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ABSTRACT

Leberl, F., 1975. Sequential and simultaneous SLAR block adjustment. Photogrammetria,
31: 39—51.

For Side Looking Airborne Radar (SLAR) mapping projects of extensive flat regions
such as the Amazon basin, mosaicking procedures have been in use. In the particular case
of Colombia’s PRORADAM (Projecto Radargrammetrico del Amazonas), a simple sequential
SLAR block adjustment produced the metric base for mosaicking. The present report
analyzes the relative merits of the sequential versus three methods of simultaneous adjust-
ment of a SLAR block. It is demonstrated that sequential block formation with spline
functions, followed by external interpolative adjustment produces very good results. Simul-
taneous planimetric block adjustment with similarity transformations (AN BLOCK), affine
transformations or transformationswith spline functions cannot easily approach or surpass
these results. These conclusions were obtained on the basis of controlled experiments with
simulated SLAR imagery, implementing parameters of actual SLAR mapping projects.

INTRODUCTION

The paper reports on an attempt to define an optimum method of radar-
grammetric point determination in a flat mapping area. It will show that
sequential block formation followed by external adjustment of the block can
produce accurate results not easily attainable with simultaneous block adjust-
ment with the principles of ANBLOCK? or spline functions.

The problem of radargrammetric point determination with a block of over-
lapping Side Looking Airborne Radar (SLAR) images was proposed for the
first time in the Colombian ‘‘Projecto Radargrammetrico del Amazonas (Pro-
radam)”. In that project severe time constraints dictated an intuitive choice
of computational procedures, which had to be simple. Therefore sequential
block formation and external adjustment were used (Leberl, 1975).
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? Simultaneous planimetric block adjustment using 4-parameter similarity transformations.



The analysis presented in this paper started out as an afterthought to
the actual radargrammetric work for Proradam. It is based on simulated
SLAR imagery. The following methods of computing a SLAR block adju
ment were studied: sequential block formation with and without spline
functions; simultaneous adjustment with 4-parameter transformations
according to the photogrammetric ANBLOCK principle; with 5-parameter
transformations; and with piecewise polynomial transformation.

After an outline of SLAR imagery deformations, these computation
methods will be explained next, along with the simulated block of SLAR
imagery. Then the results of the computations are analyzed. The main
question addressed in the analysis will be whether any gain can be expec
in radargrammetric point determination, when simple sequential methods
of computation are replaced by a more involved simultaneous SLAR bloc
adjustment. For conciseness the sensitivity of the methods to the various
project parameters will not be treated; instead, the performance of differ
computation methods is studied with one set of project parameters.

SIDE LOOKING AIRBORNE RADAR IMAGERY DEFORMATIONS

An ideal strip of SLAR imagery of flat terrain flown along a meridian
represents a transverse cylindrical equidistant projection, with the flight-
line as the reference meridian. If no image deformations occurred, then
radargrammetric point determination would be simply a transformation
of each individual cylindrical projection into the desired map projection.

Unfortunately, however, SLAR images are usually deformed in spite of
inertial navigation, gyroscopic stabilization of the antennae, electronic cor
pensation of detected errors of attitude and position of the sensor, and
well controlled image formation aboard the survey plane and in the optic
correlator.

What are the causes of errors in image geometry? Film transport and
alighment aboard the airplane as well as in the correlator is erroneous:
transport velocity is not perfectly uniform, and the film may ‘“wander”
in a direction transverse to the forward movement. Sensing of attitude ar
position of the sensor is imperfect: here, however, attitude errors do not
propagate into the geometry of a synthetic aperture radar image.The
orientation of the (synthetic) radar beam is perpendicular to the flightlin
Errors of position, however, may propagate fully into the geometry of a
SLAR image: a flightline will not be perfectly parallel to a meridian;
instead errors of inertial navigation will cause a long term periodical
deviation of the flightline from the meridian, and also cause similar long
term variations of aircraft speed (the deviations have a so-called Schuler-
frequency). In addition, flight attitude can vary without being properly
compensated for in the formation of the image. And finally, of course, t
“flat”” mapping area might exhibit some relief.

Which of these error causes are dominant? Experiences with SLAR



mapping projects in the past (Van Roessel and De Godoy, 1974; Leberl
1975) have shown that the Schuler-frequency of inertial navigation produce
image errors of the order of magnitude of several kilometers, or millimeters
at the scale of imagery. This is much more serious than slight relief: a
height difference of 160 m, for example, would produce a maximal
parallax difference of 0.2 mm at scale 1:400,000. This is also the order

of magnitude of other image deformations, as e.g., due to erroneous film
transport or alignment.

In conclusion it is therefore justified to model a SLAR block adjustment
to the specific effect of the Schuler-frequency of inertial navigation.

Figs. 1a, b and c illustrate with the help of a grid, how the error of
inertial navigation can deform a SLAR image. Defining an x, y image
coordinate system as shown in Fig. 1c one can plot image errors Ax and
Ay as functions of x. This is illustrated in Fig. 2.
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Fig. 1. Effect of error of inertial navigation on SLAR image of a grid. X-axis coin-
cides with flight direction. In case ¢, grid lines are not perpendicular, if antenna is
gyroscopically stabilized and radar has real aperture, but would remain perpendicular
with synthetic aperture.
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Fig. 2. Deviations of simulated flight no. 1 from a straight line at constant speed.



SIMULATED SLAR IMAGERY

For the purpose of the analysis, a set of twenty SLAR images with 60¢
sidelap was simulated, showing Ax and Ay deformations of the type
presented in Fig. 2. The length of each strip was chosen to be 600 km.
The particular assumptions for the flight configuration are given in Fig. 3,
and reflect the actual flight planning used in Colombia’s “Proradam’ and
other SLAR projects.

Two sets of SLAR images were simulated: one only showing the Ax,
Ay errors due to inertial navigation; and a second one showing these same
errors and in addition effects of random noise and of variations of the
flight height. Standard deviation of noise was assumed to be + 80 m
(£ 0.2 mm at scale 1:400,000).

These simulated sets of SLAR images neglect a number of secondary
image errors. Consequently, the absolute quantitative results of the analysi
will be somewhat optimistic. But of interest is a relative comparison of
computational procedures. For this purpose the level of refinement of
the simulation is considered sufficient.
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Fig. 3. Flight configuration used in simulation, and in PRORADAM.

PLANIMETRIC SLAR BLOCK ADJUSTMENT METHODS
Sequential methods

Sequential formation of a block with subsequent interpolative adjustmen
(“external block adjustment”) is a simple, fast and inexpensive method of
point determination, requiring only a limited effort of computer pro-
gramming. For these reasons, this method was the one most suitable for
use in ‘“Proradam.”’

Starting from an initial strip of imagery, the adjacent strip is trans-
formed into the system of the previous one using the common tiepoints
in the overlapping area. Since this transformation will generally be over-
determined, discrepancies will be left between the two sets of tiepoints
after transformation. In order to obtain a unique pair of x, y block



coordinates of tiepoints, the arithmetic mean of the two sets of coordi-
nates of each tiepoint is chosen.

Two alternatives for sequential block formation were available: one is
based on similarity transformation of the entire strips into the block
system; the other uses the Ax, Ay residuals left after the similarity trans-
formation to compute a piecewise third-order polynomial of the form:
AX = a0 * a1 (x-x;) + @i (x—%;)% + @5 (x-x;)3 1)

Ay = bio + bix (x—x;) + bip (x—x;)* + byz (x—x;)3
where:
X < X < Xi+1

With the piecewise polynomials, discrepancies between adjacent strips
can be reduced considerably as compared to the similarity transformation.
However, since the polynomials are functions of only x, and independent
of y, they will only be applicable if discrepancies Ax, Ay are indeed
independent of y. Inertial Schuler-frequency does not result in image
errors as a function of y (Fig. 1). But secondary defects of image geometry,
such as due to an erroneous flight height, can produce a Ax, Ay as a
function of y. These defects, however, are an entire order of magnitude
smaller than those due to the Schuler-frequency.

The formation of the block is followed by external adjustment. The
block is transformed into the system of ground control points and an
interpolation and filtering algorithm is applied to correct the radargrammetri
points using the known block deformations in control points. Essentially,
the interpolation algorithm used is linear prediction (Kraus and Mikhail,
1972).

Simultaneous methods

Similarity transformations. Three algorithms were programmed for the
analysis. The well-known ANBLOCK method of photogrammetric plani-
metric block adjustment simultaneously transforms each SLAR strip, or
part thereof, according to:

X =ax + by + ¢

Y=-bx +tay +d

(2)

Consequently, this ANBLOCK method is the simultaneous equivalent of
the above sequential block formation using similarity transformations.

Transformation with differential scale. Scales in x and y are independent
of each other in SLAR. Although they should be identical, there are
numerous causes resulting in scale differences in along-track and across-
track directions. Therefore it seems logical to expand the traditional



ANBLOCK concept and not to use a strict similarity transformation sucl
as eq. (2), but to allow for differential scale, according to:

X = Acosa(x)+Asina(y)+c
Y = —=(A+AN)sina(x)+H(A+AN)cosa(y)+d

Here, A\ is scale, a the rotation, and AX a differential scale. If (x,y) and
(X,Y) coordinate systems are nearly parallel, and « is thus small, express
(3) simplifies to:

’ 3.

X=ax + by +¢

(4
Y=-bx +ay +d+ey
in which the term ey thus allows for a differential scale. A simultaneous
block adjustment with transformation (4) was programmed and is called

AFBLOCK.

Transformation with piecewise polynomials. An algorithm was developed.,
in which the Schuler-frequencies are modeled as piecewise polynomials,
similar to the approach in formula (1). The transformation parameters a
not the coefficients of a polynomial, but rather function values of the
continuous Ax, Ay image coordinate errors. Again, it is assumed that A:
Ay are functions of x only. With reference to Fig. 4, these functions ar
described by function values e; and f;, such that:

7 é“x N
X =ax + by + ¢ (1_ _x_x'_) + e q x_xi\
Xi+1 ™% i+1 X
xX—X; X—X; (5
Y =-by + ax +f; (1"" —l—) * fi+1 :
" Xi+1~Xi Xi+17%Xi
Ay

where:
Xi < x < Xi+1

Formula (3) represents a similarity transformation characterized by co
efficients (a,b) and an added piecewise linear polynomial correction term
for Ax and for Ay.

Originally it was intended to use piecewise third-order polynomials, bt
a suspicion about numerical instability resulted in the decision to incorp
rate piecewise linear polynomials instead.

If the piecewise polynomial corrections consist of only one single piec
then expression (5) reduces to an affine transformation where coefficient
e is responsible for differential scale, and coefficient f for differential
rotation.
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Fig. 4. Definitions for a piecewise polynomial to describe image errors Ax. For errors
Ay, e; is replaced by f;.

A simultaneous block adjustment with transformation (5) was programmed
and called PIEPOL,

Number of unknowns. In the programmed algorithms, the normal-equation
matrix was always reduced to the actual transformation parameters, thus
eliminating the unknown coordinates of tiepoints. A meaningful application
of ANBLOCK or AFBLOCK to SLAR strips requires that these strips be
broken up into pieces which overlap along the flightline. If n indicates

the number of SLAR strips in an adjustment, and s the number of pieces
into which a SLAR strip may be subdivided, then one obtained the follow-
ing number u of unknowns:

ANBLOCK AFBLOCK PIEPOL

u=n-s-4 u=n-s-5 u=(s+tl) - n-2+2-n
and for n = 20, s = 4:

u =320 u =400 u = 240

These numbers indicate that a SLAR strip may be subdivided into more
pieces with piecewise polynomials before reaching the same number of un-
knowns as in programs AFBLOCK or ANBLOCK.

EVALUATION OF COMPUTATION METHODS
Description of experimental results

A summary of the comparison of five methods for radargrammetric
point determination is presented in Table I. The results are obtained from
the simulated set of SLAR image data which were described in the section
“Simulated SLAR imagery” and which do not show measuring errors nor
a variation of flight height. Ten ground contro] points were assumed at
equal distances along the perimeter. As mentioned before, meaningful
application of the ANBLOCK or AFBLOCK programs requires that the
original SLAR strips be broken into overlapping pieces. Table I gives the
maximum number of pieces that could be computed on the UNIVAC 1108



TABLE I

RMS point discrepancies in mm (scale 1:400,000) between transformed and adjusted
tiepoints and between radargrammetric and checkpoints; for explanation of methods,
see the section on: ‘“Planimetric SLAR block adjustment methods’

Sequential Simultaneous

without with ANBLOCK AFBLOCK PIEPOL

splines splines (4 pieces) (4 pieces) (6 pieces)
Tiepoints 2.10 0.16 1.06 1.03 0.34*
Checkpoints 1.90 1.02 1.51 1.59 1.23*

* indicate that control point distribution is modified.

of JPL without going into specific storage compression for the normal
equation matrices.

The major conclusion from Table I must be that with the given data
and limitation in the size of normal equations sequential planimetric SLA
block adjustment is superior to the simultaneous ones.

Two rms errors per adjustment algorithm are listed in Table I: rms
residuals in tiepoints are the discrepancies between adjusted and trans-
formed tiepoints; rms errors in checkpoints are the discrepancies between
adjusted tie and true checkpoints. It is shown that in the studied arrange
ment,sequential block formation with splines followed by linear least
squares interpolation produces a block with very small discrepancies in
tiepoints, smaller than any simultaneous method did produce; it also
leaves the smallest discrepancies in checkpoints.

Table II presents the improvements in the performance of simultaneou
methods obtainable when the strips are treated in a number of separate
pieces. The rms discrepancies in tiepoints as well as in checkpoints are
reduced significantly.

Analysis of distribution of ground control points was excluded as a
separate objective of the study. But it was soon found, that simultaneou:
adjustment with piecewise polynomials (PIEPOL) was very sensitive to th
parameter. The results degenerated rapidly in the case of unfavorable
control distribution. When using more than two polynomial pieces, the
distribution of control had to be modified: the points did not need to b
distributed at equal distances along the perimeter, but one flightline (e.g.
the first one) had to be specifically well controlled. The effect is indicat
in Table II where both control distributions have been computed with th
pieces per strip.

When using a sequential method, the formed block can be compared
with checkpoints prior to and after external adjustment. The results are
listed in Table III. Even without any use of control points, the formed



TABLE II

RMS point discrepancies in mm (scale 1:400,000) as in Table I; simultaneous adjust-
ment methods; SLAR images broken in 1 to 4 pieces with overlap in flight direction

Number of Tiepoints Checkpoints
pieces

ANBLOCK AFBLOCK PIEPOL ANBLOCK AFBLOCK PIEPO

1 2.10 2.09 2.09 1.90 2.63 2.74
2 1.70 1.66 1.71 1.69 1.97 2.01
(1.17) (32.40)
3 1.38 1.37 1.25* 1.48 1.65 2.15%
4 1.06 1.03 0.77* 1.51 1.59 1.33*

* indicates that control distribution is modified; value in brackets is obtained with
original distribution.

TABLE III

RMS point discrepancies in mm (scale 1:400,000), sequential adjustment methods; for
explanation see text

Tiepoints Checkpoints Checkpoints
no interpolation with interpolation
No splines 2.10 1.90 1.10
Splines
weight T+d? 0.16 1.30 1.02
Splines
equal weight 0.42 1.29 0.98

block is comparatively undeformed. This, however, is largely a function of
the initial strip of imagery: if this is undeformed, then the entire block
will be. Deformations could only accumulate from systematic errors not
accounted for in the mathematical model or from random errors (which
were not present in the used set of data). But even in computations with
data that did include random noise, there was no significant double sum-
mation effect. No large ‘“pseudosystematic’® deformations of the block
were found that are so familiar in photogrammetric strips. But since over-
lap between SLAR strips is 60%, the block is less sensitive to a double-
summation of random errors.

When using sequential splines, there is a choice of weight of each tie-
point in the computation of a joint: it is demonstrated that this weight
Is not critical (see rows 2 and 3 of Table III).

The above tables and conclusions are based on a block of SLAR images



with image deformations only of the Schuler frequency type. Another
block with measuring errors (¢ = + 70 to 150 m) was therefore used

to study whether this would alter conclusions. The results appear in Table
IV: the relative merits of SLAR block adjustment methods remain the
same irrespective of the simulated block used in the computation.

Discussion of results

From the experiment, sequential block formation with splines followed
by external adjustment appears to be the superior method. The statistical
validity of this conclusion is of course limited, since it is based on results
from only two simulated blocks. In addition, the particular method of
formulating and programming the simultaneous adjustment methods is just
one out of many alternatives. And finally, limitations of computer memor
or programming resources did not allow exploitation of the full potential
of simultaneous methods. But apart from these considerations, what
explanation of the conclusions can be offered?

In the case of a SLAR block that only shows effects of Schuler period:
errors of inertial navigation, performance of the sequential splines method
is solely a matter of ‘“‘sampling’: a high density of tiepoints produces a
coherent block without cracks between strips; a sufficiently large number
of ground control points along at least one flightline then allows to en-
tirely eliminate block deformations. This indicates that under idealized co:
ditions; the above mentioned sequential method performs perfectly. These
conditions show that the rms errors found in Tabie I for sequential spline
are purely the result of insufficient density of tie and ground control
points. A very good performance of the method must be expected since
there were neither noise nor systematic errors in the imagery other than
the Schuler type.

Actual images do show these errors, so that point determination cannot
be perfect even with very high point densities: in Table IV, measuring
errors and image deformations other than of the Schuler type have an eff
Clearly, however, this effect is rather small and does not change the merii
of the sequential spline method.

Method PIEPOL is a simultaneous least squares version of the sequentia
spline method. Ultimately, PIEPOL should not be inferior, but rather
superior in the case of random noise in the data; and it should be at
least equivalent in the no noise case. But Tables I and IV do not agree
with this expectation. Two reasons can be given for this: numerical
limitations did not allow the increase in the number of polynomial pieces
beyond six, while in the sequential method, the spline can be made as
flexible as one wants; and a least squares solution of piecewise polynomia
requires a sufficient density of control-points to prevent degeneration of
results (see Table II, three pieces of polynomials). This second problem
is nonexistent in a sequential version, to the effect, that it produced



TABLE IV

RMS discrepancies in mm at scale 1:400,000, using a SLAR block with simulated
noise and variation in flight height in addition to Schuler-frequency

Sequential Simultaneous

no with ANBLOCK AFBLOCK PIEPOL
spline spline

1 4 1 4 1 4
piece pieces piece pieces piece pieces
Tie-
points 2.06 0.24 215 1.08 206 102 2.06 0.75*
Check-

points  2.00 1.10 1.90 1.56 2.63 1.64 3.07 1.26%

* control distribution is modified.

superior results with both simulated blocks (Tables I and IV).

Sequential block formation without splines is not recommended, since
its accuracy is poor (Tables I, IIT and IV). It is also not more economical
than splines, since the additional effort for programming and computing
splines is rather small.

The simultaneous equivalent to sequential block formation without
splines is the ANBLOCK method, applied to SLAR strips that are not sub-
divided. Of course, this application of ANBLOCK is not appropriate and
produces about the same result as its sequential counterpart. However,
there is the question whether a subdivision of each SLAR strip into -
pieces could make the ANBLOCK a valid algorithm for the presented SLA!:
adjustment problem. The answer is no. The same applies for AFBLOCK
which was hoped to be a refinement of ANBLOCK for the purpose. But
AFBLOCK produces only slightly smaller cracks between strips due to
the increase in the number of transformation parameters. Adjustment to
ground control, however, is not better than with ANBLOCK.

This poor performance of the simultaneous methods, in particular
ANBLOCK, as compared to the sequential method, was not expected.
After all, a SLAR “block” resembles a photogrammetric strip, if the in-
dividual SLAR image takes on the role of the photogrammetric model;
or if the SLAR image is broken into pieces, then a SLAR block could
be compared to a photogrammetric block. And it is generally agreed upon
In conventional photogrammetric strip and block adjustment, that simul-
taneous planimetric methods such as ANBLOCK are superior to sequential
or even simultaneous methods employing polynomials. For an important
reason, this conclusion cannot be extrapolated to the presented radar-
grammetric task: the required basic transformation of a SLAR strip is a
polynomial one; similarity transformations of many pieces of a SLAR
strip would only be an approximation.



In photogrammetry, however, basically a similarity transformation of
models is required; and polynomial transformation of strips is the approxi-
mation. The roles of correct mathematical model and approximation are
reversed.

Having established the requirement for, and superiority of polynomials
for the purpose, what are the photogrammetric experiences of solving a
simultaneous set of polynomials versus a sequential approach? To this
question, a limited photogrammetric experience exists: Schut (1970)
demonstrated that sequential formation of a photogrammetric block from
individual strips, followed by external adjustment is equivalent to simul-
taneous polynomial block adjustment. This conclusion applies even more
to the results of the presented study: Schut had only to deal with low
order (2nd, 3rd degree) single polynomials, but meaningful SLAR block
adjustment requires much higher order or piecewise polynomials. And the
higher the order of the polynomial the more critical is the distribution
of control or other external constraints to avoid degeneration of a
simultaneous least squares solution.

CONCLUSIONS

Two sequential methods of planimetric SLAR block adjustment, with
and without splines, and three simultaneous methods according to the
principles of least squares were evaluated. A limited experiment with
simulated SLAR images indicated that sequential planimetric SLAR block
formation followed by linear prediction using ground control points
produces results which could not be obtained with simultaneous methods
such as ANBLOCK.

This conclusion is less unexpected when the fact is recognized that a
SLAR image strip has a simpler error behavior as compared to a photo-
grammetric strip; and that on the other hand, the basic transformation of
a SLAR strip is a polynomial one, whereas a similarity transformation of
pieces is an approximation. This is contrary to the photogrammetric case.
However, these conclusions are only valid under the constraints encounterec
in the study concerning computer memory and programming resources.

Use of splines significantly improves the results of internal adjustment
by sequential block formation. Internal adjustment (block formation)
without splines should not be considered. Simultaneous methods with
ANBLOCK (similarity transformations), with transformations with differ-
ential scale, and especially with transformations with splines, approach the
performance of the sequential method with increasing subdivision of each
SLAR image strip into separate units. The computational efforts, however,
are much larger in a simultaneous least squares adjustment than in sequenti
block formation followed by external adjustment. In addition, control
distribution and numerical stability of a least squares solution are critical
in a simultaneous method.



Consequently, the study suggests that sequential block formation with
splines followed by external interpolative adjustment should be used as
an inexpensive means of satisfactory planimetric point determination from
SLAR images of flat terrain. It is conjectured that this conclusion might
very well also apply to other sets of continuous imageries, such as orbital
or airborne scanner images (ERTS).
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