

Towards a novel control paradigm based on decoding imagined movements from EEG

TU

Patrick Ofner¹, Gernot R. Müller-Putz¹

¹Graz University of Technology, Institute for Knowledge Discovery, Graz, Austria

Introduction

- First attempt towards the EEG based classification of the movement plane of the right upper-limb during motor imagination (MI)
- \bullet Possible new 2-class control option for a neuroprosthesis using MIs of the same limb
- Classifier is based on the decoding approach presented in [1] and [2]: movement trajectories are extracted in the time-domain from the EEG using frequencies <1 Hz
- 2 movement planes (transverse vs sagittal plane)

Paradigm

- 9 healthy and right-handed subjects
- MI: waving the extended right arm in front of the body in the *trans-verse* or in the *sagittal* plane (see Figure 1)
- Subjects synchronised movements to the beat of a metronome (2 beats per second)
- Trial sequence is shown in Figure 2 (cue: arrow pointing right or up)
- 8 MI runs, 5 trials per class per run, in total 80 trials per subject
- Subjects had to fixate a cross on the screen to suppress eye movements

Figure 1: Subjects imagined a movement of the arm in the transverse or sagittal plane.

Figure 2: This figure shows the sequence of a trial.

Methods

- 68 EEG electrodes (frontal, sensorimotor and parietal areas) / 3 EOG electrodes
- Removal of eye activity influences with a linear regression method [3]
- Classification (see Figure 3):
- -Band-pass filter with 0.3 Hz and 0.8 Hz cutoff frequencies
- -2 linear models found with multiple linear regressions (one for each coordinate or movement plane) decoded hand positions from EEG using 3 three time lags in 60 ms intervals
- -Correlation with a sinus of 0.5 Hz over a certain time window (see Figure 4)
- The linear model with the higher correlation yielded the movement plane or class

Figure 3: This diagram shows the basic blocks of the classifier.

Results

- EEG based decoding: 8 out of 9 subjects reached significant classification accuracies
- EOG based decoding: 3 out of 9 subjects reached significant classification accuracies
- \bullet The mean classification accuracy over subjects with significant EEG based classification accuracies and with non-significant EOG based classification accuracies was 69 %
- Chance level: 59% ($\alpha = 0.05$)
- Table 1 shows the classification results, Figure 4 shows the classification accuracy in dependence on the length of the correlation window

Table 1: Classification accuracies for all subjects are shown. Significant classification accuracies are written bold. The window length used for correlation was fixed with 17 s.

${f subject}$	s1	s2	s3	s4	s5	s6	s6	s8	s9	grand average
mean value [%	-	67	55	82	65	59	70	82	7 8	70
std. dev. $[\%]$	17	15	16	13	15	17	15	13	14	10
85										
									<u>\</u>	- — s1
80										
75										~ s3
~ 70 · · · · · · · · ·					<u>:</u>	/_			1	_ s4
			\ <u>\</u>		/	/		7	9	5 s5
> 65					<i></i>					s6
ğ 60 1		\ \/		×						s7
	> >	X								s8
ÿ 55 //			· · · · ·						· · · · ·	s9

Figure 4: This plot shows the accuracy in dependence of the correlation window length.

window length [s]

20

Discussion

- Classification of imagined movements in 2 orthogonal planes is possible
- Eye movements-based classification can be excluded in at least 6 subjects
- Classification accuracy dependency on the correlation window: probably due to the decreasing signal-to-noise ratio (SNR) of the correlation coefficient
- For actual applications the correlation window length has to be short-ened
- This classifier could add additional classes to e.g. a sensorimotor rhythm-based classifier extending the control possibilities of a neuroprosthesis
- The classification based on the decoding approach indicates that with an improved SNR imagined movement trajectories can be decoded as well

References

1. TJ Bradberry, RJ Gentili, and JL Contreras-Vidal, Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals, *The Journal of Neuroscience*, 30(9):3432–3437, 2010 2. P Ofner, and GR Müller-Putz, Decoding of velocities and positions of 3D arm movement from EEG, *Proceedings of the 34th Annual International Conference of the IEEE EMBS*, 6406–6409, 2012 3. A Schlögl, C Keinrath, D Zimmermann, R Scherer, R Leeb, and G Pfurtscheller, A fully automated correction method of EOG artifacts in EEG recordings, *Clinical Neurophysiology*, 118(2007):98–104, 2006