Nano-Extrusion (NANEX): Manufacturing of Solid-Nanoparticle Formulations **Directly from the Liquid Phase via Hot-Melt Extrusion**

<u>R. BAUMGARTNER¹, J. KHINAST^{1,2}, E. ROBLEGG³</u>

¹Research Center Pharmaceutical Engineering, Graz, Austria ²Institute for Process and Particle Engineering, Graz, University of Technology, Austria ³Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University Graz, Austria

Introduction

Given the increasing number of active pharmaceutical ingredients (APIs) that have poor solubility and thus poor oral bioavailability, pharmaceutical scientists are constantly seeking innovative formulation approaches in order to achieve satisfiable dissolution properties. The emerging field of nanoscience, in particular the application of nanosuspensions, offers novel possibilities. However, nanosuspensions, i.e., colloidal stabilized nanosuspended drugs in aqueous medium, suffer from stability problems. Since they are typically delivered parenterally, patient compliance also must be considered. Thus, in order to develop a preferred solid dosage form for oral administration, the nanosuspension must be transformed into a solid product. However, the manufacturing of solid-nanoparticle formulations requires several time-consuming and challenging steps [1]. Therefore, there is an enormous need for new one-step process technologies that transfer a nano-suspension into a solid dosage form while avoiding any agglomeration. In the present study, a one-step nano-extrusion (NANEX) process was developed where the nanosuspension is directly fed to a hot-melt extruder. The goal was to obtain extrudates that contain homogenously distributed and deaggregated embedded nano-crystals in a polymer matrix.

Materials and Methods

EVALUATION OF APPROPRIATE pH-VALUE OF

	duration	Ø-		Ø-zeta
рΗ	of storage	hydrodynamic	Ø-PdI ± SD	potential ± SD
	[d]	size ± SD [nm]		[mV]
1	1	2236.3 ± 519.5	0.924 ± 0.127	-5.8 ± 1.9
	14	1853.7 ± 410.2	0.834 ± 0.148	-27.7 ± 0.5
3	1	572.1 ± 28.0	0.439 ± 0.070	28.9 ± 3.9
	14	267.7 ± 17.2	0.282 ± 0.033	-44.5 ± 0.9
4	1	519.3 ± 77.8	0.429 ± 0.034	-35.1 ± 1.3
	14	197.7 ± 10.6	0.248 ± 0.022	-44.5 ± 0.5
5*	1	557.5 ± 52,2	0.443 ± 0.075	-44.2 ± 0.8
	14	156.6 ± 7.1	0.239 ± 0.013	-53.9 ± 0.4

embedded in Soluplus[®] in deaggregated form

of a TiO₂ nanoparticle (340

INVESTIGATION OF NANO-EXTRUDATES

problems associated with stabilization of nanosuspensions, parenteral delivery and the conversion of nanoparticles into a (dry) solid dosage form.

References

[1] Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364:64–75.

K1 Competence Center - Initiated by the Federal Ministry of Economy, Family and Youth (BMWFJ) and the Federal Ministry of Transport, Innovation and Technology (BMVIT). Funded by FFG, Land Steiermark and Steirische Wirtschaftsförderung (SFG).

