space is implicitly given by the nonlinearity of the circuit

In contrast to the results for classification problems ompseets, due to the temporal structure of
trajectories a single SFA readout of a cortical microcitouight not extract the class of network trajectories
explicitly, but usually a mixture of botivhat andWhereinformation. This is what we had expected from
our theoretical analysis, which suggested that there sdetoff between the tendency to separate different
classes and the tendency to respond as smoothly as possifiig thdividual trajectories. Moreover, as
the distance between the class means decreases, the iseptmatiency becomes negligible, and SFA
tries to distinguish all individual trajectories. Howeyéne slowest features span a subspace where the
trajectories are nicely separated, thereby rendering Spéweerful preprocessing stage by improving the
computational performance of a subsequent classificafiorihermore, the results show that SFA readouts
are able to distinguish between different stimulus clagsem “anytime” manner, i.e., they provide the
correct classification already before the trajectory hakeen This makes the information about the stimulus
available to later processing or decision making stagesmigtafter a trajectory has settled into an attractor,
but already while the stimulus is still being presented.

In these circuit simulations, SFA responds with amplitudéslifferent sign to patterns of different
classes, and even generalizes this behavior to unseenx#spkes. We argue that the function space that
is implicitly provided by the cortical microcircuit togeth with the linear SFA readouts might just have
the property that different trajectories yield the sameogses if they are similar enough. More precisely,
it might correspond to an imperfect kernel that maps similaut patterns (patterns that are likely to be
from the same class) into similar trajectories, and suffityedistinct input patterns to trajectories that are
significantly separated. Previous studies (e.g., Legenated Maass, 2007) suggest that if such circuits
operate in a regime calleztige of chaqgghey might have this desired property.

Furthermore, our theory predicts and our experiments sthaivthe ability of SFA to discriminate be-
tween different classes of trajectories is strongly infeeshby the temporal correlations of the trajectories,
as explained by the temporal covariance matrix with timella¢t would be interesting to investigate the
effect of different magnitudes of these correlations, ,ebg. comparing the effect of different sampling
frequencies (we use a quite short sampling time in our exes)pl

4.2 Relation to preceding work

Slow Feature Analysis has already been applied for unsigeehpattern recognition in (Berkes, 2005b,
2006), where SFA has been used to discriminate between hetrshadigits. There the SFA objective is
reformulated to optimize slowness for time series congystif just two patterns, averaged over all possible
pairs of patterns. The idea is to search for functions thgppead similarly to patterns of the same class,
and therefore ignore the transformation between the iddafi patterns. The optimization (1) in (Berkes,
2006) is performed over the set of time derivatives of allgilole pairs of samples of a class,

min - Aly;) =a-» > (g;(x5) — g;(x)))%, (27)

under the constraints of zero mean, unit variance, and daation, where”' is the number of classe8],
is the number of samples of clagsxj, is thek-th sample of class, anda is a normalization constant
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dividing by the number of all possible pairs. Obviously, thectionsg; that minimize (27) are ones which
are constant for all patterns belonging to the same classghich case the objective function is zero. As a
consequence, patterns from the same class will clusterifeiture space formed by the output signals of
the (C — 1) slowest functiong;, where classification can be performed using simple teclesi¢Berkes,
2005b, 2006).

One problem with this approach is that it is often computsily intractable to consider all pairs of
patterns, since the number of pairs grows very fast with tinalmer of patterns. Furthermore, it might
be implausible to have access to such an artificial time seeig., from the perspective of a readout of a
cortical microcircuit which receives input on-the-fly. Wake a different approach and apply the standard
SFA algorithm to a time series consisting of randomly selégatterns of the classification problem, where
we switch the class of the current pattern at each time stépangertain probability. We have found that if
this switching probability is low SFA extracts features which separate the classesragldpproximately
the same subspace as Fisher’s Linear Discriminant. Inquéati we have demonstrated the dependence of
the deviation om: asp goes to zero, the weight vector of SFA converges to the weigttor of FLD. Note
that with this approach perfect equivalence between SFAFd cannot be reached because the time
series would have to consist only of transitions within as|dut at the same time contain patterns from all
classes, which is not possible. In this hypothetical cageSiFA problem would become equivalent to the
reformulated objective in (Berkes, 2005b, 2006). In (Bsrk905a) the author applied a nonlinear version
of Fisher’s Discriminant to the same handwritten digitsagat as in (Berkes, 2005b, 2006) (using a fixed
polynomial expansion of the input as a kernel) and achieva@thdar result, but, however, no relationship
between the two methods was shown.

In (Franzius et al., 2008) the authors show that a hieraatimetwork of quadratic SFA modules can
extract the identity of objects from an image sequence pteggthese objects at continuously changing
positions, sizes, and viewing angles. They create the isggience in a similar way as we do: after each
time step, the object identity is switched with a low prolli&bi The resulting features extracted by SFA
contain information about the identity of the object cuthgishown, as well as the current position, size
and rotation angles of the object. However, this infornmat®usually not made explicit in the sense that
a single slow feature codes for exactly one “configurationalde” (such as object identity or position),
rather, each such variable is distributed over multiplevsleatures. The original variables, however, can
be recovered from the slowest features using linear reigress simple classifiers with high accuracy. The
tendency for this “linear mixing” of information increasas the input sequence gets more and more com-
plex (i.e., contains more transformations of the same dpj&e also find this effect in our experiments:
in the experiment where we discriminated between spokeatsdifja single speaker (Figure 8) the slowest
feature extracted the class information explicitly, wleerén the experiment where more speakers were
used (Figure 9A) this information was distributed over npléd features. In principle, one can view the
nonlinear expansion of the image sequence that belongsitgla ®bject presentation (i.e., between two
object switching events) as a particular trajectory in oese to this object. Different trajectories for the
same object vary in the specific sequence of poses of thattoijeing a particular presentation phase.
In this sense, SFA is trained on a sequence of trajectorées, eesulting from a specific presentation of a
particular object. According to (Franzius et al., 2008) tfessifier performance for extracting the object
identity is maximized if all other variables are made vestfa his is in agreement with our theory because
faster configuration variables produce weaker temporaktations of these image trajectories. This means
that SFA more closely approximates the result of FLD on thesges.

This work in (Franzius et al., 2008) offers one explanatiowlthe visual system learns invariant object
recognition from the temporal statistics of the input stilnmages that occur in immediate succession tend
to belong to the same object. In fact, a considerable amduwwdik has been done that investigates tempo-
ral slowness as a computational principle in the visualsyistin (Berkes and Wiskott, 2003) quadratic SFA
(i.e., linear SFA in the expanded input of all polynomialsiefyree 2 of the original input dimensions) has
been applied to natural image sequences and the learnechtjodorms have been interpreted as receptive
fields (Berkes and Wiskott, 2006). These resulting recefdields resemble many properties of complex
cells, such as their Gabor-like shape, shift invarianceéjmction selectivity. Furthermore, when presented
with a visual input sequence that is generated by the moveofi@simulated rat in a virtual environment,
SFA has been shown to reproduce the spatial firing pattenplaoé cells, head-direction cells, spatial-view
cells, and grid cells (Franzius et al., 2007a). Dependinghenrmovement statistics of this simulated rat
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different types of invariances are learned (e.g., the h@adtibn independent of the current position in the
environment). To obtain the final response characterisfitisese cell types, however, an additional sparse
coding stage has been incorporated (Franzius et al., 20@Hh extracts the representations of single
cells from the more distributed representations resultiogn SFA. Using a slightly different slowness ob-
jective, similar invariance properties of the visual systeave been found in (Einhauser et al., 2002; Wyss
et al., 2006).

In this work we have trained the readouts of our cortical wéacuit with the standard batch algorithm
of SFA. This has the advantage that there are no parametéh e to be tuned for a specific problem.
Since SFA is based on an eigenvalue problem it finds the saliriia single iteration and has no conver-
gence problems (e.g., to be trapped in local minima). Indgmal systems, however, processing has to
be performed on-the-fly, and therefore learning rules tipdintize temporal stability in an online manner
are of particular interest. Several computational modeitst ¢hat are based on this slowness principle and
that show how invariances in the visual system can be leatredgh a variety of Hebbian-like learning
rules (Foldiak, 1991; Wallis and Rolls, 1997; Wyss et ali0&, Masquelier and Thorpe, 2007). In this
article we do not propose a biologically realistic learnimgg, rather, we investigate the properties of one
well-known algorithm, Slow Feature Analysis, out of thisridy of optimization methods based on the
slowness principle and analyze its unsupervised discation capabilities. A recent paper demonstrates
that this learning rule can in principle be implemented bpi&iag neuron with a form of STDP (Sprekeler
et al., 2007). Although this result is purely analytical drat yet to be verified in computer simulations,
it supports the hypothesis that the objective of slownesmigmportant ingredient in the unsupervised
learning mechanisms of biological systems. In fact, STD®leen successfully applied to robust online
unsupervised detection of repeating spatiotemporal gpéiteerns hidden within spike trains of the same
firing statistics (Masquelier et al., 2009). Moreover, isheen shown that spiking neurons equipped with
a special form of STDP which receives a global reward sigizaliKevich, 2007) can learn to discriminate
between different trajectories of firing states using reinément learning (Legenstein et al., 2008).

SFAis not only inspired by the slowness principle for leaginvariances, but might also be motivated
by information-theoretic principles, such as the InforimaBottleneck (IB) method (Tishby et al., 1999),
or Independent Component Analysis (ICA) (Hyvarinen et2001). In (Creutzig and Sprekeler, 2008) a
relationship is shown between SFA and the IB method for ptai coding, which optimizes the objective
to compress the information of the past into the currenestét system, such that as much information as
possible about the future is preserved. In other words, iimmizes! (past statg — (1 (state future) with
some trade-off parametgr It turns out that for the case of one-time-step predictiot af a linear system
with Gaussian noise this problem becomes equivalent tali8EA. On the other hand, ICA tries to uncover
statistically independent signals from an observed limeixture of these signals. Blaschke et al. (2006,
2007) show that for a particular measure of independencighwhvolves the temporal correlations with
a time delay of one time step, ICA becomes formally equivitietinear SFA. Finally, Turner and Sahani
(2007) provides a probabilistic interpretation for SFA,em it is assumed that the observed time sexiiss
generated by a linear mixture of latent variables (the skeatudresy;). The mixing matrixW is recovered
by maximizing the likelihood function. This attractive foulation has the advantages that constraints and
extensions can be included in the model in a very natural ey that noise and missing data in the input
are handled elegantly by this probabilistic setup. Theseltg establish an interesting connection between
the slowness objective and both probability and infornratteeory and further demonstrate the power of
the elegant algorithm of linear SFA.

4.3 Conclusion

Summarizing, we have established a theoretical basis xipé&ias when Slow Feature Analysis can be ex-
pected to have emergent pattern discrimination capadslitBoth our theoretical results and our computer
simulations suggest that Slow Feature Analysis — and marergdly the concept of slowness or temporal
stability — could be a powerful mechanism for extracting pemally stable information from trajectories of
network states of biological circuits without supervisiand hence an important ingredient for spatiotem-
poral processing in cortical networks (Buonomano and M&2®39). In particular, it provides a basis for
explaining how brains can arrive at stable percepts in sgintinuously changing network states in a
completely unsupervised way.
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A Derivation of the relationship between the SFA and FLD objetive

A.1 Derivation for the case of two classes

In this section we derive the expressions for the temporaidance matricegxx” ), and (xx*); of the
SFA objective (2) for the two-class case in terms of the wittlass and between-class scatter matrices of
the FLD objective (4)Sw andS g, for the particular method of time series generation desdiin the
main text.

Assume we are given two disjoint point sétg, Sy C R”,

Sy :={x}|i=1,...,N}, (28)
Sy ={x}[j=1,...,N}, (29)

wherex!} andx? denote the data points of class 1 and 2, respectivelyni@notes the number of data
points for each of the two classes. Both point sets can bexcteized by their mean vectorg(, u,) and
covariance matrices{;, ), given by

1 N
o= (xi) = z;x}, (30)
1 1;
By =(x5) = = > %), (31)
j=1
and
1 T N T
o= <(Xz1 — ) (%} — ) > = X;X%X% — ] (32)
1 T al T
3o = N <(X? - Hz) (X§ - Hz) > = ZX§X§ - Nz#g- (33)
i=1

The within-class and between-class scatter matrices bEFsLinear Discriminant are then given by
(see (6) and (5))

N N
Swo=>(xh — ) (xt = )T+ Y o) (%2 )"
i=1 j=1
=N (2 + 3,) (34)
and
Sp = (11 — H2) (g — HQ)T- (35)

We now generate a time serigg from these two input point sets; and S as described in the main
text, using the Markov model in Figure 2. We can now expressrian and covariance of this time series
x; in terms ofpy, @y, X1, andX,. For the mean we get

1 < 1 1
o= ((xe)e) = ({xe))y = 7 D (xe) = (xi) = SH1 5 Ha, (36)
t=1

because the stationary distribution of the Markov modeligufe 2 isw = (3, 1) (10). More generally,
the mean of the time series is given by the weighted mean leetive two class means, weighted by the
probability that a point is drawn from the correspondingsslaNote the different expectation operators:
()¢ denotes the temporal average over the time sasiewhereas the average over all possible time series
x; generated fron; and.S, is given by(-). That is,((x;);) refers to the temporal average of a specific
time seriesx;, averaged over all possible realizations@f whereas (x;)), refers to the temporal average

27



of the expected value of; at a specific time stefy Since this Markov model yields a stationary random
process, we can exchange the expectation operators. Byntitee expected covariance matrix is given by

T
2= (e = W) = )" )e) = % D Gaxt) = pu” = (xix{) — pu”

1 1
= 5 (1t ppd) + 5 (B2 + popd) — pp”

1 1 1
= 521 + 522 + Z(Nl — o) (g — po) " (37)

where in the last step we used (36). Note that the covariaat@nof the time series is not only determined
by the covariance matrices of the two classes, but also biygpatial separation as expressed by (37). We
assume without loss of generality that= 0, i.e.,X = (x;x} ).

Next we consider the covariance matrix of time derivativEsr the expected covariance matrix we
write

. -T 1 o T
(%)) = 71 ; ((xe = xp—1)(x¢ —x¢-1) ")

= ((th:?r + <Xt—1lel>) - ((Xt—lxtT> + <thzll>) . (38)

The two terms in the first part of (38) consist of covarianoetsieen input samples of the same time index
and can be rewritten as (using (37))

1 1
<thg> ~ 3 (21 + ulu{) + B (22 + Nzﬂg) (39)
<Xt—1le1> = <xtxz>. (40)

Because of the stationarity af the covariance matrix is independent of a time shift. Theraxamation

in (39) holds for largdl’, since the summation in (37) contaihgerms and the summation in (38) contains
T — 1 terms. Similarly, the two terms in the second part of (38)gistof the cross-covariances between
adjacent time steps. If the classesxpfandx;_, are fixed, therk; is chosen independently af_; and
we can split up the expectation operatey_;x; ) = (x;_1)(x!) into the product of the two class means.
Considering the 4 possible class transitions we write

1 1 1 1
(xp1x{ ) = (1= P g + 5(1 — p)Hapy + §pu1u§ + §pu2u1T (41)
(xex/{ 1) = (xe1x] )T = (xp1%7 ). (42)

Plugging (39) to (42) back into (38) yields

<<XXT>f> =31 4+ 2o + (g — po) (g — po)7" . (43)

In equations (37) and (43) we have expressed the covariaatrxraf the time series;, (xx”');, and
the covariance matrix of its time derivativésx”), in terms of the means and covariances of the two point
sets of the FLD problem. We repeat these here for clarity (W@ the expectatioft) for convenience):

1 1 1
(exT)e = 53+ 580+ 2 — po) (1 — )" (44)
&xT)e =21 + o+ p(py — o) (g — po) " (45)

Remember that is the transition probability between the classes, acogrth Figure 2. Recalling the
definition of Sy (34) andS g (35), we finally obtain the result

1 1
(xxT); = onSw + 55, (46)
.. 1
(kx") = Sw +p-Sp. (47)



A.2 Derivation for the case of more than two classes

In this section we derive the expressions for the temporaidance matricegxx” ), and (xx*); of the
SFA objective (2) for the general case of more than two cksséerms of the within-class and between-
class scatter matrices of the FLD objective (8);; and S, for the particular method of time series
generation described in the main text. We proceed analdgtushe previous section for the two-class
case.

Assume we are give@t' disjoint point setsS. C R*,¢=1,...,C,

S, = {x¢li=1,...,N.}, (48)

wherex{ denote the data points of clagsand N. denotes the number of data points in each class. Let

Np = chzl N. be the total number of points. Each of these point sets cam@@cterized by its mean
vector and covariance matrix, given by

1 Qe
W:EZ% (49)
2. N}jch—mﬁi (50)

The within-class and between-class covariance matrictedfisher Linear Discriminant in the multi-class
case are defined by

Ne

C
sW:ZZx — 1) (x5 — p)"

o
Il
—
.
—

C
= Z chca (51)

and

C
=" Nepon? — Nrpp®, (52)

wherep = 1/Np Zle N.p, is the total mean of the input points.
We generate a time serigs from these point sets as described in the main text, usindvimov
model with state$' = {1,2,...,C} and transition probabilities

Ny if i £ j

P = ¢ N . Z#% (53)
1_Ek7$J ik IfZ:]7

fori,j € S. First, we show that

(N N»  Ne
_<NT’NT""7NT) (54)
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is a stationary distribution of (53). This can be easily segrerifying that for allj € S,

mj =y miby

€S

i#] k#j
N, < Ni N, N; « Ny
=q - — _|_ R A — F— J—
Nt ; Nr N Nt Nr
N;
=—. O 55
Ny (55)

For the mean of the time serigs we get, analogously to (36),

c c
1
(x) = E Tebbe = 7 E Nept. (56)
c=1 c=1

Note that for the particular choice of (53) the mean of theetisrries becomes equal to the total mean of
the input points. Similarly, we obtain for the covariancetrxa

C
(xxT)p = me (Be + pepl) — pu”

c=1

1 & 1 &
=—> NX.+—> Np.pl —pu®
Ny ;:1 e+ - ;:1 Mol — P
1 1

- — Sp. 7
NTSW+NTSB (57)

For the covariance of time derivatives we proceed analdgaoshe previous section and write

&xT)e = ((aext ) + (xem1x7 ) = (Gremax)) + (xexi ), (58)
with

c
(xex]) = 7o (Be + popl) (59)

c=1
(xe-1x7_y) = (xix]) (60)
(xeax{) = > Py (61)

ijes

(xex{_1) = (xeo1x))T = (xe1x]). (62)
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The last equation holds becausePM = ijji. Plugging (59) to (62) back into (58) yields

xx f_2Z7T(Z] —i—ZZmp(uc —22:2:#7 wuzuj

=1 j=1

c c
ZN Do+ 3 ZNcucup - N ZN Pecpreprs — 2T > Nette | 3 P
c=1 c=1

k#c

:Nl +—ZN Za —k ZNCMC > a xiuf
c=1 k#c k#c

C
2N
2 < -
= N_Z ZN NT - H’cl‘l’c 2 ZNCHC(NTH - NCIJJC)T
C
2 N®

T c=1
2 T T
= Ny Z Neprepre — Nopp
c=1
2
—S —S
SN TN
(63)
Finally, we repeat the results (57) and (63),
(xx"); = N_TSW + N_SB’ (64)
xxT), = N_TSW+N_SB’ (65)

and note the similarity to the results for the case of twosgasn the previous section, (46) and (47).

A.3 Derivation for time series consisting of trajectories

In this section we derive the expressions given in equati@hpto (24), which reformulate the SFA ob-
jective for the case of time series consisting of trajee®of training examples rather than a sequence of
individual points that are independently chosen.

First we consider the case where the time setiesonsists of multiple repetitions of a fixed trajectory
t == (%1,%X2,...,%z) Of lengthT", and random intervals of independently drawn “noise” sasmlrawn
from the same distribution (characterized by mgaand covarianc&) as thex;.. We assume without loss
of generality thaju = (x;); = 0. Furthermore, lef’ be the total length o%;, and letp be the fraction of
theseT time steps ok, that are occupied by the trajectary

For the expected covariance matrixsgfwe get

tet tZt
5 T
== Zxkxk +(1-px
T k=1

=S+ (1-p)z. (66)

We use the notatioh< t to denote that a time stepwithin the time series; belongs to an instance o6f
The matrix

T
> k) (67)



is the covariance matrix df with itself. Note that the average) in (66) is over all realizations at; with
a fixed trajectoryt. If we also average over different realizationstpthe covariance becoméza
The covariance matrix of time derivatives can be written as

T
. 1
((xXT),) = 2 (xxT),) — e ((xext 1) + (xe-1x7 )
t=2
N T-1 -
m2-152+2-(1—15)2—15-7-2t, (68)
where )
- 1 T
By = ——— Y (RaXf + Rk XY) (69)
T-1&

is the covariance of with t delayed by one time step, i.e., it captures the temporaétaiions of time lag
1. This matrix enters equation (68) with a coefficigfil’ — 1)/7', because each of thig'/T trajectories
of the time series contributés — 1 times the expected value (69) to the sum in the first line of.(B®te
that all other temporal correlations ®f apart from those caused Ibyare zero. The approximation in (68)
is valid for largeT (i.e., whenl'/(T — 1) ~ 1).

Inserting (66) and (68) into the SFA objective (2) yields

wl (xxT)w T-1 wisw
J =L BT 9 5.1 . 70
SFA(W) WT<XXT>tW p T WT<XXT>tW, ( )
and therefore e
3
min  Jgpa(w) & max W W (71)

wl (xxT),w’
Next, we consider the two-class problem, where the timesgyficonsists of a sequence of trajectories
chosen from two classeg and7;. After each trajectory, the class of the next trajectorywitched with
probabilityp, or left unchanged with probability — p, according to the Markov model in Figure 2. These
two trajectory sets can be characterized by their meapsand u,, and their covariance®;; and Xs.
Each of these quantities equals equations (30) to (33) ateduor point setsS; and S, composed of

the individual points of the trajectories i and7s, respectively. Furthermore, Iétil) andﬁ)f) be the
average temporal covariance matrices with time lag 1 fgettaries in7; and7s, i.e.,

c 1 T - - - -
i Ty 2 2 [ = s =)+ e — ) )] (72

)

whereN is the number of trajectories in each of the sEtsand7; andT is the length of a trajectory (we
assume for simplicity that all trajectories have the samgtie). x{ , is thek-th point in thei-th trajectory
of classe. Note that in contrast to (69) the mepan is class-specific and different from zero.

The expected covariance matrix of the time sesigss not affected by temporal correlations and is
therefore equal to the case where individual points areaosstead of trajectories (see equation (37)):

C
(xxT)y) =Y e (Be + pepsl) (73)

c=1

whereC' = 2 is the number of classes and = 1/2 is the probability of being in statefor the stationary
distribution of the Markov model. For the expected covacmmatrix of time derivatives we write

1 T

((xxT) ) =2 ((xx")s) — 71 (Grexiy) + (xe-1x7 ) - (74)
t=2

The time series has length and consists of”/T trajectories. Therefore we can split up the sum in
the second term on the right hand side of the last equati@nZint 7'/T" contributions from transitions
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(x1—1,x¢) Within a trajectory andF/T — 1 contributions of switches between two temporally adjacent

trajectories (i.e., at time pointswhen a new trajectory starts). Concerning the first part efshim, each
of theT'/T trajectories contribute® — 1 times the expected valle, m. (ﬁlic) + QMCMCT)- The second

part is determined according to the transition probab#itietween the classes, similar to (41) and (61).
C C T _1 C - (0)
DD~ 2N 1242y meppl - 2N 1.3,
(@ ma g mmet 2, P

C
1 2
2 (12 2 ) X maat - 23 o Pt il (75)
c=1

C1,C2
Again we approximated’/(T — 1) ~ 1. For the Markov model in Figure 2 arl, = Ele wcilic) we
can write

(BT} ) = 21+ B = = B+ Ry — o)y — ) (76)

Using the definitions of the within-class and between-ctasster matrices of the FLD (equations (34) and
(35)) we can rewrite equations (73) and (76):

1 1
xx); = ——Sw + =Sp, 77

(xx" )¢ ST 158 (77)
.. 1 P T-1 -

xx7), = —Sw+=-Sp— —— - 3. 78

(%% )y oWt 7 ¢ (78)

B Simulation Details

B.1 Estimating the error between SFA and FLD

We estimated the deviation between the result of FLD appdiedtwo-dimensional two-class classification
problem and the result of SFA applied to a time series geeéifabm this classification problem using the
Markov model in Figure 2 as the anglebetween the weight vectors yielded by both methods,

WSFA - WFLD (79)

Q= arccos .
llWsrpall - [[WrLpl|

We evaluated this angular error as a functiopahe switching probability in Figure 2, i.e., the probatyili
that two consecutive points in the time series are from diffieclasses.

For each probability (we variedp from 0.01 to 1.0 linearly in intervals 0f0.01) we generated 100 dif-
ferent random classification problems in the following wigr each of the two classes a two-dimensional
mean vector and 2-by-2 covariance matrix was chosen. Thedicwtes of the mean were drawn in-
dependently and uniformly from the interviat4, 4]. The covariance matrix was determined by its two
eigenvalues (drawn uniformly fron®, 1]) and a rotation angle (drawn uniformly frof@, 27]). For each
class, 250 points were drawn from a Gaussian distributiah thie selected mean and covariance. The
time series for SFA is generated using the Markov model infe@ with the given switching probability
p. The lengthl” of this time series is chosen to be 10000 samples.

We computed the average angle between the weight vectonsl foy SFA and FLD on those 100
classification problems, yielding values betwé&8rand180°. We replaced angles > 135° with angles
180° — «, since projection directions with different signs are eqileént. Angles betwee#5° and135°
were only obtained fop > 0.5 where they averaged to abour°.

B.2 Calculating the probability of linear separability

To calculate the probability of linear separability in FigloB we proceeded in the following way: We
generated pairs of point sets (i.e., trajectories) eaclsisting of 100 points drawn uniformly from thé
dimensional hypercubjé, 1]¢. We tested whether these two random point sets are linesplgrable using
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an efficient method proposed in (Yoganandaet al., 2007).Walkeiated the probability of linear separability
for each dimensionl as the percentage of 1000 such randomly generated classifigaroblems that
resulted in linearly separable point sets. For each claasifin problem we also searched for the minimal
distance between any two points from different sets. Weutatled the average minimum distance over all
1000 classification problems for each dimension

We found that the curve for the probability of linear sepdlighclosely resembles the analytical result
of (Cover, 1965), which considered the fraction of all pbsidichotomies ofN given data points in
general position il dimensions which are linearly separable.

B.3 Detailed description of the network simulations
B.3.1 Generation of input spike trains

In our circuit simulations we use two different types of inpspike trains generated from isolated spoken
digits preprocessed with a model of the cochlea and spikempatembedded in a continuous stream of
Poisson input.

In the speech recognition tasks we use the isolated spokén dataset in (Hopfield and Brody, 2000,
2001). This dataset consists of of the audio signals reddrden 5 speakers pronouncing the digits “zero”,
“one”, ..., “nine” in ten different utterances (trials) énd.e., overall there are 500 speech samples. The
duration of an utterance is several 100ms.

To generate a biologically realistic network input, the rawdio signals are converted into the output
of a cochlea (“cochleagram”) using Lyon’s Passive Ear m@dgbn, 1982). This computational model
consists of a linear filterbank and a nonlinear gain contetivork and captures the filtering properties
of the cochlea and hair cells of the inner ear. The resultimgay cochleagram is a 86-dimensional time
series with values between 0 and 1. An implementation ofchitilea model can be found in the Auditory
Toolbox for Matlab (Slaney, 1998).

This analog waveform is then transformed into spike trasiagithe BSA algorithm (Schrauwen and
Campenhout, 2003). This method is able to reconstruct a&gpéin from an analog trace with a given
reconstruction filter. Filtering the spike train with thisaonstruction filter should yield a trace with a
minimal deviation from the original waveform. We used th@lamentation from the Reservoir Computing
Toolbox (Verstraeten et al., 2007). We chose a reconstmdiiter with an exponential formr(= 30ms)
and selected the threshold parameter of the algorithm ta%&(8tandard value). In order to obtain lower
firing rates of the spiking stimuli, we scaled the amplitudehe reconstruction filter such that it has an
integral of 40. Furthermore we selected 20 from these 86esipdins in equidistant steps. The same spike
patterns have also been used for the speech recognitiomtésggenstein et al., 2008).

The embedded spike patterns, on the other hand, consistbit8on spike train segments of length
Tseq = 250ms and with rate- = 20Hz. Poisson spike trains are generated by positioning spikéme
according to inter-spike intervals drawn from an exporardistribution with rater until the segment
lengthT., is reached. Additionally a refractory period of 3ms aftepiks is considered, during which no
further spike can occur. Similar spike patterns have be@sidered for example in (Hausler and Maass,
2007). For each pattern class one such pattern is generfteshodel the continuous Poisson input, we
preceded each pattern instance with a random Poisson inffutavduration uniformly drawn between
100ms and 500ms.

B.3.2 Our model of a cortical microcircuit

As a cortical microcircuit we use the laminar circuit modedrh (Hausler and Maass, 2007) consisting
of 560 spiking neurons (Izhikevich neuron model) with dymaoonductance-based synapses. The short-
term dynamics of these synapses has been modelled acctrdiregphenomenological model proposed in
(Markram et al., 1998). To reproduce the background syonampiut that cortical neurons typically receive
in vivo, additional synaptic noise is incorporated as an Orndtitenbeck (OU) process as conductance
input (Destexhe et al., 2001). All parameters of this moutelluding short-term synaptic dynamics and
background synaptic activity, are chosen as in (HausléMaass, 2007).
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The neurons are organized in six pools; an excitatory anidiitiny pool for each of the layers 2/3, 4,
and 5. The numbers of neurons in each layer are 168, 112, dndeXpectively. The connection strengths
and probabilities within a pool and between the pools arainbtl from data found in (Thomson et al.,
2002) and (Gupta et al., 2000). All of the stimulus spikertsa(5 for the spike pattern task; 20 for the
speech recognition task) are fed into the circuit via theitrgfream that connects mainly to Layer 4 (“input
stream 1” in Figure 1 of (Hausler and Maass, 2007)). Thersgauput stream into Layer 2/3 is switched
off.

B.3.3 Training the readouts of the circuit

We instantiated a single circuit and simulated the same ar&tior each stimulus in all the experiments
described in this article. In the speech recognition taBksetwork is simulated for the same amount of
time for all stimuli (500ms for Figure 8 and 750ms for Figune We low-pass filtered the response spike
trains with an exponential filter in order to model the cdmition of these spikes to the membrane potential
of a hypothetical readout neuron. The time constant of tkrential filter is chosen to be 30ms. We
refer to this low-pass filtered high-dimensional analogéras the trajectory of network states in response
to a particular stimulus.

To generate a training input for SFA we sampled these trajiss with a sampling time of 1ms and
concatenated a random sequence of such trajectories iffid0drajectories for Figure 8; 1000 trajectories
for Figure 9; 200 trajectories for Figure 7). For the embelisigike pattern task one trajectory is defined by
the response during one noise/pattern pair. Note that tihhe séimulus yields different trajectories due to
the intrinsic OU-noise of the network that is used to modeldhckground synaptic activity. We proceeded
in a similar way as we generated the time series from a cleas8ohn problem: After each drawing of a
trajectory we switched the class from which the next trajgcis drawn according to a Markov model
such as that in Figure 2. The probabiliiyfor switching the class is chosen to be 0.2 for all experirment
except for the experiment in Figure 7 we had to choose a loakerevofp = 0.01. We ensured that in the
resulting training sequence the number of trajectories edanced across different classes by requiring
that the standard deviation of the numbers of trajectodesdch class was at maBf20. Before applying
SFA or FLD, we projected the trajectories onto the first 100g@pal components in order to prevent the
covariance matrices from becoming singular, which woulttléo numerical issues in the corresponding
eigenvalue problems. For the SVM classification of the netvgtates in Figure 8A we used a linear kernel
with C' = 10. The training set for both FLD and SVM consisted of the netngiates sampled every 1ms
of all trajectories considered, but only states during stim presentation are taken into account. The same
applies to the SVM classification of the slow features for ¢hraluation of the SFA performance. This
performance is evaluated using 10-fold stratified crosslatibn, where the folds are sampled according
to the class size.

B.4 Software

We performed all simulations using Python and NumPy. We tisedmplementations of SFA and FLD
contained in the MDP toolkit (Zito et al., 2008). The Moduiaolkit for Data Processing (MDP) is a data
processing framework written in Python. The circuit simigdas were carried out with the PCSIM software
package (http://www.Ism.tugraz.at/pcsim). PCSIM is aapar simulator for biologically realistic neural

networks with a fast C++ simulation core and a Python int&faFor Support Vector Machines (SVM)
we used the libSVM toolbox contained in the PyML packagep(ftyml.sourceforge.net/). Figures were
created using Python/Matplotlib and Matlab.
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