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The increase of induced gamma-band responses (iGBRs; oscillations .30 Hz) elicited by familiar (meaningful) objects is well
established in electroencephalogram (EEG) research. This frequency-specific change at distinct locations is thought to indicate
the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically
power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-
scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise
correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of
visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the
directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of
oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar,
objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon
an established Granger-Causality coupling-measure (partial-directed coherence; PDC) using autoregressive modeling. To
enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using
wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs
during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-
parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each
possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar object
processing. In contrast, unfamiliar objects entailed a sparse number of only unidirectional connections converging to parietal
areas. Considering the directionality of brain interactions, the current results might indicate that successful activation of object
representations is realized through reciprocal (feed-forward and feed-backward) information-transfer of oscillatory
connections between distant, functionally specific brain areas.
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INTRODUCTION
The involvement of gamma oscillations in the activation of cortical

object representation is one essential finding of human electroen-

cephalogram (EEG) and magnetoencephalogram (MEG) research.

Regarding visual object recognition several studies reported

a modulation of induced gamma-band responses (iGBR) by

stimulus familiarity (e.g. [1–3]). Such iGBRs have been defined as

electrical brain activity characterized by oscillatory bursts above

30 Hz and a jitter in latency from one trial to the next [4,5]. The

presentation of familiar objects leads to a stronger iGBR increase

as compared to unfamiliar controls. This enhancement appears

around 250 ms after stimulus-onset, depending on the time-point

of object identification [6]. Based on reports from intracranial

brain signals as well as from macroscopic scalp recordings, the

varying level of gamma-power seems indicative of the formation of

local neuronal assemblies implementing feature integration in the

course of object identification [7–9].

In principle, a signal recorded by a single EEG-electrode

represent the spatial summation of local-field-potentials (LFPs) of

a large neuronal population, while local synchronization of their

activities leads to frequency-specific power increase at this

electrode [10,11]. Thus, power changes alone cannot mirror the

formation of large-scale networks that rest on oscillatory interac-

tions between spatially distant cortical populations [12,13]. This

requires coupling measures such as phase-locking analysis (PLA),

which was introduced on the basis of wavelet decompositions to

measure long-range synchronization [14,15]. By applying PLA to

iGBRs, a high number of phase-lockings between scalp electrodes

was revealed for familiar relative to unfamiliar objects [16–18].

Since phase-locking between scalp electrodes can be confounded

by volume conduction artifacts, it is essential to know that

intracranial EEG recordings from human cortex have demon-
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strated the physiological plausibility of phase-synchrony. In

particular, unequivocal physiological evidence for the formation

of large-scale interactions between distributed brain structures by

means of long-range gamma synchrony has been obtained from

intracranial recordings in humans (for a review see [19]).

In order to go beyond coupling analysis between scalp recording

sites and to assess oscillatory interactions between brain areas

directly, PLA was successfully applied in source space [20]. In

brief, iGBR generators can be reconstructed by variable-

resolution-electromagnetic-tomography, VARETA [21,22]. Using

this approach, iGBRs related to cortical object representation were

localized to temporal, frontal and parietal brain areas [20], each

reported to play a specific functional role in the cortical network

mediating visual object recognition [23–25].

Here, we surpassed PLA by an advanced measure, partial-

directed-coherence (PDC) based on multivariate-autoregressive

modeling. In contrast to PLA, the multivariate PDC approach

measures how several positions are ‘effectively’ connected (i.e.

exclusively revealing direct connections by correcting for indirect

influences), rather than merely describing pair-wise synchronicity.

In particular, PDC captures the direction of information-flow by

employing the concept of Granger-Causality in the frequency

domain [26,27]. The multivariate analysis of PDC evaluates each

possible direction of brain interaction and reveals influences

received from or transmitted by each brain area, and, conse-

quently, even feedback influences can be uncovered. Since

feedback seems to play a central role in neural communication,

in particular in heavily interconnected brain structures such as the

cortex, the potential benefit of applying directed coupling analysis

becomes evident.

The goal of the present study is first to investigate, whether

autoregressive modeling and wavelet analysis are equally suitable

in detecting iGBRs elicited by visually presented objects. Secondly,

we aimed to evaluate the connectivity pattern between the cortical

brain sources underlying these induced gamma oscillations by

calculating both coupling-measures, PLA and PDC. In particular,

we sought to go beyond mere phase-locking changes by identifying

the dynamic brain network of directed information-flow in

activated cortical object representations.

RESULTS
Ten subjects were presented with pictures of familiar and

unfamiliar objects (see Figure 1 for some sample pictures) and

asked to categorize them, while EEG signals were recorded from

128 channels and stored for offline analysis. Behavioral data

revealed about 97 percent of correct answers, i.e. participants

correctly categorizing a visually presented pictorial image either as

familiar (meaningful) or unfamiliar (meaningless). The low

percentage of errors underlines the usability of the current

paradigm in eliciting brain processes related to object recognition.

Autoregressive modeling: spectral power changes –

electrode space
The spectral changes based on the applied autoregressive model

(AR) within the iGBR range are represented in Figure 2A and 2B.

The baseline-corrected time-frequency (TF) plots averaged across

10 subjects and 22 electrodes (clustered to form a parieto-occipital

region of interest: see Figure 3) are depicted separately for each

condition. Baseline-corrected spectral power induced by familiar

object presentations showed a clear peak in a time window from

150 to 400 ms after stimulus onset in a frequency range between

40 and 90 Hz. Although the increase was present even beyond

90 Hz, we restricted our analysis to the range mentioned above in

order to compare the results with the wavelet approach. Statistical

analysis revealed a higher iGBR increase for familiar as opposed to

unfamiliar objects (t(9) = 12.4; p,0.0001). A difference topogra-

phy map of this effect (familiar minus unfamiliar) is depicted in

Figure 3A. A broad posterior distribution with a maximum at

parietal and occipital electrode sites can be appreciated.

Wavelet analysis: spectral power changes –

electrode space
Figure 2C and 2D depict the wavelet-based baseline-corrected TF-

plots for each experimental condition averaged across all subjects

and all electrodes of a central-posterior regional mean. IGBR

increases elicited by familiar objects revealed a clear peak in a time

window from 150 to 400 ms after stimulus onset in a frequency

range between 40 and 90 Hz (Figure 2C). This increase is

significantly higher for familiar as opposed to unfamiliar objects

(t(9) = 6.2; p,0.001). A topographical difference distribution of the

iGBR peak (familiar minus unfamiliar) is depicted in Figure 3B.

The effect shows a broad posterior scalp distribution with

a maximum at parietal and occipital electrode sites. Importantly,

convergent topographies of the familiarity effect are obtained

through each analysis technique, wavelet decomposition and

autoregressive modeling. Given the maximum at parieto-occipital

electrodes and the lack of a frontal effect in iGBRs we displayed

the difference topography maps from a posterior point of view.

Note that the wavelet-based TF representations show a more

refined time course of the iGBR as opposed to AR spectral results,

because AR modeling presupposes a sufficiently long data window

for analysis (see Materials and Methods, Section A for details).

Furthermore, the iGBR peak in the AR-based TF-plot (72 Hz)

reveals a displacement relative to the one found by wavelet

analyses (around 58 Hz). However, this does not indicate

differential peak frequencies, because the power spectral density

derived from the AR parameters is characterized by a center

frequency (i.e., 72 Hz) and its edge frequencies (+/221 Hz). The

peak as obtained by wavelet analysis lies within this range given by

the center frequency and these limits. Therefore, both measures

have revealed comparable findings.

Information transfer: partial-directed coherence

(PDC) in source space
Figure 4A and 4B depict the results of PDC analysis between four

cortical areas (Regions of Interest; ROIs) for familiar (A) and

unfamiliar (B) objects in a time window from 150 to 400 ms after

stimulus onset. The ROIs were defined based on the statistical-

parametric-maps (SPMs) of the condition effect of the iGBR peak

(see Materials and Methods). The centers of gravity for these four

brain locations are listed in Table 1 and are depicted as spots of

significant activations at the respective anatomical location. The

pattern of significant PDC values calculated between the in-

Figure 1. Excerpt of stimulus sequence. Familiar (F) and unfamiliar (U)
color pictures were presented in randomized order.
doi:10.1371/journal.pone.0000684.g001
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vestigated brain sites revealed quantitative and anatomical

differences in information transfer during the presentation of

familiar and unfamiliar objects. Significant PDC values between

iGBR generators are indicated by arrows that represent the

direction of information transfer (p,0.001).

The number of significant PDC values during familiar object

presentations surpasses that for the meaningless condition (ten versus

three). Furthermore, during processing of familiar objects the

network of information transfer is bidirectional. Each area trans-

mitting information towards a given brain site receives information

input from it as well. In contrast, unfamiliar objects elicit a sparser

number of significant PDC couplings, all which are unidirectional

and converge towards parietal brain areas (Figure 4B). The actual

course of PDC values from all significant brain interactions is

represented in Figure 5 for each condition separately.

In order to investigate the consistency of the reported couplings

and to clarify to what extent the reported connections depend on

a certain statistical threshold applied, we have repeated the

statistical analysis with several different thresholds.

The results summarized in Table 2 indicate that identical

coupling patterns (in terms of number and coupling pairs involved)

were obtained between p,0.001 and p,0.02, suggesting stability

Figure 3. Grand mean spherical-spline interpolated topographies of the condition effect (familiar minus unfamiliar) as revealed by AR
(autoregressive) modeling (A) and wavelet analyses (B). Both maps are based on the induced gamma-band peak from 150 to 400 ms after stimulus
onset. Electrodes as used for TF plots and statistical analyses are hemmed by black lines.
doi:10.1371/journal.pone.0000684.g003

Figure 2. Induced spectral changes within the gamma-band range represented by time-frequency (TF) plots for each condition (familiar and
unfamiliar). TF plots A and B are based on autoregressive modeling (AR), C and D on Morlet wavelet analysis. The two vertical black lines indicate the
time interval of the induced gamma-band peak (150–400 ms post-stimulus onset) as used for further analyses. All TF plots were baseline corrected,
averaged across subjects and twenty-two parieto-occipital electrodes (cf. Figure 3).
doi:10.1371/journal.pone.0000684.g002
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over a considerable range of statistical thresholds. In fact, those

coupling patterns that appeared at our originally chosen threshold

of significance (i.e. p,0.001) remained unchanged up to a p-level

of 0.02. Only with a threshold of p,0.05 additional connections

become significant in both conditions. However, in order to take

into account the considerable number of comparisons tested (with

4 positions giving 463 = 12 possible combinations) and to avoid

spurious positives, it seems necessary to apply a lowered threshold

(in our case: p,0.001) for statistical analysis of coupling results (for

a similar approach see [28–30]). According to the Bonferroni

correction method the fact of multiple comparisons needs to be

corrected by a lowered p-value, i.e. p,0.004 (0.05/12), a threshold

which revealed identical coupling patterns as those displayed in

Figure 4. Therefore, the pattern of connections represented here

stood up to rigorous statistical correction.

Long-range synchronization: phase-locking analysis

(PLA) in source space
Figure 4C and 4D depict the results of phase-locking analysis (PLA)

between all four ROIs (see Table 1) for familiar and unfamiliar

objects in a time window from 150 to 400 ms after stimulus onset.

For familiar object presentations significant phase-locking (i.e.

p,0.001) was established between most of all possible ROI-

combinations (i.e. four out of six possible couplings). In contrast,

unfamiliar objects were associated with far less significant phase-

Figure 4. Tomographies and coupling patterns of the induced gamma-band peak elicited by familiar and unfamiliar stimuli (150–400 ms after
stimulus onset). In the SPMs significant differences (familiar versus unfamiliar) are indicated in red. The following Regions of Interest (ROIs; cf. Table 1)
were defined: ITG (inferior-temporal gyrus, left), SPL (superior-parietal lobe, bilateral), MFG (middle frontal gyrus, right). The arrows in A and B
represent the direction of information transfer between the ROIs and were only drawn if the PDC values were significant (p,0.001). The lines in C and
D display significant increases of phase-locking values (p,0.001) calculated between all ROIs.
doi:10.1371/journal.pone.0000684.g004

Table 1. MNI (Montreal Neurological Institute) coordinates
and anatomical descriptions of the centers of gravity of all
Regions of Interest (ROIs) associated with the condition effect
(familiar versus unfamiliar) on the induced gamma-band
response (150–400 ms after stimulus onset).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Region of
Interest Anatomical description

MNI coordinates of the
center of gravity

x y Z

ROI 1 inferior temporal gyrus – left (ITG) 257 248 217

ROI 2 superior parietal lobe – left (SPL) 221 269 34

ROI 3 superior parietal lobe – right (SPL) 21 269 34

ROI 4 middle frontal gyrus – right (MFG) 50 17 35

Note that the inverse solutions of the effect at both parietal areas are distinctly
separated from another. The maxima are located in the very center of each ROI
(left-SPL and right-SPL, respectively). Thus, the possibility of a single centro-
parietal source is excluded.
doi:10.1371/journal.pone.0000684.t001

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

Figure 5. Mean partial directed coherence (PDC) values computed
over all significant ROI pairs for each condition (solid black line:
familiar; solid magenta line: unfamiliar). The dashed lines represent
the corresponding standard errors of PDC values.
doi:10.1371/journal.pone.0000684.g005
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locking values, leaving just one pair significant. The coupling pattern

of PLA proved to be consistent over a range of different thresholds of

significance, as demonstrated by the results listed in Table 2.

For both experimental conditions we have evaluated the phase

angles at which synchronization occurred and we found that in the

familiar case they were centered on a mean of 0.2 rads (std error:

0.1 rads). In the unfamiliar case, the distribution was broader

(mean = 0.01; std error 0.2 rads). Since artifactual influence of

volume conduction causes only phase-locking with zero phase-lag,

our patterns of phase-locking for familiar object presentation

cannot solely be explained by volume conduction.

DISCUSSION
Natural objects are composed of numerous lower and higher-level

features, which are cortically represented in dispersed brain areas.

Synchronized oscillatory neuronal activity in the gamma frequency

range (.30 Hz) is regarded as a plausible mechanism to integrate

these features into a coherent percept (for reviews, see [2,3,31]).

Previous studies have suggested that integration of stimulus features

activates a respective memory content (for a detailed discussion see

e.g. [9,32]). The functional link between sensory processes and

memory has been established by empirical work (for some reviews

see: [33–35]) and a detailed account on how sensory feature

processing my give rise to the emergence of high-level representation

(semantic features) has been proposed recently [36].

Whereas previous publications successfully demonstrated syn-

chronicity between source-reconstructed generators of induced

gamma-band responses, iGBRs [32], the present study was designed

to go one crucial step further. In particular, we intended to unravel

the causal connectivity between the brain sources of iGBRs by using

the measure of partial-directed coherence (PDC), which is based on

multivariate-autoregressive modeling. Additionally, we intended to

contrast these findings with ‘conventional’ wavelet-based phase-

locking results and to validate the functional plausibility of our results

by relating the network of directional brain interactions with

experimental findings from other methodologies.

To induce robust gamma-band oscillations, we applied

a standard object recognition paradigm in which familiar and

unfamiliar visual stimuli are presented [1,16,20]. At the scalp level,

both techniques (autoregressive modeling and wavelet analysis)

replicated previously reported increases of iGBRs during the

presentation of familiar relative to unfamiliar objects [5,16,32].

Both approaches revealed comparable results in terms of latency

(150–400 ms), topography and frequency of the iGBR peak

(wavelet-based: 58 Hz and AR-based: 72 Hz; see Methods for

details). The time range of the iGBRs corresponds well with

previous studies making use of an object recognition paradigm,

reporting 150 to 400 ms and 200–400 ms (post-stimulus onset),

respectively [1,20]. On the whole, AR modeling is well suited to

detect induced and transient high-frequency oscillations in the

human EEG.

Concerning the presented tomographical analyses, our procedure

has been suggested by and is in agreement with several EEG/MEG

source localization studies that have investigated the neuronal

generators underlying frequency-specific power changes (e.g.

[20,37–39]). In particular, our results are in line with previously

reported iGBR generators [20,40] localized in four anatomically

dispersed cortical areas, between which a dense pattern of

synchronicity was established in response to familiar objects analyzed

by means of conventional phase-locking analysis (PLA; [14]). In

contrast, hardly any significant phase synchronization was estab-

lished during the presentation of unfamiliar objects.

The pattern of causal connectivity (PDC) related to the

processing of familiar objects resembles the coupling results based

on phase-synchrony (PLA) in terms of its overall connectivity.

Equally important, the fewer number of significant couplings for

unfamiliar objects (in relation to familiar ones) are reflected by

both measures. Thus, in principle, both techniques revealed

a highly convergent pattern of brain connectivity during object

recognition. As the dependence of coupling results on the applied

statistical threshold is concerned, the numbers of significant

connections are listed in Table 1 for a range of several thresholds.

The pattern of connectivity displayed in Figure 4 for both

measures, PDC and PLA, have proofed to stay identical in the face

of a considerable range of statistical thresholds applied (between

p,0.001 to p,0.02).

By comparing PDC and PLA results in a qualitative sense, the

PDC connectivity pattern for unfamiliar stimuli shows to differ

from the one obtained by PLA. This fact underlines that PDC

does not merely reflect instances of phase-synchrony but rather

represents a methodologically distinct measure that quantifies the

temporal dependencies between brain signals and, therefore,

assesses influences received from or transmitted by each brain

area. That is, differences between coupling patterns obtained by

PDC and PLA are rooted in the fact that different aspects of the

underlying signals are reflected in each measure. While PLA is

a symmetric measure of (phase) relations inside a pair of signals,

the multivariate measure of PDC was developed to reveal the

temporal precedence, i.e. the causal hierarchy between activities.

As an important consequence, whenever feedback between signals

exists, simple correlation measures may not capture such de-

pendencies, while PDC was introduced to overcome this limitation

and specifically should reflect temporal feedback relations [26,41].

Furthermore, PLA is calculated for each pair separately (bivariate

analysis) and does not differentiate between direct and indirect

(phase) couplings, so that both types of relations influence the

actual PLA value. In contrast, the multivariate approach of PDC is

suited to characterize solely direct dependencies of two signals

under study. Expressed in qualitative terms, this is possible since

any signal providing a common influence to the interaction under

scrutiny (originating from other signals within the multivariate

time-series) are not taken into account, i.e. common sources are

partitioned or separated, so that they do not enter the

determination of PDC values [42,43]. Therefore, PDC values

should reflect direct interactions in particular, a fact that is also

referred to as ‘effective connectivity’.

The directionality of these interactions as extracted by PDC and

their possible significance will be addressed after we have

highlighted the possible functional role of the brain areas

Table 2. Number of significant PDC and PLA couplings using
different statistical thresholds.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Statistical
Threshold Number of significant couplings

PDC (familiar
objects)

PDC
(unfamiliar
objects)

PLA (familiar
objects)

PLA (unfamiliar
objects)

p,0.001 10 3 4 1

p,0.01 10 3 4 1

p,0.02 10 3 4 1

p,0.05 11 8 4 3

The number of connections found to be significant at a given level of statistical
threshold applied is listed separately for each coupling measure and each
experimental condition.
doi:10.1371/journal.pone.0000684.t002..
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identified. In this context we will also discuss empirical evidence

from other studies supporting the functional plausibility of the

limited PDC pattern elicited by unfamiliar objects.

The iGBR generators associated with object representation

were identified at left inferior temporal, right prefrontal and

bilaterally at superior parietal brain areas. Supporting evidence

from lesion studies, intracortical recordings and functional

neuroanatomy suggest the involvement of these areas in visual

object processing. Neuronal populations within the inferior

temporal cortex, a brain structure known to be part of the ventral

visual stream, has been found to be tuned to relatively complex

relations among elementary visual features [25,44,45]. Frontal

activation has been reported in several studies to represent top-

down facilitation during object recognition [23,46–48]. Superior

parietal cortex has been repeatedly linked to feature binding, in

the sense that lower-level object features have to be spatially

integrated to form a visual object [24,49,50]. These reports are in

line with the general idea proposing that object recognition is

a cooperative process resulting from a interlinked set of brain areas

(for a review, see [51]). Such cooperative processes forming

functional networks are particularly suited to be investigated by

coupling measures such as phase-locking analysis (PLA) or partial-

directed coherence (PDC). The present PDC pattern in response

to familiar pictures might reflect a more intense network of

interactions between cortical regions that is initiated by the

integration of functionally specialized areas associated with object

representation [15,18,20]. Importantly, due to the directional

property of the PDC measure, this network of information transfer

is found to be exclusively realized by bidirectional connections. In

fact, this result is to be expected on theoretical and functional

grounds, since the temporal coordination of input-triggered

responses and their integration into functionally coherent

assemblies are presumably based on dynamic, distributed

grouping through iterative reentry [13,52–54].

Conversely, the small number of significant information flow

during meaningless object processing was all one-sided, possibly

indicating unidirectional communication in the sense that one

brain side constitutes the oscillatory drive of the other [13,52,55].

The restricted number of brain interactions might be due to the

fact that no representation can be activated in areas relevant for

structural integration of object features. Since unfamiliar objects

contain lower-level features similar to the ones in our familiar

objects (such as low spatial frequencies), but lack meaningful

structural information, the sparse connections of information

transfer converging at parietal areas might reflect the processing of

these isolated object features. Specifically, the frontally originating

information transfer might be due to top-down influence that is

assumed to be initiated by low-spatial frequencies also contained in

unfamiliar stimuli [23,47]. The activation of the inferior temporal

cortex, providing input towards parietal cortex, could be expected

in the face of the reported preferential responses of this brain

structure to relatively complex relations among elementary visual

features equally provided by unfamiliar objects [25,44]. The

functional plausibility of our directional coupling results during

meaningless presentation (with parietal areas being the converging

site) is further supported by a recent study on face perception [56].

The authors demonstrated a parietal increase of iGBRs in

response to correctly configured components of a human face as

compared to stimuli in which the different features of a face were

presented at atypical locations lacking a coherent representation

and failing to induce a respective integration process.

We have to point out that there is still another, alternative

interpretation that may account for the sparse number of

significant connections during unfamiliar object processing.

Instead of concluding a reduced level of brain interactions from

a small number of couplings, it is equally possible that a local

reduction in gamma activity (i.e. a reduction of short-range

synchronization) gives rise to sparse number of couplings without

changing the underlying interactions between brain areas. That is,

a reduction in PDC and PLA couplings in the unfamiliar condition

might reflect merely a reduction in localized gamma activity.

Essentially, this is due to the fact that all types of coupling

measures (including PDC and PLA) are invariably sensitive to

changes of signal-to-noise ratio (SNR). For this reason, at present

we can not rule out this alternative interpretation for the coupling

pattern of the unfamiliar condition, neither theoretically nor

experimentally. To discard this alternative interpretation further

methodological developments have to address this issue in depth.

Another, possibly straight forward solution is to compare two

experimental conditions, each eliciting a similar level of frequency

specific local neural responses, by contrasting the directionality of

communication between both conditions directly.

Our current work was aimed to go beyond mere phase-locking

changes by using the advantage of the Granger-causality-based

multivariate-autoregressive models (MVAR) of PDC providing

a frequency-specific measure of directional interactions [26,57].

Several other methods have been proposed to obtain electrophys-

iological patterns of brain connectivity on the basis of estimated

cortical activity (for reviews, see [39,58]). Noteworthy, another

MVAR coupling measure has been developed, namely directed-

transfer function (DTF), which is analytically highly related with

PDC [27,59]. As PDC, also DTF complies with the necessity of

using a multivariate approach as opposed to pair-wise calculation

in assessing the information flow between physiological time series

[59,60]. Over the recent years, PDC and DTF have received

growing attention in electrophysiological research and have been

studied under several simulation conditions (e.g. [57,59,61]), and

also have been investigated in source space (e.g. [62–64]).

However, the localization of sources in these studies was restricted

to those Brodmann areas that were pre-selected on anatomical

grounds together with a-priori assumptions regarding the

functional role a given cortical brain area might play. In contrast,

our source reconstruction was solely guided by localizing the

oscillatory effect in the gamma frequency band, i.e. the induced

gamma power changes modulated by the familiarity of the stimuli.

This kind of source localization was crucial for our investigation,

since we sought to identify the brain areas giving rise to iGBRs, i.e.

that underlie the process of visual object representation, in order to

characterize the functional network established among those areas.

A challenging future perspective is certainly to investigate more

complex cognitive processes such as e.g. working memory or

constituting parts of explicit and implicit memory networks and

the distinct directionality of their interactions. These findings

could be strengthened by data from intracranial recordings (e.g.

[65–67]).

Conclusion
The present study is the first to identify the directionality of

oscillatory brain interactions in source space during human object

recognition and demonstrate that familiar, but not unfamiliar,

objects engage widespread reciprocal information flow. The

multivariate PDC coupling approach brings a qualitative im-

provement over traditional phase-locking analysis by delivering

the directionality of brain interactions. The distinct reciprocity of

the PDC coupling pattern in response to familiar visual objects

provide experimental evidence for the idea that functional brain

networks, successfully implementing object feature integration, are

realized by extensively reciprocal (feed-forward and feed-back-
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ward) oscillatory interactions between specific brain areas [13,52–

54]. Unfamiliar stimuli might fail to elicit such an integration

mechanism, so that the solely unidirectional PDC couplings

possibly could reflect the restricted processing of isolated object

features.

MATERIALS AND METHODS

Participants
Ten healthy, right-handed university students (7 female; aged 20

to 27 years, mean: 23.6, SD: 2.2) were paid for participation (6

EURO per hour). The experimental protocol conformed to local

ethics guidelines (ethics board of the University of Leipzig) and the

Declaration of Helsinki. Participants gave informed consent prior

to the start of the experiment. All participants had normal or

corrected to normal vision and had no recorded history of

neurological or psychiatric disorders.

Stimuli and procedure
Experimental stimuli were either color pictures, selected from

a standard picture library (Hemera Technologies, 1997), repre-

senting real-life objects such as apple, cup or elephant (i.e. familiar

or meaningful objects, n = 200) or color pictures of unfamiliar

objects (i.e. meaningless objects, n = 200) – see Figure 1 for some

examples. The pictures of unrecognizable objects were created by

the authors through distorting meaningful images from the library

such that they physically matched the meaningful pictures in every

possible way (e.g. size, complexity, part-structure) except for

familiarity. A detailed description of the distortion procedure can

be found elsewhere [1].

Two experimental lists were created from the stimulus pool for

each subject by randomly choosing 100 familiar and 100

unfamiliar pictures. A different picture was presented in every

trial in order to avoid previously reported repetition suppression

effects of the iGBRs [68,69]. All stimuli (approx. 6 by 6 degrees)

appeared in randomized order and were presented centrally on

a 190 CRT-screen (refresh rate: 70 Hz) placed 1.5 meters in front

of the subjects.

The temporal sequence of events within each of the 200

experimental trials was as follows: Preceding every item, a fixation

cross (0.3 by 0.3 degrees) appeared on the screen for a randomized

interval between 500 to 700 ms. The following presentation of

each picture lasted for 700 ms and was replaced by the

appearance of a fixation cross lasting for 800 ms. Responses had

to be delivered at the end of a trial, which was indicated by the

presentation of a query. In brief, the order of events within one

trial was as follows: fixation – picture – fixation – query. The

subject was required to respond whether the presented picture was

a familiar or an unfamiliar entity by pressing a button with the

respective index finger. The response-button-to-task allocation was

counterbalanced across subjects. The subjects were asked to avoid

movements and eye blinking during the presentation of the

fixation cross and the visual objects. To allow for a short break the

experiment was divided into two blocks of 100 trials each.

Electrophysiological recordings
The experimental data have been gathered in an independent

EEG study. However, it needs to be stated that this study used the

same paradigm and the identical stimulus-set as reported

previously [1]. The EEG was recorded from 128 Ag-AgCl

electrodes positioned on the scalp with a BioSemi Active-Two

amplifier system in an electrically shielded and sound attenuated

room. Additionally, horizontal and vertical electrooculogram

(EOG) were recorded to facilitate subsequent artifact detection

resulting from eye-movements and blinks. EEG and EOG were

sampled at 512 Hz. The EEG signal was high pass filtered (5th

order sinc response with a 23 dB point at 128 Hz) and stored for

offline analysis. Two additional electrodes near channel CPz

(CMS-Common Mode Sense and DRL-Driven Right Leg; cf.

http://www.biosemi.com/faq/cms&drl.htm) were used as refer-

ence and ground, respectively. For further analysis the average

reference was used. An automatized artifact correction was applied

on EEG epochs starting 500 ms prior and 1500 ms following

picture onset by means of ‘‘statistical correction of artifacts in

dense array studies’’ (SCADS; [70]). This procedure is widely

accepted in the field and was applied and described in several

publications (e.g. [71,72]).

Data analysis (A): spectral power changes analyzed

by autoregressive modeling
Changes in iGBRs were analyzed by means of autoregressive

modeling. All following computational steps (for autoregressive

modeling and PDC analysis) are implemented in BioSig (version:

1.95), an open source software library for biomedical signal

processing, which is available on-line under http://biosig.sf.net

[73].

Autoregressive (AR) modeling is an approach to time-series

analysis by which a mathematical model is fitted to a sampled

signal. AR modeling implies the value of the current sample y(t) in

a data sequence of length N, y(1), y(2), …, y(N), to be predicted by

a linearly weighted sum of the p most recent sample values, y(t21),

y(t22), …, y(t2p), with p being the model order. If y(t) denotes the

predicted value at time point t for a single channel, the AR model

for this univariate case is formalized as

y tð Þ~
Xp

k~1

a kð Þ:y t{kð Þzx tð Þ ð1Þ

, whereby each past sample value y(t2k) is multiplied by the k-th

autoregressive parameter a(k), also termed regression coefficient.

To complete the AR model a zero-mean white noise process, the

‘‘innovation process’’ x(t), is added to the linear function [57]. The

term x(t), also often addressed as ‘‘prediction error’’, is equal to the

difference between the prediction derived from the linear

combination of the most recent proceeding values (samples) and

the actual value at time point t. In fact, this innovation process can

not be equated with an error term in its usual sense, since

according to the definition the modeled time series y(t) would be

zero if x(t) is zero. Accordingly, x(t) has to be considered as the

driving force of the model [74–76]. To estimate the AR

parameters we used the Burg algorithm that was shown to be

advantageous over other estimators [77]. In agreement with

previous studies the model order p that defines the AR spectral

resolution was set to 15 in order to guarantee a suitable resolution

of several frequency components (i.e. p/2 = 15/2) in the sub-

sequent analysis [74,78,79]. We opted for this way, after we had

tried to find the optimal model order by the use of the Akaike

Information Criterion, AIC [80] or of the Schwarz’s Bayesian

Criterion, SBC [81]. Our attempt to determine the optimal model

order by locating the minimum of the AIC and SBC as a function

of model order (p investigated between 2–30) revealed no

consistent solution. In fact, AIC and SBC dropped monotonically

with increasing model order, lacking any local minimum in the

investigated interval. Therefore, in correspondence to previous

EEG studies (see above), we selected a model order of 15, which

can be regarded as a tradeoff between sufficient spectral resolution

and overparameterization (for a similar approach see [82]). To
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obtain the spectral characteristics of the underlying signal the AR

model is transformed into the frequency domain, where the

power-spectral density (PSD) function for a given channel is

derived as follows:

PSD fð Þ~ s2:T

1{
Pp

k~1

ak e{i 2p f k T

����
����
2

ð2Þ

Here, the variance of the innovation process is represented by s2

and T denotes the sampling interval (T = 1/f0; f0 = 512 Hz).

Importantly, for the present purposes, each trial was subdivided

into 150 ms time windows overlapping by 50 ms, starting from

2200 to 650 ms relative to stimulus onset, resulting in 77 samples

per window. Subsequently, the information within each time

window in each trial was concatenated resulting in one data

stream to which one AR model was fitted. In other words, one AR

model was fitted to a window of sample length equal to 77 times N

trials that was consecutively moved in time by 25 samples (i.e.,

50 ms). Note that trials within the created data stream were

separated by a sufficient amount of not-a-numbers (NaNs), i.e. p+1

(15+1) number of NaNs preventing spurious correlations between

trials. In total, 18 overlapping time windows of 150 ms length each

were obtained, starting from 200 ms before up to 650 ms after

stimulus onset. This approach reveals a finer resolved time course

as opposed to the modeling of non-overlapping windows.

Furthermore, due to the short analysis window the quasi-

stationarity of the time-series is approximated [27,83].

In order to identify the latency and frequency range of the

iGBR peaks, the AR derived spectral power of the baseline (2200

to 250 ms prior to stimulus onset) was subtracted from the power

values of all following time windows. Subsequently, these baseline-

corrected power values, averaged across twenty-two parieto-

occipital electrode sites and all subjects, were represented in

separate time-frequency (TF) plots for each condition in the 30–

90 Hz frequency range. The electrodes used for the TF-plot were

selected on the basis of a spherical spline interpolated topograph-

ical distribution [84] of the gamma peak averaged across both

conditions (for a similar approach see [1,20]). The respective

electrode sites are indicated in Figure 3A and 3B. For further

analysis, the spectral power in the interval of maximum-induced

gamma amplitudes (150–400 ms after stimulus onset, see Results)

extending over three adjacent time windows was averaged for each

subject. The resulting data from the parieto-occipital regional

mean were analyzed by a paired t-test to determine whether

gamma power differed significantly (p,0.001) between familiar

and unfamiliar object presentations.

Data analysis (B): spectral power changes analyzed

by wavelet analysis
In order to compare the technique described in (A) to

‘conventional’ methods of frequency analyses we used a Morlet

wavelet decompositions with a width of 7 cycles per wavelet. This

approach has been exploited in a great number of EEG studies,

since its introduction by Bertrand and Pantev in 1994 [85] (e.g.

[14,18,32,86]). For wavelet analysis (and subsequent source

analysis) in-house procedures running under MATLAB (The

MathWorks, Inc.) were used. Wavelet analyses result in a time-

varying magnitude of the signal in each frequency band, leading to

a time by frequency (TF) representation of the input. TF

amplitudes are averaged across single trials, allowing one to

analyze non phase-locked components. To exclude phase-locked

values from the analysis, the evoked response (i.e. the ERP) was

subtracted from each trial, similar to previous publications (e.g.

[16,32,87,88]). A detailed description of the Morlet wavelet

approach applied here can be found elsewhere [5,85]. In order

to identify the latency and frequency range of the induced gamma

amplitude peak, mean baseline-corrected spectral amplitudes

(baseline: 2200 to 250 ms prior to stimulus onset) across the

two experimental conditions and the parieto-occipital electrodes

used before (cf. Section A) were represented in a TF plot in the 30–

90 Hz range. For further statistical analysis, the same time window

as before (cf. Section A) covering maximal gamma amplitudes

(150–400 ms after stimulus-onset) and the posterior regional mean

were analyzed by using a paired t-test (familiar versus unfamiliar).

Due to inter-individual differences in the gamma peak frequency,

the wavelet designed for the frequency of the subject’s maximal

amplitude in the gamma range was chosen (mean peak frequency

range in the 150–400 ms interval: 51 Hz; std error612.9 Hz).

Data analysis (C): reconstruction of the generators

of the induced GBRs in source space
Intracranial current density distributions compatible with the

observed scalp voltage topographies were estimated by means of

variable-resolution-electromagnetic-tomography, VARETA

[21,22]. The software for source reconstruction was developed

by some of the authors. This approach is explained in detail in

Gruber et al. (2006) [20]. In brief, single trial VARETA analyses

for a given frequency and time window were calculated in order to

estimate the primary current densities that generate the measured

iGBR peak. The conductor model was based on 3244 grid points

(7.00 mm grid spacing), which were placed in registration with the

recording area (128 electrodes) based on the average probabilistic

MRI atlas (‘average brain’) produced by the Montreal Neurolog-

ical Institute [89].

In order to localize differences in activation between the two

conditions, statistical comparisons were carried out by means of

a dependent ANOVA one-way statistical design (familiar versus

unfamiliar) for the time window as defined in (A) and (B), i.e. 150–

00 ms after stimulus onset. The outcome of the one-way ANOVA

was used to construct corresponding statistical parametric maps

(SPMs). To account for spatial dependencies between voxels

activation threshold correction was calculated by means of

Random Field Theory [90]. All results were depicted as 3D

activation images constructed on the basis of the average Montreal

brain [89]. Finally, regions of interests (ROIs) were defined by

selecting voxels corresponding to cortical areas that showed

significant differences in the gamma-band range. For subsequent

coupling analysis, the voxel with maximal effect within each ROI

was used (see Section D and E).

Data analysis (D): long-range synchronization

(phase-locking analysis) in source space
For each ROI (see Section C) and each trial the inverse solution

was calculated in the time domain. In the following, the results

obtained at each ROI were decomposed by PCA into their

principal components, from which the first principal components

were used for coupling analysis. Subsequently, phase synchrony

analysis was performed, elaborating on a procedure suggested by

several authors [14,18,91]. A detailed description of the whole

procedure can be found elsewhere (e.g. [20,40]). In brief, for each

subject, phase synchrony was computed for the PCA-derived

signal in a distinct frequency f0 of his/her maximal gamma activity

(f063 Hz; see also [18]) extracting the phase values by means of

Morlet wavelet analysis. To examine whether a specific phase-

locking value in the time window of maximal gamma power
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increase is statistical significant, a randomization technique was

used. Within this time window, phase-locking values between all

paired ROIs were calculated and averaged across subjects. In

addition, 2000 PLV averages were analogously computed on

shuffled data. Shuffling was performed by randomizing the order

of trials and, then, calculating phase-locking between events not

recorded at the same time. The average PLV was considered as

statistically significant if it was greater than the maximum of the

2000 shuffled values, therefore indicating a probability value of

p,0.001. To illustrate the results any significant phase-locking was

depicted by a line from ROI i to ROI j.

To conclude with a methodological aspect of source re-

construction, it should be noted that our results regarding PLA

in source space closely resembles the results of a previous

publication [20]. However, in the study by Gruber and co-

workers, PLA was calculated for separate forward solutions based

on each iGBRs source in order to overcome the problem that each

current source density consists of three directions (X, Y and Z).

This would result in 363 possible couplings in source space. Here,

we calculated our coupling measures directly between sources by

using the first principal component of the signal at each of the

three directions. Thus, this approach is capable to overcome the

‘three directions problem’ when using PLA and PDC in source

space.

Data analysis (E): information transfer (partial-

directed coherence) in source space
In order to analyze information transfer between the identified

regions of interest in source space, we computed partial-directed-

coherence (PDC) on the same signals as used in section D. This

coupling measure is based on multivariate-autoregressive (MVAR)

modeling that simultaneously models spatial and temporal

correlations, thus providing a spatio-temporal model of multi-

sited brain signals [26,57,74]. In mathematical terms, the

frequency-specific connectivity revealed by PDC is a realization

of the concept of Granger-causality, according to which an

observed time series x(tn) ‘‘Granger-causes’’ another series y(tn) at

time instant tn, if knowledge of the past values of x(tn) significantly

improves prediction of y(tn) [27,92]. This relationship between

time series is not reciprocal, i.e. x(tn) may cause y(tn) without y(tn)

necessarily causing x(tn). This lack of reciprocity (or symmetry)

allows to assess the direction of information transfer and, thus, to

evaluate bidirectional coupling or feedback relationship.

Specifically, a multivariate autoregressive (MVAR) model was

fitted to the time series revealed by the inverse solution at each

ROI. To that end, the autoregressive model that was defined

above for the univariate case (see Equation 1) has to be extended

for the multivariate case (with 1 to M number of time series/ROIs)

according to:

y1(t)

y2(t)

..

.

yM (t)

2
6666664

3
7777775
~
Xp

k~1

a1,1 kð Þ a1,2 kð Þ . . . a1,M kð Þ

a2,1 kð Þ a2,2(k) . . . a2,M kð Þ

..

. ..
.

. . . ..
.

aM,1 kð Þ aM,2 kð Þ . . . aM,M kð Þ

2
6666664

3
7777775
:

y1(t{k)

y2(t{k)

..

.

yM (t{k)

2
6666664

3
7777775
z

x1(t)

x2(t)

..

.

xM (t)

2
6666664

3
7777775

ð3Þ

This equation can be rewritten in matrix form as

Y
!

(t)~
Xp

k~1

A(k) Y
!

(t{k) z X
!

(t) ð4Þ

The vector Y(t) represents the measured values (samples) for each

of the M time series (M number of ROIs) at time instance t. The

autoregressive parameters of all ROI combinations at time lag k

form the matrices A(k) up to an order p, i.e. A(1), A(2), … , A(p)

each with its M-by-M dimensionality. The off-diagonal elements of

the multivariate AR parameter-matrix are the weighting factors

defining the cross-terms between the ROIs.

Exemplary, the weighting factor a1,M(k) characterizes the

contribution of ROI M to ROI 1 at time lag k. Finally, the vector

X(t) represents the innovation process (cp. Section A) assumed to

be a multivariate zero-mean white noise process. To uncover the

spectral properties of the multivariate time series this model

equation (Eq. 4) is transformed to the frequency domain yielding

Y (f )~A
{1

(f ):X (f ) ð5Þ

, where

A(f )~I{
Xp

k~1

A(k) e{2p i k (f =fs) ð6Þ

, with matrix Ā(f) representing the frequency-transformed AR-

coefficients ā1,1(f), ā1,2(f), … , ā1,M(f) up to āM,M(f), and with fS being

the sampling frequency. The parameter I refers to the identity-

matrix with a dimensionality of M by M.

On the basis of the frequency transformed multivariate

parameters subsumed under Ā(f) the directed information transfer

from ROI j to ROI i is quantified by partial-directed-coherence

(PDC) as follows:

PDCi,j(f )~
Ai,j(f )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i~1

�AA2
i,j(f )

q ~
Ai,j(f )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A
H

:,j (f ) A:,j(f )

q ð7Þ

with Āi,j(f) being the i, j-th element and Ā:,j(f) the j-th column of

the AR matrix Ā(f). The superscript H indicates the Hermetian

operator, i.e. the transposed complex conjugate of matrix

Ā(f). With this definition the frequency-specific causal influence

of the time series from ROI j to ROI i is quantified in relation

to all other information flow originating from ROI j. In

other words, the PDC values obtained are normalized in

respect to all the outflows from the source ROI j and range from

zero to one, with one being the maximal level of informa-

tion flow transmitted (0$|PDCi,j(f)|
2#1). Additionally, the

summed strength of all connections originating from ROI j,

such as PDC1,j(f), PDC2,j(f), … PDCM,j(f), is equal to one:XM

i~1
PDCi,j(f )
�� ��2~1 [26,57].

Identical to the PLA approach (see Section D), the obtained

signals at each ROI entered this analysis in the time window that

covers maximal gamma amplitudes (150–400 ms after stimulus

onset). The data were windowed in 128 samples-long intervals (i.e.

250 ms in length) and concatenated in one data stream per

condition (as described in Section A). Finally, the PDC values were

evaluated in the frequency band of the induced gamma peak (i.e.

40–90 Hz, see Results).

Since the distribution of PDC estimators is analytically not well

established [27,93,94], we used the Jackknife approach for further
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statistical analyses [95,96]. For details of this method we refer to

[74,96]. The threshold for our jackknife procedure was set to

p,0.001. On an anatomical template of the ROI locations, each

arrow pointing from the source ROI i to its target ROI j represents

significant PDC.
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