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A B S T R A C T

In order to accelerate the commercialization of solid oxide fuel cells, optimal process parameters for reliable
and efficient electricity generation are of the highest interest. To reduce the number of timely and monetarily
expensive experiments used to find suitable operating parameters, while also allowing for only small sacrifices
in accuracy, an artificial neural network (ANN) is used in combination with algorithm-based optimization in
this study. An ANN was trained with data from a complex multi-physics model and coupled with a genetic
algorithm (GA) to find the maximum power output within a range of operational parameters. Instead of
time-consuming, manual fine-tuning of the ANN’s model architecture and hyperparameters (HP), a Bayesian
HP-tuning algorithm is used in this work. To avoid over-fitting and to ensure a high model consistency,
nested k-fold cross validation is implemented. Very low error values of the ANN are achieved both in the
k-fold cross-validation and in an additionally performed validation by means of experimental data and a
computational fluid dynamics simulation. Compared to a multi-physics model used to generate training data,
the ANN achieved an increased prediction speed of more than three orders of magnitude, while only minimal
decreases to prediction accuracy. Optimization with the GA produced consistent results close to the global
optimum and also provided good alternative solutions with significantly different gas compositions at high
power. The validity of the solutions found with the GA was underpinned with the help of a sensitivity analysis,
which was carried out for the most promising SOFC operating case.
1. Introduction

The transition to carbon-free power generation technologies is an
enormously important step towards reducing greenhouse gas emis-
sions in the face of climate change. With their high efficiency and
fuel flexibility, solid oxide fuel cells (SOFCs) are a viable technology
in this process. Compared to conventional technologies like internal
combustion engines and gas turbines, solid oxide fuel cells are not
limited by the Carnot efficiency and can be operated with a variety of
fuels, ranging from conventional natural gas over biogas and ammonia
to hydrogen. Furthermore, due to its high operation temperature of
600–900 ◦C, precious metals are not required as in proton exchange
membrane fuel cells [1,2].

Potential areas of application range from small scale SOFC systems
as auxiliary power units to applications for decentralized heat and
electricity supply for single-households or large scale power plants in
combination with gas turbines [3,4].
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To utilize the full potential of this technology and ensure its stable,
safe and efficient long-term operation, further research must be con-
ducted on the successful commercialization of this technology. Due to
the large number of potential operation parameters, experimental SOFC
performance evaluations are very time-consuming and expensive. To
reduce both the timely and monetarily efforts that are required to figure
out optimal operation parameters, modelling is a valid approach [5].
To predict the performance of an SOFC, modelling approaches with
different levels of complexity, ranging from 0D to 3D, exist. With the
lowest complexity 0D-models do not consider the cell size and the spa-
tial distribution of current densities and local species concentrations.
When taking into account models that predict voltage in the literature,
a voltage deviation of 5% [6] and as low as 2.47% [7] compared to
experimental data can be found for those models. 1D SOFC-models
provide detailed information regarding porous media transport, mass
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transport and heterogeneous chemistry, whereby in the literature volt-
age deviations of 3 - 2.38% compared to experimental data have been
published [8,9]. To gain a more precise insight in the behaviour of
SOFC 2D models, which allow for the simulation of spatial changes in
temperature, fuel and air side species concentrations, as well as current
density changes, can be used. Thereby, relative errors in the range of
1.5%–4% can be found in the literature [10–12]. With 3D-CFD models,
the prediction error can be further decreased and voltage deviations of
as low as 0.5% compared to experiments have been achieved [13].

The higher accuracy of high dimensional models (2D and 3D) is
offset by their higher computational costs [14]. Ideally would be a
model with the accuracy of an experiment and a required compu-
tation time in the range of milliseconds. With such a model, the
usage of computational expensive optimization algorithms, as well
as real-time predictions for model-predictive control, would be feasi-
ble. Conventional model-based simulation approaches suffer from the
aforementioned accuracy/computational cost trade-off. This is where
machine learning (ML) comes into play. In contrast to the model-based
approach of physical models, data-driven ML approaches, like ANN,
do not require a detailed knowledge of the underlying processes and
thus require less complex calculations for its predictions. This reduced
complexity results in a significant reduction of computation time. With
proper model training and high-quality training data, the achievable
prediction accuracies might come out only slightly lower than that
of the training data, thus closing the gap between high-precision and
high-speed predictions. Furthermore, the source of the data is not just
limited to simulated data. This allows models to be developed from
both experimental and synthetic data. Models can even use transfer
learning and start training with synthetic data, thus fine-tuning the
model by means of experimental data [15].

ANNs have already been used to successfully predict high temper-
ature solid oxide cells in both fuel cell and electrolysis mode, e.g., the
authors in [16] developed a two-layer feed-forward network to pre-
dict the outlet gas composition, current density and temperatures. To
optimize the ANN network architecture, the learning rate, number of
hidden neurons and number of training epochs were altered in a trial-
and-error approach. The evaluation of the prediction performance was
facilitated by means of a random test data set. In [17], several different
ANN model architectures were trained and evaluated by means of
experimental training data and a random data split validation. Instead
of tuning the model architecture, the performance of 10 different archi-
tectures was evaluated and compared, whereby models with a higher
number of hidden layers (≥3) exhibited a better prediction performance
than shallower (<3 hidden layers) architectures. The authors in [18]
successfully modelled a solid oxide electrolyzer using an extreme learn-
ing machine. Here, only the number of hidden nodes for the hidden
layer had to be specified by the user before model training. Not just
the cell voltage but also the prediction of the cell impedance from
electrochemical impedance spectroscopy measurements of an SOFC
was successfully achieved with the aid of neural networks [19]. The
application of data-driven surrogate models is not limited to solid
oxide cells. Deng et al. predicted and optimized the gas distribution
quality of a high-temperature proton exchange membrane fuel cell
through a deep belief network optimized by a genetic algorithm [20].
The authors in [21] successfully predicted the energy consumption
of a range extender fuel cell hybrid vehicle, and Wang et al. used
several ML-techniques to optimize the energy management of a fuel
cell vehicle [22].

Due to the significant decrease in prediction time (≪1 s/prediction),
the usage of otherwise overly time-consuming optimization algorithms,
like genetic algorithms, is possible with ANN. In the literature, already
several contributions regarding ANN in combination with optimization
algorithms can be found. A combination of artificial neural networks
and genetic algorithms has been used successfully for the optimization
of SOFC design parameters like layer thicknesses, porosities [23,24] or
2

manufacturing parameters like sintering temperature [25]. The authors
in [26] successfully coupled a neural network, which was trained with
data from a multi-physics model, with a genetic algorithm for SOFC
performance optimization.

What all the above listed sources share is the need for proper
hyperparameter tuning, which is usually done through time-consuming,
manual fine-tuning. This work successfully automatized this process by
means of optimization algorithms. A special focus was set on the proper
validation of a trained ANN to ensure good generalization and model
consistency. With the commonly used random split validation, no infor-
mation regarding consistency is provided. Therefore, a repeated nested
k-fold cross-validation was used by the authors as suggested by [27].
Despite the additional computational effort induced by introducing
repeated nested k-fold cross-validation, the extra effort immediately
paid off by revealing insufficient model consistency that would not have
been detected without this approach.

Stacking was introduced to increase model consistence. This mea-
sure led to a significant increase in both model prediction perfor-
mance and consistency. To the authors best knowledge, the mod-
elling approach demonstrated in this publication using nested k-fold
cross-validation, automated HP-optimization, and stacking have not
been previously published in scientific papers in the context of SOFC
modelling of industrial-scale anode-supported cells.

After the successful training of the ANN model, the prediction
performance was compared with experimental data and a 2D-CFD
simulation with both showing very good agreement. The trained ANN
model was then successfully coupled with a genetic algorithm to max-
imize the SOFC power output. The optimization led to consistent and
plausible results close to the global optimum, and furthermore, offered
alternative process parameters with performance close to the global
optimum but significant different gas compositions. To qualitatively
validate the results obtained with the genetic algorithm, a sensitivity
analysis was performed for the most promising operating case. For a
better overview, all process steps that were carried out in the course of
this work are summarized as a flow chart in Fig. 1.

2. Data generation

The data used for training the ANN model was generated by means
of a 2D-multi-physics model. This model is based on a 2D multi-physic
SOFC model with more than 120 equations, which is capable of pre-
dicting the cell voltage for non-carbonaceous species [12]. This model
was further enhanced to incorporate internal reforming of CH4, the
electrochemical and chemical reactions as well as the loss mechanisms
that take place when dealing with carbon species in an SOFC. For this
work, an industrial sized anode-supported cell (ASC) with an active
surface area of 80 cm2 and a 300 μm nickel/yttria-stabilized zirconia
(Ni/YSZ) anode was simulated. This cell type was chosen because the
data from in-house experiments and results of a 2D-CFD simulation
were readily accessible for model validation.

2.1. Model configuration

In Fig. 2, the general principle of the 2D-multi-physics model for
the data generation is visualized. In step one (‘‘Plug Flow Reactor Step
1’’ in Fig. 2), the local chemical equilibrium in the fuel flow channel
for a given fuel composition, temperature, pressure and fuel mass
flow rate is computed with the aid of the multi-step surface reaction
mechanism for steam reforming of methane over nickel, as described
in [28]. This step reflects potential ongoing internal reforming. After
this, based on the local chemical equilibrium and further input parame-
ters (e.g., current and temperature), the following values are calculated
(‘‘Electrochemical Model (Dusty Gas) Step 1’’ in Fig. 2):

• Species production rates
• Composition dependent diffusion parameters

• Nernst voltage, ohmic-, activation-, and concentration losses
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Fig. 1. Flow chart showing the basic principle of ANN modelling and process parameter optimization.
Fig. 2. General principle of 2D-PFR-multi-physics model. The local chemical equilib-
rium is computed from the input values in the first step. These values are then used
to solve the electrochemical equations. The gas composition is then updated to reflect
its state after the electrochemical reactions occurs and is fed into the next plug flow
reactor. The overall cell potential and losses are calculated from the local values in the
final step.

Based on these calculations, the local gas composition in both the fuel
and air flow channels is updated to the state after all local reactions
have reached steady state and fed into the next reactor (‘‘Plug Flow
Reactor Step 2’’ in Fig. 2). This procedure is repeated until all local
cells have been computed. In a last step, from all the local calculations,
the overall cell voltage and cell losses are calculated. Fig. 3 shows the
flow configuration of the 2D multi-physics model. For the simulations,
the flow channels for the fuel side and the air side are represented by
100 plug flow reactors lined up per flow channel.

2.2. Operation parameter range

Broad ranges for the training dataset parameters were defined to
ensure that all the operation modes relevant to the SOFC are included,
as the extrapolation capabilities of standard (i.e., physic-less) neural
networks are limited [29]. The resolution of the dataset was defined in
a way so that non-linear effects of higher order are also represented
by the dataset. To achieve this, the minimum number of steps per
parameter was set to 5 for the temperature and the species CO, CO and
3

2

Fig. 3. Configuration of the 2D multi-physics model.

CH4. To keep the resolution in the same range for H2 and H2O, 10 steps
within the defined range were computed. N2 was used as balancing
species in case the sum of all other species did not add up to 100%.

Table 1
Molar fraction, temperature and current density range of dataset generated with the
2D multi physics model for ANN training.

Range Interval Steps Unit

H2 5–95 10 10 mol-%
H2O 5–95 10 10 mol-%
CO 0–40 10 5 mol-%
CO2 0–40 10 5 mol-%
CH4 0–10 2 6 mol-%
N2 Balance – – mol-%
Temperature 700–800 25 5 ◦C
Current density 0–617.3 Gradient dependent 52 mA

cm2

2.2.1. Gradient dependent resolution refinement
A gradient dependent interval length was implemented for the

current density. This measure was taken to increase the resolution
of the dataset in the non-linear region of the polarization curve at
higher current densities. Because the area of non-linearity is strongly
dependent on fuel composition and thus not always at the same current
density values, the following steps were taken during the generation of
datapoints:

First, the voltage is computed at a current density of 617.3 mA
cm2 . If

the voltage is less than 0.6 V, the maximum allowable current density is
sought by successive halving to achieve 0.6 V. This step was necessary –



Energy Conversion and Management 291 (2023) 117263F. Mütter et al.
especially for fuel compositions with small proportions of combustible
gases – because the upper limit of the current density can never be
reached due to fuel starvation. The lower voltage limit of 0.6 V was cho-
sen so that the ANN model can also represent the range of >0.7 V where
accelerated degradation due to Ni-reoxidation may occur [30,31]. Once
the maximum allowable current density is determined, 25 uniformly
distributed points are placed within the specified upper and lower
current density limits. After this point, all datapoints are evaluated
using Eq. (1). From here, at the position with the highest deviation from
the linear approximation 𝑑𝑒𝑣𝑛 two new datapoints at the position 𝑛+1
and 𝑛 − 1 are added.

𝑑𝑒𝑣𝑛 = |

𝐸𝑛−1 + 𝐸𝑛+1
2

− 𝐸𝑛| (1)

This procedure is repeated until a total number of 52 datapoints for
one gas composition and temperature is reached.

In Fig. 4, a polarization curve was generated from this approach.
With the ranges and number of steps defined in Table 1, the overall
number of datapoints concluded to 534 976 individual entries, which
is equivalent to 10 288 unique polarization curves. For the generation
of the ANN training dataset, all together, 22 CPU cores from three
different computers were used, requiring a rough total of 270 h to
generate the whole dataset.

Fig. 4. Polarization curve generated from the described approach. The point density
in the non-linear region of the curve’s right side is higher than the linear section.

2.3. Data preprocessing

For model training, several preprocessing steps for the created
dataset were taken, namely:

• Filtering
• Shuffling
• Normalization

Filtering excluded all dataset entries with a voltage below 0 V or above
1.229 V as those values above the oxygen evolution reaction potential
would be implausible for SOFC operation mode [32]. Shuffling was
implemented to reduce the risk of a biased model due to the sequence
of training data fed to the ANN during training. Normalization was
introduced to reduce the risk of unstable model training due to too high
model weights caused by too excessive input feature values. Therefore,
all input feature values were rescaled to be within the range of 0 to 1.

3. Artificial neural network modelling

3.1. Implemented methods and functions

The neural network model was implemented in Python3 by means
of Tensorflow and its API Keras [33,34]. Algorithm-based hyperparam-
eter (HP) tuning was implemented to increase the model prediction
4

performance [35]. To ensure the most unbiased assessment of model
performance, a nested k-fold cross validation was carried out by means
of scikit-learn [36]. With this approach, not just the model perfor-
mance, but also the standard deviation of the model performance could
be evaluated. To further increase the model prediction performance
and the model consistency stacking was implemented. For a faster and
better learning procedure, a cyclic learning rate to adopt the learning
rate throughout the model training, was used [37]. Several different
activation functions were investigated, whereby ‘‘scaled exponential
linear units’’ (SELUs) yielded the best results [38]. The following sec-
tion describes in detail all the previously mentioned functions that were
used to set up the ANN model and the training procedure.

Fig. 5. Simplified flow chart for training, validating and testing of the ANNs with
nested k-fold cross validation.

3.1.1. Nested k-fold cross validation
The whole modelling and validation process consists of an outer

and an inner loop. The task of the outer loop is to evaluate the model
performance, while the inner loop is used to optimize the HPs of the
ANN. With this set up, the data leakage that would otherwise occur
can be avoided. After an initial split of the data into k subsets, k–1
are handled as training subsets and the remaining subset is set as test
dataset in the outer loop. The training set is fed to the inner loop,
where it is again split into 𝑝 − 1 training subsets and 1 validation
subset. With this data configuration, promising HPs are searched for
by means of an optimization algorithm. With the result from the HP
search, an ANN-model is trained and evaluated with the corresponding
validation dataset. Finding optimal HPs is repeated for every possible
configuration of training and validation datasets and thus repeated
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p times for each iteration of the outer loop. The best performing
configuration from those p results is selected and retrained with the
training set of the outer loop and evaluated with the set aside test set.
The k iterations of the outer loop led to k different models and thus k
different performance values. The average model performance and the
standard deviation from all models can be calculated from these results,
giving insights in the stability of the whole modelling approach. Fig. 5
shows the flow chart of the implemented nested k-fold cross validation.

3.1.2. Stacking
First investigations with the nested k-fold cross validation approach

revealed an undesirably high deviation in terms of model performance.
As a countermeasure, stacking was introduced. Stacking is an ensemble
method in which several sub-models are combined into a new, larger
model that predicts the output value based on the results of each
individual sub-model. Fig. 6 shows the schematic principle of a stacked
model. A series of individual level-0 models use the same input values
to predict the voltage. These predictions are then fed to the level-
1 model which makes one final prediction based on all the voltage
predictions from the sub-models.

Fig. 6. Stacking schematics.

In the course of this work, k was defined as 5. To gain additional
insight into model consistency, 3 versions of the best found model
architecture of each fold (see orange boxes in Fig. 5) were trained
with the corresponding training dataset. This created a total of 15 sub-
models for stacking. The same approach was taken for the stacked
models, resulting in 15 meta-models with 5 unique architectures.

3.1.3. HP optimization algorithm
Instead of manually fine-tuning the hyperparameters of the ANN

via a trial-and-error approach, an optimization algorithm was imple-
mented to automate this time-consuming step. Two algorithms were
considered: HyperBand and Bayesian optimization [39]. Moreover, for
the purposes of comparing these two methods directly, a test run with
identical parameters was carried out. The results showed that the MSE
values of the Bayesian algorithm were better and more consistent,
so it was chosen over HyperBand. Through further fine-tuning, an
improvement of the MSE value by two orders of magnitude could be
achieved. In Fig. 7, the results of the HP-tuner comparison can be
seen. Bayesian optimization is a probabilistic optimization strategy for
finding the extrema of expensive to evaluate objective functions [40].
It contains two major components, a Gaussian process regressor and
an acquisition function. The Gaussian process regressor makes use of
the Bayes theorem to approximate the objective function within a
range of uncertainty. From this information, the acquisition function
is calculated to determine where to place the next sample point in the
parameter scan range. See [40–42] for more details on the Bayesian
optimization.
5

Fig. 7. Results of direct HP-tuner comparison.

3.1.4. Cyclic learning rate
For model training, CLR was introduced instead of the fixed learning

rate that was used for the HP-optimization. Cyclic learning rate, sug-
gested by [37], is an approach that combines the advantages of a large
learning rate (fast convergence) with the benefits of a small learning
rate (better performance) through varying the learning rate between
reasonable boundaries throughout the training. As depicted in Fig. 8,
a triangular schedule with an exponential decay was chosen for the
model training in this study. Introducing an oscillating learning rate
scheme, as opposed to a fixed learning rate scheme, led to a further
increase in prediction performance and resulted in a reduction of the
test-set MSE values of roughly one order of magnitude. Furthermore,
due to faster convergence, it reduced the computation time during
training.

Fig. 8. Learning rate schedule with exponential decay adopted from [37].

3.1.5. Activation function
Six different activation functions were investigated during model

set up, namely: sigmoid, tanh, exponential linear unit (Elu), Rectified
Linear Unit (ReLU), Swish and SELU [34,38,43]. A visualization of all
the investigated activation functions can be seen in Fig. 9.

Initially, ReLU led to the best results, but not consistently. SELU
activation was implemented as a substitution for ReLU because it led to
a phenomenon called dying-ReLU problem. This causes a deactivation
of most of the nodes until it finally leads to a full deactivation of the
network [44]. Despite being more computationally expensive, SELU
offers the advantage of self-normalization which avoids exploding and
vanishing gradients [38].

3.2. Training of artificial neural networks

The purpose of training an ANN is to make this universal framework
match a specific case and mimic the behaviour of the underlying
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Fig. 9. Visualization of all the investigated activation functions.

system, all with the least possible amount of deviation. In this study,
the training of the ANN is carried out by means of the back-propagation
algorithm: (i) In a forward step, input values are fed to the ANN to
make a prediction 𝑦𝑖 based on the weights and biases of each individual
network node. (ii) This prediction is then processed in a loss function
with the known output value from the training dataset 𝑦𝑖 to evaluate
the quality of the prediction. (iii) In a backward step, the value of each
node and bias is adopted depending on its share on the prediction error.
This process is repeated until the prediction error meets a predefined
threshold value or the maximum number of iterations is reached. The
loss function used in this study was mean squared error (MSE) as
it penalizes outliers more strictly and thus should lead to a more
consistent model:

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

1
(𝑦𝑖 − 𝑦𝑖)2 (2)

During model training, it is especially important to terminate training
at the right number of iterations. Not enough training leads to under-
fitting, resulting in too high a training error. When training continues
for too long, overfitting may occur. An overfitted model reflects not
just the underlying system behaviour but also the inevitable training
data noise, which will again lead to poor prediction performance. To
avoid overfitting, early stopping was implemented in this study. This
measure terminates model training in case the loss of the validation
dataset starts to increase. As the errors during model training may
vary, patience was introduced as additional HP. Patience describes
the maximum number of iterations where the validation error may be
higher than the lowest value achieved. With this, local optima during
model training may be surpassed and better model performances closer
to the global optimum potentially achieved.

3.2.1. ANN model training parameters
The constraints for the HP search and model training are summa-

rized in Tables 2–4.

Table 2
Training parameters.

Parameter Model 1

Patience 500
Max # of Epochs 10 000
𝑙𝑟𝑚𝑖𝑛 1 ⋅ 10−6

𝑙𝑟𝑚𝑎𝑥 5 ⋅ 10−3

Batch size 512

In Table 2, the parameters for model training are listed. The borders
for the learning rate 𝑙𝑟𝑚𝑖𝑛 and 𝑙𝑟𝑚𝑎𝑥 were defined through a manual
test run as suggested in [37]. The maximum number of epochs was
defined with 10 000 to ensure that there were enough epochs for
6

proper convergence. With the defined patience value of 500 epochs,
overcoming local minima during training should be enabled. A trade-
off between training speed and model performance was made, and the
batch size was set to a value of 512 for all model trainings and the
HP-optimization.

Table 3
Scanned range and parameters for HP optimization based on Bayesian HP-tuner.

Parameter Scanned range

Number of nodes per layer sub-model 2–50
Number of layers 2–5
Batch size 512
Weight initialization accord. [38]
Learning rate 0.005–0.05
Dropout rate 0.0–0.4
Activation function SELU
Number of nodes per layer meta solver 2–200
HP-Tuner Bayesian
Number of trials HP-tuner 100
Number of epochs HP-tuner 350

For HP-optimization, a constant learning rate was defined to make
results comparable. The range of the learning rate was defined to
compensate for slower convergence induced by the dropout layers.
These layers act as a regularization measure and should lead to a more
robust model and reduce the risk of overfitting through the temporary
deactivation of nodes during model training [45].

Table 4
Global and cross validation parameters.

Parameter Value

Number of folds inner loop 4
Number of folds outer loop 5
Number of models per outer fold 3
Ensemble/Meta-Solver Data Split 70/30

The computations were executed on a 12-core Intel Core i9-7920X
CPU, leading to an overall model training time of roughly 60 h.

4. Genetic algorithm implementation

A genetic algorithm (GA) is an optimization algorithm that is based
on the process of natural selection and evolution. In a genetic algo-
rithm, like in nature, a certain number of solution configurations form
a population. Each individual has a set of features which makes it more
or less valuable. In an iterative process, the following steps are repeated
until a certain stop criteria is met [46]. The flowchart describing the
general principle of a genetic algorithm can be seen in Fig. 10.

(1.) Selection The most valuable fraction of the population is selected
to form descendants, and the worst performing fraction of the
population is discarded.

(2.) Recombination The selected individuals from (1.) are merged
into parents that combine their features and create new pop-
ulation members of itself until the population limit is reached
again.

(3.) Mutation Some features of the mated population may randomly
mutate to different values.

(4.) Evaluation Each individual in the population is evaluated accord-
ing to a user-defined fitness criterion.

As a search space for the parameter optimization, the same range as was
used for the ANN training data was defined. In Table 5, the scan range
limits for the GA are summarized. For an evaluation of the individual
solution configurations of the GA, the following fitness function was
defined to maximize the cell power output:

𝐹𝑛 = −𝐸𝑛 ⋅ 𝑖𝑛 ⋅ 𝐴 +
𝑛=3
∑

𝑝𝑛 (3)

𝑛=1
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Fig. 10. Simplified flow chart of genetic algorithm.

Thus, 𝐸𝑛 is the voltage predicted from the ANN, 𝑖𝑛 is the current
density, 𝐴 is the active cell area of the SOFC single cell and ∑𝑛=3

𝑛=1 𝑝𝑛
is the sum of the three penalties that were implemented to punish
violations of the introduced boundary conditions. Because the GA
implementation in python treats every task to solve as a minimization
problem and optimizing the power output is a maximization problem,
the voltage value in the fitness function is multiplied by −1 in Eq. (3).
Three constraints were defined to ensure a stable convergence of the
algorithm:

(1.) Conservation of masses - The sum of all fuel fractions must be
equal to 1. Because N2 was used to balance fuel mixtures the
requirement for mass conservation was defined as:

if 𝑥H2
+ 𝑥H2O + 𝑥CO + 𝑥CO2

+ 𝑥CH4
> 1 ∶

𝑝1 = ((1 − (𝑥H2
+ 𝑥H2O + 𝑥CO + 𝑥CO2

+ 𝑥CH4
)) ∗ 6000)2

(4)

(2.) Avoid Ni-oxidation - If the cell voltage 𝐸 falls below 0.65 V
Ni-oxidation may occur:

𝑖𝑓 𝐸 < 0.65 ∶

𝑝2 = ((0.65 − 𝐸) ∗ 1000)2
(5)

(3.) Limit max. fuel utilization - A too high fuel utilization 𝑢𝑓 may
lead to undesirable local fuel starvation:
𝑖𝑓 𝑢𝑓 > 0.9 ∶

𝑝3 = (𝑢𝑓 ⋅ 1000)2
(6)

The utilization function 𝑢𝑓 thereby is defined as:

𝑢𝑓 =
𝑖𝑛 ⋅ 𝐹 ⋅ 𝐴

𝑛𝑓𝑢𝑒𝑙 ⋅ (2 ⋅ 𝑥H2
+ 2 ⋅ 𝑥CO + 8 ⋅ 𝑥CH4

)
(7)

Whereby 𝐹 is the Faraday constant and 𝑛𝑓𝑢𝑒𝑙 is the molar fuel flux. In
Eqs. (4)–(7) 𝑥𝑛 indicates the molar fraction of the respective species 𝑛
in the fuel feed stream.

The genetic algorithm optimization was executed by means of the
genetic algorithm package in Python3 [47]. In Table 6 the used param-
eters for the optimization are listed. An elitist genetic algorithm was
used in this work. With an elitist ratio of 5% and a population size of
20, the best performing member of an iteration is always kept within
the population, thus leading to an always non-increasing convergence
curve.
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Table 5
Scan range limits for genetic algorithm process parameter optimization.

Min Max Unit

H2 5.0 95.0 mol-%
H2O 5.0 95.0 mol-%
CO 0.0 40.0 mol-%
CO2 0.0 40.0 mol-%
CH4 0.0 10.0 mol-%
N2 Balance Balance mol-%
Temperature 700 800 ◦C
Current density 0 600 mA

cm2

Table 6
Genetic algorithm parameters.

Parameter Value Unit

Max iterations 1500 –
Population size 20 –
Mutation probability 2 %
Elitist ratio 5 %
Crossover probability 50 %
Parent portion 35 %
Crossover type Uniform –
Max. iteration w.o. improvement 200 –

5. Results and discussions

In this section, the results obtained employing the ANN-based polar-
ization curve model and the GA-based process parameter optimization
are analysed and discussed in detail. At first, the ANN-model’s per-
formance is assessed through the nested k-fold cross validation test
datasets. Additionally, the ANN-model performance is benchmarked
with a CFD analysis and experimental cell tests conducted in-house.
A comparison of the required computation time against the model
accuracy with values from literature and the results from the genetic
algorithm operation parameter optimization conclude this section.

5.1. Artificial neural network

The developed ANN-model consists of 8 input parameters, namely
the cell temperature, the operating current, the molar fractions of fuel
gas species H2, H2O, CO, CO2, CH4 and N2, and the voltage as output
parameter. The results of the hyperparameter optimization executed in
the inner loop of the nested k-fold cross validation approach can be
seen in Table 7 — both for the sub-models and the meta-model. Fig. 12
shows a representation of the final model.

Table 7
Results of hyperparameter optimization.

Parameter Fold

1 2 3 4 5

Input 50 41 50 50 42
1 30 50 50 50 50

Sub-model 2 47 50 50 50 50
Layers # of nodes 3 50 6 32 50 50

4 2 2 50 2 5
5 2 50 2 2 2

Meta model # of nodes 200 84 2 176 196
Learning rate 0.005
Dropout rate 0.0

All five folds of the k-fold cross validation for the sub-model and
the meta model share a commonality: that the minimum learning rate,
together with no dropout, yielded the best performing ANN-model. For
the sub-model structure, a tendency to hit both the maximum as well as
the minimum number of nodes per layer can be seen. Thus, increasing
the scan range for further improvements would be an option.
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Fig. 11. MSE of (a) ANN sub-models, (b) ANN meta-models from cross validation with test dataset. (c) compares the overall mse boxplot for all the ANN sub-models (left) and
all the ANN meta-models (right).
Fig. 12. Model architecture consisting of sub-models (purple nodes) and meta-model
(green nodes). Only the unique sub-models are visualized. The sub-models with
identical architecture are represented by the full lines pointing upwards.

5.1.1. ANN prediction performance evaluation
In Fig. 11, the results of the nested k-fold cross validation for both

the sub-models (a) and the meta-models (b) can be seen. As indicated
in Table 4, five folds were used for cross-validation (k = 5) and per
fold 3 models with the same architecture were trained to be able to
evaluate the consistency of the model training procedure and the pre-
diction performance per fold. The comparison of the sub-model and the
meta-model performance (c) clearly shows the positive impact of the
introduced stacking approach on overall model performance. The mse
values for the sub-models within one fold vary by up to two orders of
magnitude (fold 1), or at least one order of magnitude (fold 2–4). Only
in fold 5 did the sub models exhibit a model consistency comparable
to the meta-models. The mse values for the meta-models are all within
the same order of magnitude regardless of the fold, leading to a mean
mse value of 6.384 ⋅ 10−07 and a standard deviation of ±7.159 ⋅ 10−08. To
better classify these values, the square root was taken. The resulting
root mean squared error (RMSE) has the same unit as the model target
value (V), allowing an easier interpretation of its magnitude. For the
meta-models, the mean RMSE of all models concludes at 0.799 mV with
a standard deviation of ±0.268 mV. Compared to the mean sub-model
RMSE of 1.595 mV with a standard deviation of ±2.044 mV, the meta
model has an on average 49% lower RMSE with a 86% lower RMSE
standard deviation. The individual and mean performance values for
both the sub-models and the meta-models are summarized in Tables 8
and 9, respectively.

In Fig. 14, the predictions of the ANN (markers) are compared
with the test data held aside during the ANN training (full lines). The
three polarization curves with the highest deviation to the test data
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Table 8
Mean squared error of individual sub-models and meta-models.

Model ID Fold # MSE sub-model MSE meta-model

1 6.227 ⋅ 10−7 5.998 ⋅ 10−7

2 1 6.524 ⋅ 10−7 6.365 ⋅ 10−7

3 1.716 ⋅ 10−5 6.613 ⋅ 10−7

4 6.730 ⋅ 10−7 5.250 ⋅ 10−7

5 2 1.415 ⋅ 10−6 5.353 ⋅ 10−7

6 5.253 ⋅ 10−6 5.178 ⋅ 10−7

7 6.470 ⋅ 10−7 7.400 ⋅ 10−7

8 3 3.033 ⋅ 10−6 7.512 ⋅ 10−7

9 5.861 ⋅ 10−7 7.316 ⋅ 10−7

10 6.292 ⋅ 10−7 6.186 ⋅ 10−7

11 4 7.504 ⋅ 10−7 6.686 ⋅ 10−7

12 4.537 ⋅ 10−6 6.747 ⋅ 10−7

13 8.092 ⋅ 10−7 6.500 ⋅ 10−7

14 5 6.292 ⋅ 10−7 5.996 ⋅ 10−7

15 7.399 ⋅ 10−7 6.667 ⋅ 10−7

Table 9
Mean performance values for sub- and meta-models.

Sub-model Meta-model Unit

mean MSE 2.543 ⋅ 10−06 6.384 ⋅ 10−07 V2

std. dev. MSE ±4.176 ⋅ 10−06 ±7.159 ⋅ 10−08 V2

mean RMSE 1.595 ⋅ 10−3 7.990 ⋅ 10−4 V
std. dev. RMSE ±2.044 ⋅ 10−3 ±2.676 ⋅ 10−4 V

are highlighted in yellow, grey and blue and their corresponding oper-
ation parameters are summarized in Table 10. To identify trends and
systematic weaknesses of the trained model, a correlation analysis was
performed. Fig. 13 summarizes the results of the correlation analysis of
the absolute prediction error and the normalized input variables.

Fig. 13. Correlation of normalized input values with absolute prediction error.

In general, the magnitude of prediction error is only weakly cor-
related with the input values with maximum correlation coefficients
of 0.2 and −0.2 for H2O and CH4, respectively. Nevertheless, there
is a slight trend towards higher error values for gas compositions
with lower amounts of carbon-containing gases and higher amounts of
nitrogen and steam. When comparing the three highlighted IV-curves
in Fig. 14 with the correlation analysis, only minor trends such as
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Table 10
Operation parameters for highlighted IV-curves from Fig. 14.

ID 1 2 3

H2 75% 15% 5%
H2O 15% 5% 5%
CO 0% 0% 10%
CO2 10% 10% 20%
CH4 8% 2% 4%
N2 2% 68% 56%
Temperature 725 ◦C 725 ◦C 700 ◦C
Current density 617 mA

cm2 575 mA
cm2 617 mA

cm2

Voltage test data 0.715 V 0.549 V 0.496 V
Voltage predicted 0.712 V 0.561 V 0.499 V
Absolute error 3 mV 12 mV 3 mV

a slight tendency towards lower CO and CO2 concentrations can be
seen. This tendency towards higher voltage deviations at higher current
densities, observed at the highlighted IV-curves, is not reflected in the
correlation analysis. One possible explanation for this rests with the
data generation approach used in this study, an approach which used
local refinement in non-linear zones.

Fig. 14. Comparison of ANN predictions (markers) and final test data (lines). The lines
and dots held in light grey indicate IV-curves with a maximum prediction deviation of
less than ±2 mV. The three highlighted IV-curves reflect operation modes with a low
number of reactive species in the inlet gas composition and thus a high amount of N2
(Curve ID 3 : N2: 68%, Curve ID 2 : N2: 56%) and high hydrogen concentrations
(Curve ID 1 : H2: 75%).

The maximum voltage deviation of 3 mV that lies within the opera-
tion boundaries (voltage > 0.65 V) results in a maximum relative error
of less than 0.47% when assuming the lowest allowed voltage value of
0.65 V.

Compared to literature, where relative errors below 4%–5% for
SOFC voltage predictions are commonly stated as satisfactory [6,10,
48], the prediction error of the ANN model is one order of magnitude
lower. This means that if models with satisfactory prediction accuracy
are used as a baseline model for the ANN model, the additional inaccu-
racy induced by the ANN model has only a minor impact on the overall
accuracy.

5.1.2. Validation with measured values and CFD
In addition to the k-fold cross validation, the ANN and the multi-

physics model were compared with measured values from an in-house
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Fig. 15. Comparison of ANN predictions, multi-physics model and CFD
simulation results with results from measured values from cell experiments . The
full black line in the lower section reflects the measurement uncertainty of the test rig
according to [51].

conducted single-cell test and a CFD simulation. As mentioned in Sec-
tion 2, an anode-supported single cell with 80 cm2 active surface area
and a 300 μm Ni/YSZ anode was studied to validate this. The 2D-CFD
simulation was conducted in ANSYS FLUENT 2020 R1 and included the
SOFC sub-module with unresolved electrolyte. Additional information
on the CFD simulation is provided in [49]. The single cell tests were
conducted in a temperature-controlled oven with the ASC cell placed in
an alumina cell housing. Polarization curves were measured by means
of a BioLogic impedance analyser with an 80 A/3 V booster. Further
information regarding the test bench can be found in [50]. The results
of this comparison are depicted in Fig. 15.

Due to inevitable measurement uncertainties when conducting ex-
periments for a better classification of the achieved results, a baseline
for the measurement uncertainty of the experimental setup of 1.4% was
included in Fig. 15 (black full line). The magnitude of the uncertainty
was taken from [51], as the evaluated system setup was similar to
the one used in this study. For the validation all simulations and the
experiment were conducted with the operation parameters listed in
Table 11. The voltages of the experiment, the multi-physics model and
the ANN model were investigated at 0, 99, 198, 296 and 395 mA

cm2 and
at 0, 198 and 395 mA

cm2 for the CFD simulation.

Table 11
Operation parameters used for experimental validation.

Parameter Value Unit

H2 15.6 %
H2O 14.9 %
CO 15.8 %
CO2 12.1 %
CH4 3.9 %
N2 37.7 %
Mass flow rate fuel 3.74 ⋅ 10−5 kg

s

Mass flow rate air 4.29 ⋅ 10−5 kg
s

Temperature 800 ◦C
Current density 0–395 mA

cm2
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The validation results showed a very good agreement of the CFD-
simulation, the multi-physics- and the ANN-model with the experimen-
tal data with a voltage deviation below the measurement uncertainty
of 1.4% for most values. Only at higher current densities did the multi-
physics model and the ANN-model have a slightly higher deviation than
the measurement uncertainty Because deviation of the ANN from the
multi-physics model is only one mV at maxima, for future research,
a promising approach to increase the ANN prediction performance
would be to improve the underlying multi-physics model. Especially the
implementation of thermal influences should improve the prediction
performance significantly according to [13].

5.1.3. Voltage prediction speed
To determine the achievable time reduction required to get the cell

voltage of an SOFC for a set of operation parameters, the execution
time for one experiment, a 2D-CFD simulation, the multiphysics model
and the ANN were compared. Since the time required for the test
setup as well as for the pre-processing of the CFD simulation is time
consuming and strongly dependent on the skills of personnel, the
setup and preparation times were not considered in this comparison.
Multiple calculations on 8 parallel cores were assumed for CFD, ANN
and multi-physics model resulting in a reduction of the overall time per
computation by a factor of 8. In Table 12, the measured execution times
are compared and the achievable speed up of the ANN is summarized.

Table 12
Observed execution time and achievable reduction of time required to mea-
sure/compute one voltage for a set of operation parameters.

Method Execution time Speed-up of ANN

Experiment 45 min >350 000
2D CFD-simulation 30 min >200 000
Multi-physics model 3.125 s >3500
ANN 8.75 ms –

A speed-up by a factor of more than 350 000 was observed when
comparing the ANN model with the experimental setup. Compared to
the multi-physics model, that was used for training dataset generation,
and the 2D CFD-simulation, the required time for one prediction could
be reduced by a factor of more than 3500 and 200 000, respectively.

Closing the prediction accuracy vs. prediction speed gap
In order to evaluate whether the gap between prediction accuracy

and prediction speed could be closed within this study, a comparison
with values from the literature was additionally conducted and can be
seen in Fig. 16.

Fig. 16. Comparison of observed execution times and relative voltage prediction errors
of this study (left 4 marks) with values from the literature [10,48].

To make the prediction times comparable, the prediction times from
the literature sources were rescaled to match with an assumed 8 core
CPU setup. The experimental error was defined as 0% as it was used for
validating the prediction performance. The relative error values for the
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CFD, multi-physics model and ANN model were reprinted from Fig. 15.
Both literature sources shared a commonality: they only considered
hydrogen and steam as fuel. The scope of their work concerned the
development of very fast, lightweight SOFC models for online control
strategies [10] or real-time control [48]. The slightly slower predic-
tion speed compared to the literature can be explained by two main
things. Firstly, the underlying data for the ANN model is of higher
complexity as it does not just include hydrogen/steam mixtures as in
the two literature sources but also nitrogen and hydrocarbons, along
with the additional capability of reflecting the reforming of methane
on NI-catalysts. These added features may cause more complex neural
network structures and thus more computational resources are re-
quired. Secondly, the implemented stacking approach further increases
the overall model complexity and with it, the required computational
effort.

The achieved prediction accuracy of the ANN allows for the conclu-
sion that it is possible to significantly reduce computation time with
only limited compromises regarding accuracy. Even for more complex
processes, like internal reforming prediction times close to online and
real-time control models can be achieved with this approach.

5.2. Genetic algorithm-process parameter optimization

For the process parameter optimization, the electric power output of
the SOFC was defined as an optimization target to be maximized. To be
able to evaluate the stability of the optimization approach the genetic
algorithm was repeated 10 times. The solutions found are visualized
in Fig. 17 and summarized in Table 13. The highest power output
found is result 1 with 39.30 W, a fuel composition of 94% H2, 5%
H2O and 1% N2 at a temperature of 800 ◦C and a current density
of 598.6 mA

cm2 . Results 2–6 are almost identical and have only minor
deviations. All solutions found by the GA were similar in that the
temperature, the current density and the share of fuel gas in the inlet
gas stream were located at the upper limits of the scan range. Thus,
gas compositions with just hydrogen as fuel gas are performing slightly
better than solutions with a mixture of hydrogen and carbon monoxide
(results 7–9) or fuel mixtures containing H2, CO and CH4.

The whole optimization process required roughly 1 h on a 12-core
Intel Core i9-7920X CPU with 64 Gb of RAM.

Fig. 17. Results of process parameter optimization with GA. The known data from the
ANN training dataset is visualized in the grey dots. The GA results are held in yellow
to blue ¨x¨, depending on their value.

5.2.1. Sensitivity analysis
A sensitivity analysis was performed to verify the optimization

results from a qualitative point of view. Operation with a fuel mixture
consisting of only hydrogen and steam was defined as a scenario
for the sensitivity analysis. In order to investigate the effect of a
parameter, all parameters listed in Table 14 were left at their mean
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Table 13
Results of the genetic algorithm with the optimization target power arranged in descending order.

GA result Unit

1 2 3 4 5 6 7 8 9 10

H2 94.0 94.0 94.0 94.0 93.0 93.0 70.0 62.0 48.0 35.0 mol-%
H2O 5.0 6.0 5.0 5.0 6.0 5.0 5.0 5.0 6.0 15.0 mol-%
CO 0.0 0.0 0.0 0.0 0.0 0.0 25.0 33.0 40.0 40.0 mol-%
CO2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 mol-%
CH4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 mol-%
N2 1.0 0.0 1.0 1.0 1.0 2.0 0.0 0.0 6.0 0.0 mol-%
Temperature 800 799 800 800 800 799 800 799 800 800 ◦C
Current density 598.6 600.0 596.7 594.7 596.1 595.0 597.5 596.8 598.4 595.8 mA

cm2

Voltage 0.81 0.81 0.81 0.81 0.81 0.81 0.79 0.79 0.77 0.76 V

Power 39.30 39.27 39.21 39.12 39.09 39.07 38.4 38.02 37.46 36.66 W
Table 14
Parameters altered for sensitivity analysis.

Parameter Min Mean Max Unit

Temperature 700 750 800 ◦C
Current density 0 300 600 mA

cm2

Reactant/product-ratio at cell inlet 5/95 50/50 95/5 %/%

value with the exception of the parameter under investigation. For
comparability, the different parameter values were normalized to a
range of ±1. The results of this analysis are shown in Fig. 18. In the
left diagram, the entire power range is shown. In the right diagram,
the 𝑦-axis was adjusted for legibility of the values for temperature and
reactant/product-ratio effect. Fig. 18 shows that for maximum power
output, all three varied parameters should be kept at their maximum
allowable value. Among them, current density has the strongest effect
on power output, followed by reactant/product-ratio and temperature.
This observed behaviour is consistent with the results suggested by
the genetic algorithm. The non-linear range for reactant/product-ratio
values below −0.5 can be explained through the effect of fuel starvation
that occurs at the mean current density of 300 mA

cm2 and low hydrogen
contents in the inlet composition.

Fig. 18. Sensitivity analysis of SOFC operation with H2∕H2O as fuel.

6. Conclusions

This work showed that close to real-time, yet accurate, predictions
of SOFC voltages by means of an ANN model can be done not just
for simple fuel gas compositions containing just H2/H2O-mixtures but
also for more complex compositions also containing N2 and the car-
bonaceous species CO, CO2 and CH4. Furthermore, it was demonstrated
that coupling an SOFC ANN model with a genetic algorithm is a valid
approach for the optimization of operation parameters.
11
The ANN model was successfully trained with data generated by a
multi-physics model to predict the resulting cell voltage for a given inlet
fuel composition, cell temperature and current density. Proper hyperpa-
rameters for optimal ANN prediction performance were found through
algorithm-based tuning. A thorough validation by means of the k-fold
cross validation approach revealed an unstable model performance that
would not have been detected with just a random split validation. As a
countermeasure to this undesirable behaviour, stacking was introduced,
leading to a significant increase in both model prediction performance
and consistency. The additional experimental validation revealed a
good agreement of the ANN-model with measured values from single-
cell tests, a CFD-simulation and the underlying multi-physics model.
A deviation higher than the measurement uncertainty could only be
seen at high current densities. Compared to lightweight SOFC models,
lower prediction errors at a comparable prediction speed were achieved
despite the higher complexity. The coupling of the developed ANN
model with a genetic algorithm was capable of optimizing the operation
parameters and thus maximized the electric power output of the single
cell. Multiple very good solutions close to the global optimum were
suggested by the algorithm, allowing the user to choose from different
fuel compositions for the efficient operation of the SOFC. A sensitivity
analysis for the most promising operating mode with fuel mixtures
containing hydrogen and steam supported the validity of the solutions
found by the genetic algorithm. All parameters investigated (current,
temperature and reactant/product ratio) led to an increase in the
electrical output of the fuel cell when increased.

For future work, more complex optimization goals, such as cell
efficiency or multi-objective targets like efficiency maximization and
simultaneous power output, will be investigated with this approach.
Based on the experiences gained through this work, the following main
findings should be taken into account for future work:

• Only data of high quality with a slight focus on regions that are
of higher complexity (e.g.: non-linear zones) should be used

• A careful k-fold cross validation is highly recommended to ensure
stable, consistent model performance

• The use of algorithm based hyperparameter-tuning and a cyclic
learning rate for optimal ANN training has a positive effect on
model prediction performance

• Stacking may increase model performance and consistency but at
the cost of computational time during model training

• Penalties and boundary conditions for the genetic algorithm
should be defined with a gradient dependent on the magnitude
of the error in order to allow quicker convergence

• Optimization towards the same goal multiple times might offer al-
ternative yet still viable solutions which would be missed through
the use of a single shot optimization
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