
Distributed Symmetry Breaking on Power Graphs via
Sparsification∗

Yannic Maus

TU Graz

Graz, Austria

yannic.maus@ist.tugraz.at

Saku Peltonen

Aalto University

Espoo, Finland

saku.peltonen@gmail.com

Jara Uitto

Aalto University

Espoo, Finland

jara.uitto@aalto.fi

ABSTRACT
In this paper we present efficient distributed algorithms for classical

symmetry breaking problems, maximal independent sets (MIS) and

ruling sets, in power graphs. We work in the standard CONGEST
model of distributed message passing, where the communication

network is abstracted as a graph𝐺 . Typically, the problem instance

in CONGEST is identical to the communication network 𝐺 , that is,

we perform the symmetry breaking in𝐺 . In this work, we consider

a setting where the problem instance corresponds to a power graph

𝐺𝑘
, where each node of the communication network𝐺 is connected

to all of its 𝑘-hop neighbors.

A 𝛽-ruling set is a set of non-adjacent nodes such that each node

in𝐺 has a ruling neighbor within 𝛽 hops; a natural generalization of

an MIS. On top of being a natural family of problems, ruling sets (in

power graphs) are well-motivated through their applications in the

powerful shattering framework [BEPS JACM’16, Ghaffari SODA’19]

(and others). We present randomized algorithms for computing

maximal independent sets and ruling sets of 𝐺𝑘
in essentially the

same time as they can be computed in𝐺 . Our main contribution is a

deterministic poly(𝑘, log𝑛) time algorithm for computing 𝑘-ruling

sets of𝐺𝑘
, which (for 𝑘 > 1) improves exponentially on the current

state-of-the-art runtimes. Our main technical ingredient for this

result is a deterministic sparsification procedure which may be of

independent interest.

We also revisit the shattering algorithm forMIS [BEPS J’ACM’16]

and present different approaches for the post-shattering phase. Our

solutions are algorithmically and analytically simpler (also in the

LOCAL model) than existing solutions and obtain the same runtime

as [Ghaffari SODA’16].

CCS CONCEPTS
• Theory of computation → Distributed algorithms; Sparsifi-
cation and spanners; Pseudorandomness and derandomization.

KEYWORDS
distributed algorithm, CONGEST model, maximal independent set,

ruling sets, power graphs, sparsification, shattering

∗
The full version of the paper is available at [54].

PODC ’23, June 19–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0121-4/23/06.
https://doi.org/10.1145/3583668.3594579

ACM Reference Format:
Yannic Maus, Saku Peltonen, and Jara Uitto. 2023. Distributed Symmetry

Breaking on Power Graphs via Sparsification. In ACM Symposium on Princi-
ples of Distributed Computing (PODC ’23), June 19–23, 2023, Orlando, FL, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3583668.3594579

1 INTRODUCTION
In this paper we provide efficient deterministic and randomized

algorithms for symmetry breaking problems on power graphs, that

is, we compute maximal independent sets and ruling sets on the

power graph 𝐺𝑘
for an integer 𝑘 , where 𝐺 is the input graph. To

illustrate the setting, let us define the central problem of our work. A

maximal independent set (MIS) 𝑆 of a graph𝐺 is a set of non-adjacent

nodes such that every node 𝑣 of𝐺 is dominated by a node in 𝑆 , that

is, there is a node in 𝑆 with distance at most 1 from 𝑣 . Ruling sets
generalize this notion by relaxing the distance of domination. In

the power graph 𝐺𝑘
, any two nodes nodes of 𝐺 are connected if

they are at most 𝑘 hops apart. Hence, in an MIS of 𝐺𝑘
any two

nodes have distance at least 𝑘 + 1 and every node of𝐺 is dominated

by a node of 𝑆 with distance at most 𝑘 . MIS and ruling sets have

been studied extensively in the classic message passing models of

distributed computing, i.e., the LOCAL and the CONGEST model,

e.g., see [4, 6, 8, 12, 31, 33, 50, 53, 59].

Understanding symmetry breaking on power graphs is crucial

as they appear naturally in various settings. A classic example is

given by the frequency assignment problem. In order to avoid inter-

ference in a network of wireless transmitters, one wants to assign

frequencies to the nodes of a communication network such that all

neighbors of each node receive different frequencies. The problem

is a vertex coloring problem on the power graph 𝐺2
[41, 42, 49].

Problems on power graphs also appear as subroutines when solving

problems for 𝐺 . One example is the state-of-the-art randomized

algorithm to compute an MIS (of 𝐺) that relies on the computation

of ruling sets of power graphs, both in the LOCAL model [12, 31]

and in the CONGEST model [33]. A second example is the current

state-of-the-art deterministic algorithms for computing MIS [25].

A third example where such ruling sets appear as subroutines is

the algorithm to compute spanners in [24].

In Section 1.2, we provide further examples and further motivate

(symmetry breaking) problems on power graphs. The main model

of our work is the CONGEST model of distributed computing.

The challenges of working with power graphs in the CONGEST
model. In the LOCAL and the CONGEST model, a communication

network is abstracted as an 𝑛-node graph 𝐺 with nodes represent-

ing computing entities and edges communication links [52, 56].

Nodes are equipped with 𝑂 (log𝑛)-bit IDs. In order to solve some

problem in the network, the nodes communicate with each other in

157

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3583668.3594579
https://doi.org/10.1145/3583668.3594579
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583668.3594579&domain=pdf&date_stamp=2023-06-16

PODC ’23, June 19–23, 2023, Orlando, FL, USA Yannic Maus, Saku Peltonen, and Jara Uitto

synchronous rounds. In each round, nodes are allowed to perform

arbitrary local computations and send messages to each of their

neighbors in𝐺 . In the LOCALmodel messages can be of unbounded
size, while in the CONGEST model message sizes are restricted to

𝑂 (log𝑛) bits. The time complexity of an algorithm is the number of

rounds until each node has computed its own part of the solution,

e.g., whether it is contained in an independent set or not. Classi-

cally in the literature, an algorithm for a problem—think of the

MIS problem— assumes that the communication network is also

the problem instance. In contrast, in our work the power graph 𝐺𝑘

serves as the problem instance while𝐺 remains the communication

network. In the LOCALmodel, the setting does not yield any major

difficulties as an algorithm designed for 𝐺 (e.g., to compute an MIS

of𝐺), can be run on𝐺𝑘
with a multiplicative overhead of 𝑘 rounds

(to compute an MIS of 𝐺𝑘
). However, such a statement is not true

in the CONGEST model. In fact, in the CONGEST model, a node

does not even know its degree in the problem instance 𝐺𝑘
and if

many vertices want to send different messages to their neighbors

in𝐺𝑘
, congestion appears in the communication network and the

messages cannot be delivered efficiently. This seemingly small dif-

ference, has huge effects and makes it much more challenging to

construct algorithms.

1.1 Our Contributions
An 𝑟 -ruling set 𝑆 of a graph 𝐺 is a set of non-adjacent nodes such

that for every node 𝑣 of 𝐺 there is a node in 𝑆 with distance at

most 𝑟 from 𝑣 . Hence, in an 𝑟 -ruling set of 𝐺𝑘
any two nodes have

distance at least 𝑘 + 1 and the domination distance is 𝑟 · 𝑘 . In the

literature this often appears as an (𝛼, 𝛽)-ruling set where 𝛼 speci-

fies the minimum distance between nodes and 𝛽 the domination

distance. As ruling sets relax the domination guarantee of maximal

independent sets, they are usually easier to compute. Often, ruling

sets are sufficiently powerful to replace MIS computations as sub-

routines in algorithmic applications. Our main contribution is the

first efficient deterministic algorithm to compute 𝑘-ruling sets for

𝐺𝑘
. Throughout the paper 𝑂 (𝑥) omits factors that are logarithmic

in 𝑥 and Δ refers to the maximum degree of the graph𝐺 , even when

we are solving a problem on the power graph 𝐺𝑘
.

Theorem 1.1 (𝑘-ruling set of 𝐺𝑘
). Let 𝑘 ≥ 1 be an integer

(potentially a function of 𝑛). There is a deterministic distributed al-
gorithm that computes a 𝑘-ruling set of 𝐺𝑘 in poly(𝑘, log𝑛) time
in the CONGEST model. More detailed, the round complexity is
𝑂 (𝑘2 · log

4 𝑛 · logΔ) rounds.

Theorem 1.1 computes a (𝑘+1, 𝑘2)-ruling set of𝐺 . For a constant

𝑘 > 1, this improves exponentially on the previous state of the art

that required 𝑂 (𝑛1/𝑘) rounds [24]. This previous algorithm is an

extension to 𝐺𝑘
of a classic deterministic algorithm for computing

𝑂 (log𝐵 𝑛)-ruling sets (of𝐺) in𝑂 (𝐵 ·log𝐵 𝑛) rounds [6, 24, 45, 50, 59],
where 𝐵 is a parameter that can trade domination for runtime.

Our main technical contribution in order to obtain Theorem 1.1

is a novel sparsification procedure. On a very high level, we turn

𝐺𝑘
into a much sparser representation 𝐺 such that an MIS of 𝐺

is a good ruling set on the original 𝐺𝑘
. The benefit is that we can

communicate more efficiently on 𝐺 .

Randomized symmetry breaking in power graphs. Our second
result is an algorithm for MIS of 𝐺𝑘

with (essentially) the same

runtime as the state of the art for computing an MIS of 𝐺 .

Theorem 1.2. There is a randomized distributed algorithm that
computes a maximal independent set of𝐺𝑘 in𝑂 (𝑘2

logΔ · log log𝑛 +
𝑘4

log
5

log𝑛) rounds of the CONGEST model, with high probability.

The best result that can be achieved with previous work is an

𝑂 (𝑘 log𝑛)-round algorithm based on Luby’s algorithm for comput-

ing an MIS (see [54, Section 8.1] for details) [4, 53]. Theorem 1.2

compares favorably to the state of art for computing an MIS of

𝐺 in 𝑂 (logΔ log log𝑛 + poly log log𝑛) rounds in the CONGEST
model [33]. The randomized complexity of MIS on𝐺𝑘

in LOCAL is

𝑂 (𝑘2
logΔ + 𝑘 poly log log𝑛), simply by running the best known

algorithm for MIS on 𝐺 on the power graph [31]. By combining

Theorem 1.2 with the sparsification methods of [48] and [13] we

obtain the following corollary.

Corollary 1.3. There is a randomized distributed algorithm that
computes a 𝛽-ruling set of 𝐺𝑘 in 𝑂 (𝛽 · 𝑘1+1/(𝛽−1) (logΔ)1/(𝛽−1) +
𝛽 · 𝑘 log log𝑛 + 𝑘4

log
5

log𝑛) rounds.

The only previous randomized algorithm for computing a rul-

ing set of 𝐺𝑘
is a 𝑂 (𝑘 log log𝑛)-ruling set algorithm that works in

𝑂 (𝑘2
log log𝑛) rounds [33]. The technique used in [33] can inher-

ently not compute 𝑂 (1)-ruling sets of 𝐺𝑘
.

Simplifying shattering for MIS. Ruling sets of power graphs are
essential in the the current state-of-the-art randomized algorithms

to compute an MIS in LOCAL [12, 31] and the CONGEST model

[33]. In our last contribution, we revisit
1
the current state-of-the-

art algorithms for computing an MIS in 𝐺 in LOCAL [12, 31] and

CONGEST [33]. These results are based on the by-now-standard

shattering technique that uses a random process to solve the re-

spective problem on most of the graph such that the remaining

unsolved parts only consists of (many) small connected components.
The components are small in the sense that a certain power graph

ruling set of a single component has at most logarithmically many

nodes. This fact is exploited to solve the remaining problem on

these small components efficiently. The challenge here is that to

algorithmically exploit the fact that these ruling sets are of a small

size, one also has to compute them. Intuitively, one wants to just

run a classic (5,𝑂 (log log𝑛))-ruling set algorithm on each of the

remaining connected components in parallel. The crux is that the

distance between ruling set nodes needs to be measured in 𝐺 (for

the ruling set to be small) and not just within the small component.

But a node cannot tell efficiently whether a node in distance 5 in𝐺

is in the same small component as itself or not. Hence, the nodes

cannot easily determine whether they can both be contained in

the ruling set or not and one cannot readily treat different small

components independently.

Thus, the arXiv version of [12] presents an involved two-phase

shattering procedure with an involved analysis. It turns out that the

presented analysis of bounding the size of the ruling set has a small

(but crucial) mistake (see Sections 3 and [54, Section 7] for details).

1
We revisited the details of these algorithms as they rely on the shattering framework

that we also use to obtain Theorem 1.2. However, the setting in Theorem 1.2 is more

involved.

158

Distributed Symmetry Breaking on Power Graphs via Sparsification PODC ’23, June 19–23, 2023, Orlando, FL, USA

The journal version of the respective work presents a fix through

an even more involved analysis [12]. The later works [31, 33] build

upon the arXiv version of [12]. While we believe that both works

can be adapted to build upon the arguments in the journal version

of [12], this cannot be done in a black-box manner. Both works use

a different ruling set algorithm than [12] and the internals of the

ruling set algorithm are crucial for the arguments in [12].

As our last contribution, we revisit the shattering framework

and present two different algorithmic and analytical solutions for

computing an MIS that work in the LOCAL and the CONGEST
model. While these do not improve upon the complexity of [12, 31,

33], our approach is simpler and provides a fix for results that build

upon the arXiv version of [12].

Theorem 1.4. There are randomized LOCAL and CONGEST al-
gorithms that w.h.p. compute a maximal independent set on any
𝑛-node graph with maximum degree Δ and that run in 𝑂 (logΔ) +
poly log log𝑛 rounds and in𝑂 (logΔ log log𝑛)+poly log log𝑛 rounds,
respectively.

Even though Theorem 1.4 deals with the classic setting of com-

puting an MIS of the graph 𝐺 (and not its power graph), the flaw

in the current argument is closely related to properly dealing with

ruling sets in power graphs. Some other works in the literature

build upon the ideas of the arXiv version of [12], e.g., algorithms

for Δ-coloring [37] or the Lovász Local Lemma [26], and thus un-

dergo a similar issue. However, we note that the aforementioned

power graph ruling sets are only relevant when Δ ≥ poly log𝑛 as

otherwise one can use simpler approaches to exploit the smallness

of the components. But for Δ ≥ poly log𝑛 it is not necessary to

correct the flaw in the two papers. For the Δ-coloring problem a

very recent paper provided a genuinely different algorithm to solve

the problem for Δ ≥ poly log𝑛, making a fix unnecessary [27]. For

the Lovász Local Lemma problem, one can use the algorithm by

Chung, Pettie and Su to solve the problem in 𝑂 (log𝑛) rounds [18],
which is faster than the𝑂 (Δ2) + poly log log𝑛 rounds of [26] when

Δ ≥ poly log𝑛. Last but not least, let us remark that the state-of-

the-art randomized (Δ + 1)-coloring algorithms are not impacted

by the flaw as they only rely on shattering when Δ ≤ poly log𝑛

[16, 43]. For more details on the background of Theorem 1.4 and our

solutions, see Section 3 and [54, Section 7]. Note that Theorem 1.4

is also central to countless results in the literature as the algorithm

belongs to the most used subroutines in the area. Also Theorem 1.2

and Corollary 1.3 rely on extensions of the algorithmic ideas used

for Theorem 1.4.

1.2 Why Should We Care About Problems on
Power Graphs?

We have already mentioned that ruling sets of power graphs are

important subroutines. In this section, we provide various further

reasons for studying CONGEST algorithms on power graphs.

Derandomization and learning distant information. The main

challenge when working with power graphs is that even though

we aim at solving problems on 𝐺𝑘
, the communication network

is just 𝐺 itself and a node cannot immediately communicate with

its neighbors in 𝐺𝑘
. For an example, consider the simple task of

learning some small individual piece information from each of your

neighbors. In 𝐺 , this problem is trivial and can clearly be achieved

in a singleCONGEST round. However, as soon as we turn to𝐺2
, we

suffer a huge overhead in the number of rounds. Solving this task

requires Ω(Δ) rounds in the worst case, where Δ is the maximum

degree of the graph which may be very large.

But learning large amounts of information that is not stored at

immediate neighbors of 𝐺 is an important ingredient of recent effi-

cient LOCAL algorithms. Prime examples of this behavior are the

general derandomization results [36, 39, 57] in the LOCAL model.

Note that besides the aspect of learning large amounts of informa-

tion, another crucial ingredient to these results is the computation

of so called network decompositions of the power graph 𝐺𝑘
, usu-

ally for a non-constant 𝑘 . It is a major open problem of the area to

determine for which type of problems such derandomizations can

be obtained in the CONGEST model.

On the positive side, for selected problems on 𝐺 , there are ef-

ficient CONGEST algorithms that are all based on limiting the

amount of information that one has to aggregate for an efficient

derandomization of a (simple) randomized procedure. Examples

are given by algorithms for (Δ + 1)-coloring [10, 38], MIS [15, 25],

or minimum dominating set approximations [21, 25]. Our spar-

sification results are also based on derandomization (in a more

extreme setting) and hence add to the class of problems that can be

efficiently derandomized in the CONGEST model. In Section 3 we

detail on how we circumvent the necessity to learn large amounts

of information used by the sparsification process.

Power graph and virtual graph problems as subroutines. Another
prevalent ingredient to many recent results is that they solve in-

termediate problems on virtual graphs. For example, in the state of

the art deterministic algorithm for MIS in LOCAL and CONGEST,
we must simulate an algorithm (for some intermediate problem) on

𝐺2
[25]. Hence, despite the fact that we consider the setting where

the communication network equals the input graph, intermediate

steps require solving problems on power graphs. In LOCAL, the
unbounded message sizes allow us to communicate in 𝐺2

with a

constant overhead and hence, algorithms for the intermediate steps

in the virtual graph 𝐺2
are straight-forward to implement with

a constant overhead in the runtime. In contrast, handling these

intermediate steps is much more involved in the CONGEST model.

In general, we believe that the study of power graph problems

contributes to the general important theme of detaching the in-

put graph from the communication network. Problems on power

graphs serve as a clean abstraction to develop tools that can be used

whenever the problem instance and the communication network

are not exactly the same.

Robustness of algorithms and techniques. More broadly, studying

problems on power graphs also serves as a clean abstraction to

develop algorithmic techniques that are robust in the sense that

they can work in settings with stronger communication restrictions.

In the long run we also expect this kind of research to lead to

algorithms that are more model independent. For example, many

recentMPC algorithms are fast implementations of communication

efficient LOCAL or CONGEST algorithms [7, 17, 19, 20, 40]. An

extreme case of communication efficiency are algorithms in the

159

PODC ’23, June 19–23, 2023, Orlando, FL, USA Yannic Maus, Saku Peltonen, and Jara Uitto

beeping model which is similar to the CONGEST model with 1-

bit messages. An excellent example is the pre-shattering phase of

Ghaffari’s MIS algorithm that when computing an MIS for𝐺 works

in the beeping model [32]. Due to its robust design, it has been

used (with slight adaptations) to obtain the state-of-the-art in other

settings, such as MPC and LCA [34, 40]. Theorem 1.2 is also based

on an extension of this result to𝐺𝑘
that works in a stronger version

of the beeping model, allowing 𝑂 (log log𝑛)-sized messages. See

[54, Section 8] for details.

Another aspect that makes algorithms for power graphs more

robust is that they have to operate in the setting where nodes do not

know their degree (in 𝐺𝑘
). Even though there are ways to remove

the necessity of knowing your degree from an algorithm [47], these

cannot be applied in a black-box manner in all settings.

1.3 Further Related Work
Recent years have seen several results for problems in power graphs

in the CONGEST model, reaching from verifying solutions effi-

ciently (or showing that this is not possible) [29], and answering

several computational questions in the settings, e.g., for the already

discussed problem of distance-2 coloring [41, 42] or optimization

problems [11].

Ruling sets. We first focus on results in LOCAL. We have already

discussed the deterministic ruling set algorithm of [45, 50, 59]. Actu-

ally, the result is more general and it provides an 𝑂 (log𝐵 𝐶)-ruling
set of𝐺 in𝑂 (𝐵 · log𝐵 𝐶) time if the graph is equipped with a vertex

coloring with 𝐶 colors. By choosing the parameter 𝐵 appropriately

and combining it with Linial’s algorithm that computes a 𝑂 (Δ2)-
coloring in 𝑂 (log

∗ 𝑛) rounds, one can compute a 𝛽-ruling set in

𝑂 (𝛽 · Δ2/𝛽 + log
∗ 𝑛) rounds.

Gfeller and Vicari [30] provide a randomized sparsification

algorithm to compute a 𝑂 (log log𝑛)-dominating set
2 𝑆 ⊆ 𝑉 in

𝑂 (log log𝑛) rounds, such that the maximum degree of 𝐺 [𝑆] is

𝑂 (log
5 𝑛). This can be combined with the aforementioned approach

to obtain a randomized an 𝑂 (log log𝑛)-ruling set algorithm with

round complexity 𝑂 (log log𝑛). Ghaffari extends this approach to

𝐺𝑘
in the CONGEST model and obtains an 𝑂 (𝑘 log log𝑛)-ruling

set in 𝑂 (𝑘2
log log𝑛) rounds [33].

Kothapalli and Pemmaraju [48] provide another sparsification

method that computes a dominating set with degree 𝑂 (Δ′
log𝑛)

in 𝑂 (logΔ/logΔ′) rounds. Ghaffari uses multiple iterations of this

sparsification method to compute a 𝛽-ruling set in 𝑂 (𝛽 log
1/𝛽 Δ) +

poly log log𝑛 rounds in LOCAL [31]. He also provides similar but

slightly weaker results in CONGEST [33].

The recently developed powerful round elimination technique

[14] has been used to prove lower bounds for the computation

of ruling sets in LOCAL [8, 9]. Parameterized by the number of

nodes the lower bounds for 𝛽-ruling sets is Ω(log𝑛/(𝛽 log log𝑛))
for deterministic algorithms and Ω(log log𝑛/(𝛽 log log log𝑛)) for
randomized algorithms, as long as 𝛽 is at most ≈

√
log𝑛/log log𝑛

and ≈
√

log log𝑛/log log log𝑛, respectively. As a function of the

maximum degree Δ, the lower bound is Ω(𝛽 ·Δ1/𝛽). In [54, Table 1],

2
The definition of ruling sets is different in [30]: what we refer to as a 𝑡 -dominating

set is called a 𝑡 -ruling set in [30], while a (2, 𝑡)-ruling set is called an independent

𝑡 -ruling set.

we provide an overview of known ruling set and MIS algorithms

and contrast them with our results.

Related work for graph sparsification. A fundamental building

block of our most involved result (Theorem 1.1) is the method of

graph sparsification [2, 5, 19, 20, 32, 40, 44]. Roughly speaking, the

idea is to turn the input graph into a sparser representation that still

allows us to solve the given problem. Sparsification has been used

in many different settings and computational models and often the

exact properties we want from the sparsification vary depending

on the setting.

Global sparsification. In models with 𝑂 (𝑛) memory, such as

streaming, sketching, congested clique, and linear memory MPC,

the goal is to reduce the total (global) number of edges in the

graph. If the sparser representation has roughly 𝑛 edges, then it

can be processed locally in constant time. For example, the cur-

rent state-of-the-art for connectivity/MST [46, 55], MIS [1, 35], and

(Δ + 1)-vertex-coloring (and list-coloring) [3, 5, 17, 20] are based

on this method.

Local sparsification.Another sparsification approach is to sparsify
the graph locally. To get an intuition, suppose that the output of

each node 𝑣 depends only on some local information, i.e., the output

of node 𝑣 can be decided by examining the graph in the small𝑇 -hop

neighborhood around node 𝑣 . Then, a local sparsification reduces

the number of edges in that neighborhood and, at the same time,

preserves the property that a correct output for 𝑣 can be determined

from the local neighborhood of 𝑣 in the sparser graph. Combined

with the memory-hungry graph exponentiation technique [51], this

approach has been successfully used in sublinear models such as

the low-space MPC model. For example, the current state-of-the-art

for MIS [19, 40] and (Δ + 1)-vertex-coloring [17, 20] are based on

this method.

In the context of the CONGEST model, locally sparsifying the

communication graph is a natural way to avoid congestion. In one

previous work, this line of thinking was used for vertex coloring

𝐺2
[41]. However, in the context of coloring, one can split the

problem into independent instances with disjoint color palettes.

This property creates a fundamental difference between coloring

and other symmetry breaking problems, such as MIS and ruling sets,

which do not enjoy the luxury of splitting into disjoint instances.

Sparsified graphs are also of independent interest, for example in

the context of finding distance preserving spanners, both in cases

of linear memory models [22, 23] and local sparsification [28].

1.4 Roadmap
Space constraints prevent us from providing full details in the

proceedings version of the paper. We compromise with a rather

detailed technical overview that we present in Section 3. See [54] for

the full version of the paper. Section 2 introduces our notation and

tools on limited independence. As mentioned in the introduction,

our main technical contribution is a deterministic sparsification

lemma for power graphs (see Lemma 3.1 in Section 3 for the precise

statement). In Section 4, we provide the essential ingredients for this

sparsification lemma. It is based on derandomizing a randomized

sparsification procedure via the method of conditional expectation.

In Section 4.1 we present the randomized process and prove the

properties that are necessary for its derandomization. In Section 4.2

160

Distributed Symmetry Breaking on Power Graphs via Sparsification PODC ’23, June 19–23, 2023, Orlando, FL, USA

we sketch the most crucial ingredients for the derandomization.

Finally, in Section 4.3 we describe how to simulate the deterministic

sparsification algorithm on power graphs to iteratively sparsify

𝐺,𝐺2, . . . ,𝐺𝑘
.

2 NOTATION AND 𝑘-WISE INDEPENDENT
RANDOM VARIABLES

We always use 𝐺 = (𝑉 , 𝐸) to refer to the original input graph.

Similarly, the degree 𝑑 (𝑣) and (non-inclusive) neighborhood 𝑁 (𝑣)
of a vertex do not change throughout our algorithms. For 𝑠 ≥ 0,

the power graph 𝐺𝑠
is the graph where 𝑉 (𝐺𝑠) = 𝑉 and 𝐸 (𝐺𝑠) =

{{𝑣,𝑤} ∈ 𝑉 ×𝑉 : dist𝐺 (𝑣,𝑤) ≤ 𝑠}. A subgraph of the power graph

induced by a set of nodes 𝑋 is denoted𝐺𝑠 [𝑋]. Note that this is not
the same as (𝐺 [𝑋])𝑠 : the latter only contains edges formed by paths

only using nodes in 𝑋 . 𝑁 𝑠 (𝑣) is called the distance-𝑠 neighborhood
of 𝑣 , which is the neighborhood of 𝑣 in 𝐺𝑠

. Let 𝑑𝑠 (𝑣) := |𝑁 𝑠 (𝑣) |.
For any 𝑋 ⊆ 𝑉 , let 𝑁 𝑠 (𝑋) := ∪𝑣∈𝑋𝑁 𝑠 (𝑣). We use distance-𝑠 𝑋 -
neighborhood to refer to 𝑁 𝑠 (𝑣, 𝑋) := 𝑁 𝑠 (𝑣)∩𝑋 . Distance-𝑠 𝑋 -degree
is defined as 𝑑𝑠 (𝑣, 𝑋) := |𝑁 𝑠 (𝑣, 𝑋) |.

I ⊆ 𝑉 is 𝛼-independent in 𝐺 , if for all distinct 𝑣,𝑤 ∈ I,
dist𝐺 (𝑣,𝑤) ≥ 𝛼 . For 𝛼 = 2, we simply say that I is independent in
𝐺 . For any 𝑆 ⊆ 𝑉 , 𝑄 ⊆ 𝑆 is a 𝛽-dominating set of 𝑆 , if for all 𝑢 ∈ 𝑆 ,

there exists some 𝑣 ∈ 𝑄 such that dist𝐺 (𝑢, 𝑣) ≤ 𝛽 . When 𝑆 = 𝑉 ,

we say that 𝑄 is a 𝛽-dominating set. An (𝛼, 𝛽)-ruling set of a graph
𝐺 = (𝑉 , 𝐸) is a subset 𝑄 ⊆ 𝑉 , such that 𝑄 is 𝛼-independent and

𝛽-dominating. 𝛼 and 𝛽 are generally referred to as the independence
and domination parameters, respectively. Note that a (2, 1)-ruling
set is a maximal independent set of𝐺 and a (𝑘 + 1, 𝑘)-ruling set is a
maximal independent set of 𝐺𝑘

. A set 𝑆 ⊆ 𝑉 is 𝑘-connected in 𝐺 if

for all 𝑆 ′ ⊂ 𝑆 : dist𝐺 (𝑆 ′, 𝑆 \ 𝑆) ≤ 𝑘 . Equivalently, 𝑆 is 𝑘-connected

if 𝐺𝑘 [𝑆] is connected.
A collection of discrete random variables 𝑋1, . . . , 𝑋𝑛 is 𝑘-wise

independent if for any 𝐼 ⊆ [𝑛] with |𝐼 | ≤ 𝑘 and any values 𝑥𝑖 ,

we have P(∧𝑖∈𝐼𝑋𝑖 = 𝑥𝑖) =
∏

𝑖∈𝐼 P(𝑋𝑖 = 𝑥𝑖). We can simulate such

variables by picking a random hash function from a family of 𝑘-wise

independent hash functions:

Definition 2.1. For 𝑁, 𝐿, 𝑘 ∈ N such that 𝑘 ≤ 𝑁 , a family of

functions H = {ℎ : [𝑁] → [𝐿]} is 𝑘-wise independent if for all
distinct 𝑥1, . . . , 𝑥𝑘 ∈ [𝑁], the random variables ℎ(𝑥1), . . . , ℎ(𝑥𝑘)
are independent and uniformly distributed in [𝐿] when ℎ is chosen

uniformly at random from H .

Lemma 2.2 (Corollary 3.34 in [60]). For every 𝑎, 𝑏, 𝑘 , there is a
family of 𝑘-wise independent hash functions H = {ℎ : {0, 1}𝑎 →
{0, 1}𝑏 } such that choosing a random function from H takes 𝑘 ·
max{𝑎, 𝑏} random bits, and evaluating a function fromH takes time
poly(𝑎, 𝑏, 𝑘).

3 TECHNICAL OVERVIEW
3.1 Deterministic Sparsification
Our main technical ingredient is a deterministic sparsification pro-

cedure. From a high level point of view, we gradually sparsify

the input graph, i.e., we compute a sequence of sparser node sets

𝑉 ⊇ 𝑄0 ⊇ 𝑄1 ⊇ . . . ⊇ 𝑄𝑘 , while ensuring that every node in 𝑉

remains within constant distance of the set. More precisely, for

each 1 ≤ 𝑠 ≤ 𝑘 , the distance from any node in 𝑄𝑠−1 to 𝑄𝑠 is at

most 2 in 𝐺𝑠
(at most 2𝑠 in 𝐺), and the set 𝑄𝑠 is sparse in 𝐺

𝑠
, that

is, every node has a bounded number of 𝑄𝑠 -neighbors in 𝐺𝑠
. We

use the sparsity of 𝑄𝑠 to efficiently limit the congestion when com-

puting the sparser set 𝑄𝑠+1. At the end 𝑄𝑘−1
is sparse enough to

efficiently simulate any algorithm on 𝐺𝑘 [𝑄𝑘−1
], i.e., the subgraph

of 𝐺𝑘
induced by 𝑄𝑘−1

. For example, to compute a 𝑘-ruling set of

𝐺𝑘
, we can use sparsification to find 𝑄𝑘−1

and then compute an

MIS of𝑄𝑘−1
on the power graph𝐺𝑘

, where only nodes in𝑄𝑘−1
are

allowed to enter the MIS.

We believe that this sparsification procedure is of independent

interest and may be helpful for other problems and in other models

of computation. We summarize it in the next lemma. Recall, the

distance-𝑘 𝑄-degree of a node 𝑣 is the number of neighbors in

𝑁𝑘 (𝑣) ∩𝑄 .

Lemma 3.1 (Sparsification in Power Graphs). Let 𝑘 ≥ 1 (po-
tentially a function of𝑛). There is a deterministic distributed algorithm
that, given a subset 𝑄0 ⊆ 𝑉 , finds a set of vertices 𝑄 ⊆ 𝑄0 such that
for all 𝑣 ∈ 𝑉 ,

• (bounded distance-𝑘 𝑄-degree):𝑑𝑘 (𝑣,𝑄) ≤ 72 log𝑛 = 𝑂 (log𝑛)
• (domination): dist𝐺 (𝑣,𝑄) ≤ 𝑘2 + 𝑘 + dist𝐺 (𝑣,𝑄0)

The algorithm runs in 𝑂 (diam(𝐺) · 𝑘 · log
2 𝑛 · logΔ + 𝑘2 · logΔ)

rounds in the CONGEST model.

Using a network decomposition, we can replace the diameter

factor in Lemma 3.1 with 𝑂 (𝑘 · log𝑛) (see [54, Section 5.4] for

more details and in particular [54, Lemma 5.8] for the precise state-

ment). For 𝑘 = 1 (and if initialized with 𝑄0 = 𝑉), we obtain a

polylogarithmic-round algorithm to compute a set 𝑄 with domina-

tion distance 2, such that all nodes have at most𝑂 (log𝑛) neighbors
in 𝑄 . Note that the degree bound is a local property. If one instead
wants to compute a set with the same domination distance and glob-
ally minimize its size, it is known that even constant approximation

algorithms require near-quadratic time in CONGEST [11].

How does the sparsification work? The core idea of our deter-

ministic sparsification is to derandomize the following randomized

sampling algorithm: First assume that the graph 𝐺𝑘
is Δ𝑘 -regular.

We can sample every node with probability 𝑂 (log𝑛/Δ𝑘) into a set

𝑄 . Then every node in𝑉 getsΘ(log𝑛) distance-𝑘 𝑄-neighbors, with

high probability. Even though this is a trivial 0-round algorithm,

it is non-trivial to derandomize it, as the constraints imposed by

the nodes depend on the decision of nodes in distance Θ(𝑘). Gener-
ally, there is little hope that one can directly (and deterministically)

find good random bits (aka good conditions) in order to fulfill the

constraints of all nodes. Instead, we perform a more fine-grained

sparsification method, in which we gradually sparsify the graph,

each time slightly losing in the domination property. This can be

viewed as first computing the set 𝑄𝑘 for 𝑘 = 1, then for 𝑘 = 2, and

so on.

Continuing in the randomized setting, we explain our approach

for finding 𝑄1 in 𝐺 . The sampling algorithm has two objectives.

For all 𝑣 ∈ 𝑉 , the number of neighbors in 𝑄1 should be at most

𝑂 (log𝑛), while the distance to 𝑄1 should be at most 2 (or at most

some constant). Since degrees are not uniform, it is difficult to find

the right sampling probability that satisfies the two objectives for

all nodes. Hence, the process is slowed down to 𝑂 (logΔ) stages.
All nodes in 𝑄0 start as active (𝑄0 = 𝑉 in our applications). In

161

PODC ’23, June 19–23, 2023, Orlando, FL, USA Yannic Maus, Saku Peltonen, and Jara Uitto

each stage, we sample active nodes to 𝑄1. Initially, the sampling

probability is low, so that high degree nodes get at least one sam-

pled neighbor, while not exceeding the 𝑂 (log𝑛) bound. At the end
of each stage, the distance-2 neighborhood of sampled nodes is

deactivated. This guarantees that high degree nodes do not get

more sampled neighbors in later stages, effectively decreasing the

maximum active degree. The decrease in active degree means that

we can sample in the next stage with a slightly higher probability.

In the end, only nodes with low active degree remain, which can

be included in the sampled set. The result 𝑄1 is a 2-dominating set,

while all 𝑣 ∈ 𝑉 have at most 𝑂 (log𝑛) 𝑄1-neighbors.

Sparsifying𝐺 . Our deterministic sparsification for𝐺 is based on

derandomizing the previous sampling algorithm. The randomized

analysis works with 𝑂 (log𝑛)-wise independence. This allows sim-

ulating the randomness in one stage with a 𝑂 (log
2 𝑛)-bit random

seed. Derandomization is done stage by stage, using the method

of conditional expectations. In each stage, we need to guarantee

two events: (1) each node gets at most 𝑂 (log𝑛) sampled neigh-

bors, while (2) each high active degree node gets at least one of its

neighbors sampled. Both events only depend on the events in the

immediate neighborhood in 𝐺 , which makes the required informa-

tion easily available for each node. The bits of the seed are fixed

one by one. In order to fix a single bit 𝑏 (to 0 or 1) of the seed, each

node computes conditional expectations for its two events, for both

choices of 𝑏. To compute the conditional expectations, a node needs

to know the values of the already fixed bits of the seed and the IDs

of its active neighbors. In𝐺 , learning the relevant identifiers can be

done in one round, because the two events are determined by the

decisions of active neighbors in the immediate neighborhood. Then,

the conditional expectations of all nodes are aggregated (summed

up) at a leader node who can then decide on the better choice for

the bit 𝑏. Then all nodes proceed with the next bit. The method of

conditional expectation implies that all nodes’ events hold at the

end of this process.

Sparsifying power graphs. Fix some 1 ≤ 𝑠 ≤ 𝑘 . The 𝑠th iteration
of the sparsification is simulated on the power graph𝐺𝑠

. The output

of the previous iteration acts as the initial set of active nodes 𝑄𝑠−1.

The 𝑠th iteration results in 𝑄𝑠 ⊆ 𝑄𝑠−1, where 𝑄𝑠 is sparse in 𝐺𝑠
,

while weakening the domination distance of 𝑄𝑠−1 by at most 2 in

𝐺𝑠
(or 2𝑠 in𝐺). The sum of increases in distance over 𝑠 iterations is∑𝑠

𝑗=1
2 𝑗 ≤ 𝑠2 + 𝑠 , hence 𝑄𝑠 is a (𝑠2 + 𝑠)-dominating set of 𝐺 (when

initialized with 𝑄0 = 𝑉).

A main challenge of our work is to ensure that all nodes can

obtain the necessary information for derandomization (distance-𝑠

neighbor’s random bits and IDs) when sparsifying power graphs.

To guarantee sparsity in 𝐺𝑠
, all nodes must remain as observers

(and also relay messages), taking part in the derandomization. Here,

in a nutshell, the sparsity with regard to the previous iteration

helps to learn the required information. More formally, we build

communication tools to efficiently run the algorithm on𝐺𝑠
, relying

on the sparsity of 𝑄𝑠−1.

Communication tools. In order to benefit from the sparsity of

𝑄 := 𝑄𝑠 , we develop communication tools (see [54, Lemma 4.2])

that allow us to execute basic communication primitives on power

graphs. The sparsity of 𝑄 in 𝐺𝑠
can be used to efficiently send

messages from 𝑄 to their neighbors in 𝐺𝑠+1
. The communication

algorithms include sending broadcasts from nodes in 𝑄 to their

neighbors in𝐺𝑠+1
in𝑂 (𝑠 + log𝑛) rounds, and simulating one round

of a CONGEST algorithm on𝐺𝑠+1 [𝑄] in𝑂 (𝑠 + log
2 𝑛) rounds (then,

one can basically assume that the algorithm is running on the

communication network 𝐺𝑠+1 [𝑄] with 𝑂 (𝑠 + log
2 𝑛) overhead).

The efficiency is based on the bounded number Δ̂ of distance-𝑠

neighbors in 𝑄 for all nodes in 𝐺 . This effectively bounds the

number of messages forwarded through any edge in the graph. For

example with broadcasts, for any edge {𝑣,𝑤} of the communication

network, the number of nodes 𝑥 ∈ 𝑄 whose broadcast must be

forwarded from 𝑣 to𝑤 is at most 𝑑𝑠 (𝑣,𝑄) ≤ Δ̂, because the message

is forwarded for at most 𝑠 + 1 hops. The communication tools are

also used to obtain the sparsification lemma (Lemma 3.1), where

the sparsity of 𝑄𝑠 in 𝐺𝑠
is used to run the (𝑠 + 1)th iteration of

sparsification on 𝐺𝑠+1
efficiently. In our ruling set application, we

use the communication tools to simulate an MIS algorithm on 𝐺𝑘
.

Deterministic 𝑘-ruling set of𝐺𝑘 . Our deterministic sparsification

algorithm is used to compute a sparse subset𝑄 := 𝑄𝑘−1
⊆ 𝑉 , while

maintaining constant domination distance to the rest of the graph.

After sparsifying the graph, we compute an MIS of 𝐺𝑘 [𝑄]. Using
our communication tools, we can simulate any MIS algorithm on

𝐺𝑘 [𝑄] in a black-box manner. In general, this approach yields a (𝑘+
1, 𝛽+𝑘)-ruling set of𝐺 , where 𝛽 is the domination distance of𝑄 (see

[54, Lemma 6.3] for the formal statement). With our sparsification

algorithm, the result is a (𝑘 + 1, 𝑘2)-ruling set of 𝐺 , or equivalently

a 𝑘-ruling set of𝐺𝑘
. Messaging between distance-𝑘 neighbors in 𝑄

can be implemented with a (𝑘+ log
2 𝑛)-factor slowdown. Combined

with the state of the art MIS algorithm [25], we compute a (𝑘+1, 𝑘2)-
ruling set in poly(𝑘, log𝑛)-rounds (Theorem 1.1). For a constant

𝑘 > 1 this improves exponentially upon prior work that required

𝑂 (𝑘2 · 𝑛1/𝑘) rounds [24, 50, 59].

3.2 Randomized MIS of 𝐺𝑘

For our randomized results, we use the shattering framework, where

a randomized base algorithm is used to solve the problem efficiently

on most parts of the graph. The remaining connected components

(in𝐺𝑘
) are small, with high probability. The small connected com-

ponents are solved with a different algorithm. Also see the next

paragraph on Theorem 1.4 for further details on the shattering

framework. For the base algorithm, we cannot use a black-box

simulation of Ghaffari’s MIS algorithm from [31], as simulation

on 𝐺𝑘
would be prohibitively expensive. Hence, we use the Beep-

ingMIS algorithm of [32] (with a minor but crucial modification),

which works in a simple beeping model of communication. How-

ever, we need to be careful when forwarding the beeps: With cycles

in the communication network, nodes may confuse the beep of a

neighbor with that of their own, when 𝑘 ≥ 3. To avoid this, we

equip the beeps with an identifier of the beeping node. Nodes for-

ward an arbitrary subset of at most two beeps, which is enough

for any beeping node to distinguish if there is a beeping neighbor

or not. In the post-shattering phase, the remaining unsolved parts

of the graph form small connected components in 𝐺𝑘
, each with

𝑁 = 𝑂 (Δ4𝑘 · log𝑛) nodes, with high probability. To find a solu-

tion in the remaining components, we run 𝑂 (log𝑁 𝑛) executions

162

Distributed Symmetry Breaking on Power Graphs via Sparsification PODC ’23, June 19–23, 2023, Orlando, FL, USA

of the BeepingMIS algorithm in parallel, which guarantees that at

least one of the executions succeeds, with high probability in 𝑛.

To limit congestion, we assign unique IDs to the nodes in the con-

nected component from [𝑁]. This bounds the total communication

to 𝑂 (log𝑁 𝑛 · log𝑁) = 𝑂 (log𝑛) (for simulating one step for all

instances). This approach achieves the same runtime as the state of

the art algorithm for MIS of 𝐺 [33], up to slowdown factors of 𝑘 .

3.3 Shattering in 𝐺 , in LOCAL and CONGEST.
Since the seminal work of [12] the shattering technique has become

an essential tool in the area. The technique has two phases. In the

pre-shattering phase the problem at hand (e.g., the MIS problem) is

solved in large parts of the graph via a very efficient randomized

process such that with high probability only small components—

think of components of polylogarithmic size—remain afterwards. In

the post-shattering phase one employs a different algorithm, usually

a deterministic algorithm, that finishes the small components very

efficiently by exploiting their small size. The difficulty here is that

the components are actually of size polyΔ · log𝑛, which is not small

for large values of Δ.
Fortunately, components have further beneficial properties: Fix

a small component 𝐶 and some suitable 𝛽 and 𝛼 ≥ 5 (the constant

5 depends on the properties of the pre-shattering phase and works

for the MIS algorithms in [12, 31, 33], other problems may need

other values). Then it is known that any (𝛼, 𝛽)-ruling set 𝑅𝐶 of 𝐶

has at most 𝑂 (log𝑛) nodes. If we had such a ruling set available,

we could exploit its size algorithmically by creating a virtual graph

as follows: Each node in 𝑅𝐶 forms a connected ball of nodes around
it, such that each node in𝐶 joins a unique ball. Then, one can build

a virtual graph 𝐻 with one vertex for each such ball. Two balls

are connected in 𝐻 if the respective balls contain nodes that are

adjacent in the original graph 𝐺 . Since |𝑉 (𝐻𝐶) | = |𝑅𝐶 | = 𝑂 (log𝑛),
and since one round of communication in𝐻𝐶 can be simulated in𝐺

in 𝑂 (𝛽) rounds (in the LOCAL model) one can compute a network

decomposition (ND) of 𝐻 very efficiently, e.g., with the algorithm

of [57]. The details do not matter for the current exposition, but it

is known that an ND of 𝐻𝐶 implies an ND of 𝐶 which can be used

to compute an MIS on 𝐶 .

The challenge. The challenge is that it is unclear how to compute

a ruling set 𝑅𝐶 . The algorithm would have to run on all small

components in parallel and running it on the induced subgraph

does not work as the resulting ruling set needs to be 5-independent

in 𝐺 ; 5-independence in 𝐺 [𝐶] is insufficient. It is also critical if a

node 𝑣 ∈ 𝐶, 𝑣 ≠ 𝑅𝐶 is dominated by some node in the ruling set

of some other small component 𝐶 ′ ≠ 𝐶 . To illustrate the difficulty,

observe that a node cannot tell efficientlywhether a node in distance

5 in 𝐺 is in the same small component as itself or not. Hence, the

nodes cannot easily determine whether they can both be contained

in the ruling set or not.

The solution. Inspired by a combination of the different versions

of [12], we present the following solution. After the pre-shattering

phase, we perform a second randomized pre-shattering phase that

is run on all small components in parallel (it works w.h.p. in 𝑛 and

there are at most 𝑛 components so we can perform a union-bound

over the error probabilities of different components). It splits each

component into so called tiny components. Then, we prove the

following lemma.

Lemma (Informal version of [54] Lemma 7.5). Let 𝛼 = 5 and let 𝛽
be an integer and consider a small component 𝐶 . Then, each (𝛼, 𝛽)-
ruling set of its tiny components has at most 𝑂 (log𝑛) nodes. Both
distances of the ruling set are measured in the graph induced by 𝐶
and the bound on the size even holds if a node of one tiny component
is dominated by a node in another tiny component.

The benefit of this lemma is that we can run a ruling set algorithm

(in order to dominate all remaining nodes in tiny components) on

the graph induced by the small components, making the algorithm

fully independent between different small components. Instead of

worrying whether a node in distance 5 in 𝐺 is within the same

component as oneself, one can simply ignore all edges that are

not contained in 𝐺 [𝐶] and work in the graph induced by small

components.

Proof of the lemma. While the whole setup is rather complicated

and very similar to the one in [12], the proof of the lemma is very

simple. If we fix one specific ruling set 𝑅𝐶 as in the lemma, then

the core shattering argument of [12] states that w.h.p. in 𝑛 the

set 𝑅𝐶 is of size 𝑂 (log𝑛). The intuitive reason for this fact is that

each node only remains undecided with a small probability and

these events are independent for nodes that are at least 5 hops

apart. Hence, w.h.p. not more than 𝑂 (log𝑛) nodes with pairwise

distance 5 can remain undecided. Now, we obtain the lemma by

performing a union bound over all such ruling sets. The crucial

point in this solution is that one can rely on the small size of 𝐶

(that holds w.h.p. after the first pre-shattering phase) to show that

there are only poly𝑛 many of these sets making the union bound a

feasible approach.
3

Previous solutions. The arXiv version of [12] has a very simi-

lar two-phase setup, but uses a different (and faulty
4
) approach to

prove a statement that is similar to our lemma. The (correct) journal

version of [12] also uses a similar two-phase structure, but then uses

a different and more involved argument to show that a network

decomposition of the virtual graph 𝐻 can be computed efficiently.

Besides some other technical details, the main difference is that

they show that each ball satisfies certain power graph connectivity

requirements if nodes are assigned to rulers on-the-fly while com-

puting the ruling set (their proof is insufficient if nodes simply join

the ball of the closest ruler). Hence, the proof requires internals of

the used ruling set algorithm and it is difficult to formally black-box

it, as it is done in later works.

Our second solution. Our second solution shows that using the

internals of current state-of-the-art ruling set algorithms one can

omit the second pre-shattering phase. While this is simpler than the

proof in the journal version of [12], we believe that our solution that

is based on the two-phase structure is more approachable. However,

the version with a single pre-shattering phase is easier to generalize

to 𝐺𝑘
, which is needed for Theorem 1.2 and Corollary 1.3.

3
The informed reader will notice that this is different from (and simpler than) the

standard proof for showing that small components emerge after the first pre-shattering

phase. In that setting a similar union-bound is not possible.

4
See [54, Section 7] for details.

163

PODC ’23, June 19–23, 2023, Orlando, FL, USA Yannic Maus, Saku Peltonen, and Jara Uitto

Algorithm 1: Randomized sparsification

Input: Δ𝐴 ≥ max𝑣∈𝑉 𝑑 (𝑣, 𝐴), Each 𝑣 ∈ 𝑉 knows if it is in a

set of initially active nodes 𝐴 ⊆ 𝑉 .

Set 𝑟 := ⌊logΔ𝐴 − log log𝑛⌋ − 5 and 𝐻1 := 𝐴

for stage 𝑖 = 1, . . . , 𝑟 :
𝑀𝑖 := ∅
foreach 𝑣 ∈ 𝐻𝑖 in parallel :

Join𝑀𝑖 with probability
24·2𝑖 ·log𝑛

Δ𝐴

𝐻𝑖+1 := 𝐻𝑖 \ (𝑀𝑖 ∪ 𝑁 2 (𝑀𝑖))
𝑀𝑟+1 := 𝐻𝑟+1

return 𝑄 := ∪𝑟+1

𝑖=1
𝑀𝑖

4 SPARSIFICATION OF POWER GRAPHS
The goal of this section is to prove Lemma 3.1, our main sparsifi-

cation result for power graphs. First, in the next two sections, we

prove the following deterministic sparsification result. Lemma 4.1

is standalone and does not refer to power graphs. In Section 4.3,

we use it iteratively to obtain a sequence 𝑉 ⊇ 𝑄1 ⊇ 𝑄2 ⊇ . . . ⊇ 𝑄𝑘

where 𝑄𝑖 is sparse in the power graph 𝐺𝑖
.

Lemma 4.1 (Deterministic Sparsification). Let 𝐴 ⊆ 𝑉 be a
set of initially active vertices. There is a deterministic distributed
algorithm that finds a set of vertices 𝑄 ⊆ 𝐴 such that for all 𝑣 ∈ 𝑉 ,

• (bounded 𝑄-degree): 𝑑 (𝑣,𝑄) ≤ 72 log𝑛 = 𝑂 (log𝑛)
• (domination): dist𝐺 (𝑣,𝑄) ≤ 2 + dist𝐺 (𝑣, 𝐴)

Let Δ𝐴 ≥ max𝑣∈𝑉 𝑑 (𝑣, 𝐴) be an input parameter given to all nodes,
which is at least the maximum number of active neighbors and a
power of 2. The algorithm runs in𝑂 (diam(𝐺) · log

2 𝑛 · logΔ𝐴) rounds
in CONGEST.

4.1 Randomized Sparsification via Sampling
We start with a randomized sparsification algorithm to find a certain

sparse set of vertices, satisfying the properties of Lemma 4.1, with

high probability. See Algorithm 1. The algorithm consists of 𝑟 :=

⌊logΔ𝐴 − log log𝑛⌋ − 5 stages. Let 𝐻1 := 𝐴, where𝐴 ⊆ 𝑉 is any set

of initially active nodes. For 1 ≤ 𝑖 ≤ 𝑟 , 𝐻𝑖 is a set of active nodes in
the respective stage. In each stage 𝑖 , we sample a set𝑀𝑖 ⊆ 𝐻𝑖 . Each

node 𝑣 ∈ 𝐻𝑖 is included in𝑀𝑖 with probability
24·2𝑖 ·log𝑛

Δ𝐴
, where the

decisions of the nodes are 8 log𝑛-wise independent. We deactivate

all sampled nodes, as well as active nodes that have a sampled

node within 2 hops in 𝐺 . This is done by sending a flag from each

sampled node, propagated for two hops, where multiple incoming

flags can be forwarded as one. Once nodes are deactivated, they stay

inactive forever. Let 𝐻𝑖+1 = 𝐻𝑖 \ (𝑀𝑖 ∪ 𝑁 2 (𝑀𝑖)) be the remaining

active nodes. After 𝑟 stages, the algorithm returns 𝑄 := ∪𝑟+1

𝑖=1
𝑀𝑖 ,

consisting of the sampled sets𝑀1, . . . , 𝑀𝑟 and the remaining active

nodes𝑀𝑟+1 := 𝐻𝑟+1.

Definition 4.2 (Active degree). For 𝑣 ∈ 𝑉 , its active degree in stage

𝑖 is defined as 𝑑 (𝑣, 𝐻𝑖). We say that 𝑣 ∈ 𝑉 has a high active degree
in stage 𝑖 if 𝑑 (𝑣, 𝐻𝑖) ≥ Δ𝐴/2

𝑖
.

The active degree of a node changes throughout the algorithm. Note

that inactive nodes are never reactivated, so we have 𝑑 (𝑣, 𝐻1) ≥
𝑑 (𝑣, 𝐻2) ≥ · · · ≥ 𝑑 (𝑣, 𝐻𝑟+1) for all 𝑣 ∈ 𝑉 . Also, whether 𝑣 itself is

active or inactive does not affect its active degree directly. Next, we

prove the properties that hold after each stage with high probability.

Theorem 4.3 (Theorem 2.5 in [58]). Let 𝑋 be the sum of 𝑝-wise
independent [0, _]-valued random variables with expectation ` =

E(𝑋) and let 𝛿 ≤ 1. Then P(|𝑋 − ` | ≥ 𝛿`) ≤ 𝑒−⌊min{𝑝/2,𝛿2`/(3_) }⌋ .

Lemma 4.4 (Stage 𝑖 of randomized sparsification). Fix some
stage 1 ≤ 𝑖 ≤ 𝑟 and let 𝐻𝑖 ⊆ 𝑉 be a set of active nodes, such that all
nodes 𝑣 ∈ 𝑉 have at most Δ𝐴/2

𝑖−1 neighbors in 𝐻𝑖 . The 𝑖th stage of
Algorithm 1 returns𝑀𝑖 and 𝐻𝑖+1 such that for all 𝑣 ∈ 𝑉 :

(i) 𝑑 (𝑣,𝑀𝑖) ≤ 72 log𝑛, with probability at least 1 − 1/𝑛3.
(ii) if 𝑑 (𝑣, 𝐻𝑖) ≥ Δ𝐴/2

𝑖 , then 𝑣 ∈ 𝑀𝑖 ∪ 𝑁 (𝑀𝑖), with probability
at least 1 − 1/𝑛3.

(iii) 𝑑 (𝑣, 𝐻𝑖+1) < Δ𝐴/2
𝑖 , with probability at least 1 − 1/𝑛3.

One stage requires 2 rounds. The claims hold if the random choices
are only 8 log𝑛-wise independent.

Proof. For an active node𝑤 ∈ 𝐻𝑖 , let 𝑋𝑤 be an indicator vari-

able for the event that𝑤 is sampled.

Proof of (i). Let 𝑣 ∈ 𝑉 be any vertex. By assumption, 𝑣 has

at most Δ𝐴/2
𝑖−1

active neighbors. Let 𝑊 be a set of fake ver-

tices, added to the set of active neighbors of 𝑣 such that 𝑣 has

exactly Δ𝐴/2
𝑖−1

active neighbors. Define the indicator variable

𝑋𝑤 for fake vertices 𝑤 ∈ 𝑊 similarly as for real active nodes.

Clearly 𝑣 has at most 72 log𝑛 real sampled neighbors whenever

at most 72 log𝑛 vertices in 𝑁 (𝑣, 𝐻𝑖) ∪𝑊 are sampled. The proba-

bility of this event can be lower bounded using Theorem 4.3. Let

𝑋 =
∑

𝑤∈𝑁 (𝑣,𝐻𝑖)∪𝑊 𝑋𝑤 be a sum of the indicator variables, with

expected value ` := E[𝑋] = Δ𝐴

2
𝑖−1

24·2𝑖 ·log𝑛

Δ𝐴
= 48 log𝑛. Let 𝛿 = 1

2
in

Theorem 4.3:

P(𝑋 ≥ 72 log𝑛) ≤ P(|𝑋 − 48 log𝑛 | ≥ 1

2

48 log𝑛)

≤ 𝑒−⌊min{8 log𝑛/2,48 log𝑛/12}⌋ = 𝑒−⌊4 log𝑛⌋ ≤ 𝑛−3

Hence, 𝑣 has at most 72 log𝑛 neighbors in 𝑀𝑖 with probability at

least 1 − 1/𝑛3
.

Proof of (ii). Let 𝑣 ∈ 𝑉 be a node with at least Δ𝐴/2
𝑖
active

neighbors. We will compute a lower bound for the probability that

𝑣 is adjacent to a sampled node. Fix any subset 𝑆 ⊆ 𝑁 (𝑣, 𝐻𝑖) of
active neighbors such that |𝑆 | = Δ𝐴/2

𝑖
. Let 𝑋 =

∑
𝑤∈𝑆 𝑋𝑤 be

a sum of indicator variables, with expected value ` := E[𝑋] =

Δ𝐴

2
𝑖

24·2𝑖 ·log𝑛

Δ𝐴
= 24 log𝑛. At least one neighbor is sampled when

𝑋 > 0. The probability of 𝑋 = 0 can be upper bounded using

Theorem 4.3. Let 𝛿 = 3

4
:

P(𝑋 = 0) ≤ P(|𝑋 − ` | ≥ (3/4) · `)

≤ 𝑒−⌊min{8 log𝑛/2,72 log𝑛/16}⌋ = 𝑒−⌊4 log𝑛⌋ ≤ 𝑛−3

Hence, at least one active neighbor of 𝑣 is sampled with probability

at least 1 − 1/𝑛3
.

Proof of (iii). First, consider 𝑣 ∈ 𝑉 with 𝑑 (𝑣, 𝐻𝑖) < Δ𝐴/2
𝑖
. Since

nodes are never reactivated, the active degree of 𝑣 will be less than

Δ𝐴/2
𝑖
in stage 𝑖 + 1 as well. Now, let 𝑣 ∈ 𝑉 be any node with high

active degree in stage 𝑖 , that is, 𝑑 (𝑣, 𝐻𝑖) ≥ Δ𝐴/2
𝑖
. The algorithm

deactivates the distance-2 neighborhood of sampled nodes. Hence,

all of 𝑁 (𝑣, 𝐻𝑖) is deactivated, whenever some𝑤 ∈ 𝑁 (𝑣, 𝐻𝑖) is sam-

pled. By (ii), this happens with probability at least 1 − 1

𝑛3
. In this

164

Distributed Symmetry Breaking on Power Graphs via Sparsification PODC ’23, June 19–23, 2023, Orlando, FL, USA

case, the active degree 𝑑 (𝑣, 𝐻 𝑗) of 𝑣 is zero for all remaining stages

𝑖 < 𝑗 ≤ 𝑟 . □

We are now ready to prove a randomized version of Lemma 4.1,

running in 𝑂 (logΔ) rounds: The 𝑟 = 𝑂 (logΔ𝐴) = 𝑂 (logΔ) stages
of Algorithm 1 produce 𝑄 := ∪𝑟+1

𝑖=1
𝑀𝑖 , consisting of the sampled

sets 𝑀1, . . . , 𝑀𝑟 and the remaining active nodes 𝑀𝑟+1 := 𝐻𝑟+1.

Lemma 4.4 (i) states that any node has𝑂 (log𝑛) neighbors in any𝑀𝑖 ,

with high probability, given that maximum active degree decreased

to Δ𝐴/2
𝑖−1

in the previous stage. The maximum active degree de-

creases for any node, with high probability by Lemma 4.4 (iii). The

sets 𝑀𝑖 and 𝑀𝑗 are at distance at least 2 from each other for any

𝑖 ≠ 𝑗 , so any node does not have neighbors in more than one 𝑀𝑖 .

Taking a union bound over all stages, we get that any node has

at most 𝑂 (log𝑛) neighbors in the whole 𝑄 = ∪𝑟+1

𝑖=1
𝑀𝑖 . This also

includes the remaining active nodes 𝑀𝑟+1 := 𝐻𝑟+1. Next, we con-

struct a deterministic sparsification algorithm by derandomizing

the random choices of the active nodes in each stage.

4.2 Deterministic Sparsification via
Derandomization (Sketch)

We construct a deterministic sparsification algorithm to prove

Lemma 4.1. The deterministic algorithm is referred to as DetSpar-

sification (see [54, Algorithm 2] for the pseudocode). The struc-

ture of DetSparsification is the same as the randomized sparsifi-

cation algorithm (Algorithm 1). As before, the input is a set of

active nodes 𝐴 ⊆ 𝑉 and a maximum active degree parameter

Δ𝐴 ≥ max𝑣∈𝑉 𝑑 (𝑣, 𝐴), where each 𝑣 ∈ 𝑉 knows whether 𝑣 ∈ 𝐴, and

the value of Δ𝐴 . There are 𝑟 = ⌊logΔ𝐴 − log log𝑛⌋ − 5 stages. For

1 ≤ 𝑖 ≤ 𝑟 ,𝐻𝑖 is the set of active nodes in the 𝑖th stage, where𝐻1 := 𝐴

and 𝐻𝑖 ⊆ 𝐻𝑖−1. Fix some stage 1 ≤ 𝑖 ≤ 𝑟 . In the 𝑖th stage, DetSpar-

sification selects a set 𝑀𝑖 ⊆ 𝐻𝑖 by derandomizing the sampling

procedure of the 𝑖th stage of Algorithm 1, in 𝑂 (diam(𝐺) · log
2 𝑛)

rounds. This is described in the next lemma. The rest of the algo-

rithm works exactly like the randomized version. The remaining

active nodes are 𝐻𝑖+1 = 𝐻𝑖 \ (𝑀𝑖 ∪ 𝑁 2 (𝑀𝑖)). After 𝑟 stages, the

algorithm returns 𝑄 := ∪𝑟+1

𝑖=1
𝑀𝑖 , consisting of the sampled sets

𝑀1, . . . , 𝑀𝑟 and the remaining active nodes𝑀𝑟+1 := 𝐻𝑟+1.

Lemma 4.5 (Derandomizing 𝑖th stage). The round complexity
of a stage is 𝑂 (diam(𝐺) · log

2 𝑛). Fix a stage 1 ≤ 𝑖 ≤ 𝑟 and let
𝐻𝑖 ⊆ 𝑉 be a set of active nodes, such that all nodes 𝑣 ∈ 𝑉 have
at most Δ𝐴/2

𝑖−1 neighbors in 𝐻𝑖 . The 𝑖th stage of DetSparsification
returns𝑀𝑖 and 𝐻𝑖+1 such that for all 𝑣 ∈ 𝑉 :

(i) 𝑑 (𝑣, 𝑀𝑖) ≤ 72 log𝑛,
(ii) if 𝑑 (𝑣, 𝐻𝑖) ≥ Δ𝐴/2

𝑖 , then 𝑣 ∈ 𝑀𝑖 ∪ 𝑁 (𝑀𝑖) ,
(iii) 𝑑 (𝑣, 𝐻𝑖+1) < Δ𝐴/2

𝑖 .

Proof Sketch. The result is obtained by derandomizing the al-

gorithm of Lemma 4.4 where the randomness of nodes is provided

by a random seed of length 𝑂 (log
2 𝑛). Given a seed (and the tools

from Section 2), there is a deterministic mapping from IDs to a

decision whether to join𝑀𝑖 or not and the random choices of nodes

are 8 log𝑛-wise independent, which is sufficient to obtain the prob-

abilistic guarantees of Lemma 4.4. The goal is to deterministically

fix the bits of the random seed such that, for all nodes, the events of

(i) and (ii) occur. This implies (iii). The complements of these events

are regarded as bad events. The events (i) and (ii) occur for each

node, with high probability by Lemma 4.4. In expectation, the total

number (of all nodes) of bad events occurring is less than one. We

use the method of conditional expectations to fix the random seed,

such that none of the bad events occur. The bits of the random seed

are fixed one by one. Given the values of previously fixed bits and a

candidate value for the next bit to be fixed, each node computes the

expected number of bad events occurring for it (a real number be-

tween zero and two), where the randomness is over the remaining

unfixed (uniformly random) bits. The events only depend on the

decisions of active neighbors. The crucial point is that, given the

IDs of the active neighbors (as this lemma talks about sparsifying

𝐺 and not a power graph these IDs can be learned in one round;

for power graphs additional work is needed, see [54, Section 5.3]

where we iterate this lemma), these expected values can be com-

puted in zero communication rounds. The conditional expectations

are aggregated to a leader node in 𝑂 (diam(𝐺)) rounds and the

leader fixes the next bit such that the conditional expectation is

minimized, and informs the graph about its choice. □

Proof of Lemma 4.1. Run the algorithm DetSparsification. The

number of stages is 𝑟 = ⌊logΔ𝐴 − log log𝑛⌋ − 5. Note that we can

assume that Δ𝐴 ≥ 2
5

log𝑛,5 which makes 𝑟 non-negative. DetSpar-

sification returns 𝑄 = ∪𝑟+1

𝑖=1
𝑀𝑖 ⊆ 𝐴, where𝑀1, . . . , 𝑀𝑟 are the sets

selected in stages 1 ≤ 𝑖 ≤ 𝑟 and𝑀𝑟+1 = 𝐻𝑟+1 is the set of remaining

active nodes.

Domination property: We start by showing the domination

property of 𝑄 , that is, ∀𝑣 ∈ 𝑉 : dist𝐺 (𝑣,𝑄) ≤ 2 + dist𝐺 (𝑣, 𝐴). Let
𝑣 ∈ 𝑉 be any node and let𝑤 ∈ 𝐴 be any initially active node that is

closest to 𝑣 , i.e., dist𝐺 (𝑣,𝑤) = dist𝐺 (𝑣, 𝐴). There are three possible
outcomes for 𝑤 in the algorithm: (1) 𝑤 ∈ 𝑄 . Now dist𝐺 (𝑣,𝑄) =

dist𝐺 (𝑣, 𝐴). (2)𝑤 is deactivated in some stage 𝑖 . By definition, there

exists some 𝑤 ′ ∈ 𝑁 2 (𝑤) such that 𝑤 ′ ∈ 𝑀𝑖 . Hence dist𝐺 (𝑣,𝑄) ≤
dist𝐺 (𝑣, 𝐴) + 2. (3) 𝑤 is never deactivated. Hence 𝑤 ∈ 𝐻𝑟+1. The

remaining active nodes 𝑀𝑟+1 := 𝐻𝑟+1 are included in 𝑄 . Hence

dist𝐺 (𝑣,𝑄) = dist𝐺 (𝑣, 𝐴). In all cases, dist𝐺 (𝑣,𝑄) ≤ 2+ dist𝐺 (𝑣, 𝐴).
Sparsity:We prove the claim about bounded𝑄-degree, ∀𝑣 ∈ 𝑉 :

𝑑 (𝑣,𝑄) ≤ 72 log𝑛. For any stage 1 ≤ 𝑖 ≤ 𝑟 , Lemma 4.5 states that

any 𝑣 ∈ 𝑉 has at most 72 log𝑛 neighbors in𝑀𝑖 , assuming that the

maximum active degree at the start of stage 𝑖 is at most Δ𝐴/2
𝑖−1

.

The assumption holds for 𝑖 = 1, since Δ𝐴 ≥ max𝑣∈𝑉 𝑑 (𝑣, 𝐴) by def-

inition. For stages 𝑖 = 2, . . . , 𝑟 , this is guaranteed by Lemma 4.5 (iii),

which states that the maximum active degree at the end of stage

𝑖 − 1 is at most Δ𝐴/2
𝑖−1

. Finally,𝑀𝑟+1 = 𝐻𝑟+1 consists of the nodes

who are still active after 𝑟 stages of sampling. By Lemma 4.5 (iii),

the maximum active degree after stage 𝑟 = ⌊logΔ𝐴 − log log𝑛⌋ − 5

is

Δ𝐴

2
⌊logΔ𝐴−log log𝑛⌋−5

≤ Δ𝐴

2
logΔ𝐴−log log𝑛−6

= 64 log𝑛

Hence, any 𝑣 ∈ 𝑉 has at most 72 log𝑛 neighbors in 𝑀𝑖 , for any

1 ≤ 𝑖 ≤ 𝑟 + 1. Finally, nodes in 𝑀𝑖 and 𝑀𝑗 , 𝑖 ≠ 𝑗 ∈ 1, . . . , 𝑟 do not

have any common neighbors, because the distance-2 neighborhood

of sampled nodes is deactivated. Nodes in𝑀𝑟+1 and𝑀𝑖 , 1 ≤ 𝑖 ≤ 𝑟 do

not have any common neighbors for the same reason. We conclude

that each node has at most 72 log𝑛 = 𝑂 (log𝑛) neighbors in 𝑄 .

5
If Δ𝐴 < 2

5
log𝑛, then max𝑣∈𝑉 𝑑 (𝑣,𝐴) < 2

5
log𝑛 by definition of Δ𝐴 . Return the

initial set of active nodes𝐴, which now satisfies both conditions of Lemma 4.1.

165

PODC ’23, June 19–23, 2023, Orlando, FL, USA Yannic Maus, Saku Peltonen, and Jara Uitto

The runtime of DetSparsification consists of ⌊logΔ𝐴−log log𝑛⌋−
5 stages, each taking 𝑂 (diam(𝐺) · log

2 𝑛) rounds by Lemma 4.5.

The total runtime is 𝑂 (diam(𝐺) · logΔ · log
2 𝑛). □

4.3 Sparsification in Power Graphs (Sketch)
We present a deterministic sparsification algorithm for𝐺𝑘

, proving

Lemma 3.1. Our algorithm consists of 𝑘 iterations of the DetSparsifi-

cation algorithm (Lemma 4.1). In iteration 1 ≤ 𝑠 ≤ 𝑘 , the algorithm

is simulated on a power graph 𝐺𝑠
, using our communication tools

[54, Section 4]. The result 𝑄𝑠 ⊆ 𝑉 of the 𝑠th iteration is used as the

initial active nodes in the (𝑠 + 1)th iteration. We must guarantee

that DetSparsification can be efficiently simulated on 𝐺𝑠
, while

ensuring that all nodes stay within 𝑂 (𝑘2) distance from the se-

lected nodes. We do this by maintaining the following invariants

for 𝑄0 ⊇ 𝑄1 ⊇ · · · ⊇ 𝑄𝑘 . After the 𝑠th iteration, 𝑄𝑠 satisfies:

I1.1 (bounded distance-𝑠 𝑄𝑠 -degree)∀𝑣 ∈ 𝑉 : 𝑑𝑠 (𝑣,𝑄𝑠) ≤ 72 log𝑛

I1.2 (bounded distance-(𝑠 + 1) 𝑄𝑠 -degree) ∀𝑣 ∈ 𝑉 : 𝑑𝑠+1 (𝑣,𝑄𝑠) ≤
72Δ log𝑛

I2 (domination)∀𝑣 ∈ 𝑉 : dist𝐺 (𝑣,𝑄𝑠) ≤
∑𝑠

𝑗=1
2 𝑗+dist𝐺 (𝑣,𝑄0) =

𝑠2 + 𝑠 + dist𝐺 (𝑣,𝑄0)
I3 (knowledge of distance-(𝑠 + 1) 𝑄𝑠 -neighborhood) All 𝑣 ∈

𝑉 know the set of IDs in 𝑁 𝑠+1 (𝑣,𝑄𝑠). Moreover, for each

𝑥 ∈ 𝑄𝑠 , there is a BFS tree of depth 𝑠 + 1 rooted in 𝑥 . Each

𝑣 ∈ 𝑉 knows, for each 𝑇𝑥 it belongs to, the ID of the root 𝑥 ,

ancestor(𝑇𝑥 , 𝑣) ∈ 𝑁 (𝑣) and descendants(𝑇𝑥 , 𝑣) ⊆ 𝑁 (𝑣).

Proof Sketch of Theorem 1.1. Using a network decomposi-

tion, we can replace the diameter factor in Lemma 3.1 with an

𝑂 (𝑘 · log𝑛)-factor (see [54, Section 5.4] for more details). Then, we

apply this result for 𝑘 − 1 iterations to find 𝑉 ⊇ 𝑄0 ⊇ 𝑄1 ⊇ · · · ⊇
𝑄𝑘−1

while in each iteration we satisfy the invariants I1.1, I1.2, I2,

and I3. Then 𝑄𝑘−1
has domination distance 𝑘2 − 𝑘 due to invariant

(I3). Using the invariants (specifically (I1.1) and (I3)), we can use our

communication tools (in particular [54, Lemma 4.6]) to efficiently

simulate the MIS algorithm of [25] on 𝐺𝑘 [𝑄𝑘−1
], resulting in a

(𝑘 + 1, 𝑘2)-ruling set of 𝐺 . □

ACKNOWLEDGMENTS
Saku Peltonen is supported by the Academy of Finland, Grant

334238.

REFERENCES
[1] Kook Jin Ahn, Graham Cormode, Sudipto Guha, AndrewMcGregor, and Anthony

Wirth. 2021. Correlation Clustering in Data Streams. Algorithmica 83, 7 (2021),
1980–2017. https://doi.org/10.1007/s00453-021-00816-9

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph Sketches:

Sparsification, Spanners, and Subgraphs. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS). 5—-14. https:
//doi.org/10.1145/2213556.2213560

[3] Noga Alon and Sepehr Assadi. 2020. Palette Sparsification Beyond (Δ+1) Vertex
Coloring. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2020. 6:1–6:22. https://doi.org/10.

4230/LIPIcs.APPROX/RANDOM.2020.6

[4] Noga Alon, László Babai, and Alon Itai. 1986. A Fast and Simple Randomized Par-

allel Algorithm for the Maximal Independent Set Problem. Journal of Algorithms
7, 4 (1986), 567–583.

[5] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear Algorithms for (Δ +

1) Vertex Coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019,
Timothy M. Chan (Ed.). SIAM, 767–786. https://doi.org/10.1137/1.9781611975482.

48

[6] Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. 1989.

Network decomposition and locality in distributed computation. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS). 364–369.

[7] Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus,

Dennis Olivetti, and Jara Uitto. 2022. Exponential Speedup Over Locality in

MPC with Optimal Memory. In Proceedings of the International Symposium on
Distributed Computing (DISC). 9:1–9:21. https://doi.org/10.4230/LIPIcs.DISC.2022.
9

[8] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. 2022. Dis-

tributed Δ-coloring plays hide-and-seek. In STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, Stefano
Leonardi and Anupam Gupta (Eds.). ACM, 464–477. https://doi.org/10.1145/

3519935.3520027

[9] Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. 2022. Distributed Lower

Bounds for Ruling Sets. SIAM J. Comput. 51, 1 (2022), 70–115. https://doi.org/10.

1137/20m1381770

[10] Philipp Bamberger, Fabian Kuhn, and Yannic Maus. 2020. Efficient Deterministic

Distributed Coloring with Small Bandwidth. In PODC ’20: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, Yuval
Emek and Christian Cachin (Eds.). ACM, 243–252. https://doi.org/10.1145/

3382734.3404504

[11] Reuven Bar-Yehuda, Keren Censor-Hillel, Yannic Maus, Shreyas Pai, and Sriram V.

Pemmaraju. 2020. Distributed Approximation on Power Graphs. In Proceedings of
the 39th Symposium on Principles of Distributed Computing (Virtual Event, Italy)

(PODC ’20). Association for Computing Machinery, New York, NY, USA, 501–510.

https://doi.org/10.1145/3382734.3405750

[12] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016. The

Locality of Distributed Symmetry Breaking. J. ACM 63, 3, Article 20 (jun 2016),

45 pages. https://doi.org/10.1145/2903137 http://arxiv.org/abs/1202.1983.

[13] Tushar Bisht, Kishore Kothapalli, and Sriram V. Pemmaraju. 2014. Brief announce-

ment: Super-fast t-ruling sets. In ACM Symposium on Principles of Distributed
Computing, PODC ’14, Paris, France, July 15-18, 2014, Magnús M. Halldórsson and

Shlomi Dolev (Eds.). ACM, 379–381. https://doi.org/10.1145/2611462.2611512

[14] Sebastian Brandt. 2019. AnAutomatic Speedup Theorem for Distributed Problems.

In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(PODC), Peter Robinson and Faith Ellen (Eds.). ACM, 379–388. https://doi.org/

10.1145/3293611.3331611

[15] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. 2017. Derandom-

izing Local Distributed Algorithms under Bandwidth Restrictions. In 31st Int.
Symp. on Distributed Computing (DISC).

[16] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. 2020. Distributed (Δ+1)-Coloring
via Ultrafast Graph Shattering. SIAM J. Comput. 49, 3 (2020), 497–539. https:

//doi.org/10.1137/19M1249527

[17] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng.

2019. The Complexity of (Δ + 1)-Coloring in Congested Clique, Massively

Parallel Computation, and Centralized Local Computation. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC). 471–480.
https://doi.org/10.1145/3293611.3331607

[18] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. 2017. Distributed algorithms for

the Lovász local lemma and graph coloring. Distributed Comput. 30, 4 (2017),
261–280. https://doi.org/10.1007/s00446-016-0287-6

[19] Artur Czumaj, Peter Davies, and Merav Parter. 2020. Graph Sparsification for

DerandomizingMassively Parallel Computationwith Low Space. In Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (Virtual
Event, USA) (SPAA ’20). Association for Computing Machinery, New York, NY,

USA, 175–185. https://doi.org/10.1145/3350755.3400282

[20] Artur Czumaj, Peter Davies, and Merav Parter. 2021. Improved Deterministic

(Δ+1) Coloring in Low-Space MPC. In PODC ’21: ACM Symposium on Principles
of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, Avery Miller,

Keren Censor-Hillel, and Janne H. Korhonen (Eds.). ACM, 469–479. https:

//doi.org/10.1145/3465084.3467937

[21] Janosch Deurer, Fabian Kuhn, and Yannic Maus. 2019. Deterministic Distributed

Dominating Set Approximation in the CONGEST Model. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, Peter Robinson and Faith Ellen (Eds.). ACM,

94–103. https://doi.org/10.1145/3293611.3331626

[22] Michael Dinitz and Yasamin Nazari. 2020. Massively Parallel Approximate Dis-

tance Sketches. In 23rd International Conference on Principles of Distributed Sys-
tems (OPODIS 2019). 35:1–35:17. https://doi.org/10.4230/LIPIcs.OPODIS.2019.35

[23] Michal Dory, Orr Fischer, Seri Khoury, and Dean Leitersdorf. 2021. Constant-

Round Spanners and Shortest Paths in Congested Clique and MPC. In Proceedings
of the 2021 ACM Symposium on Principles of Distributed Computing (PODC).
223–233. https://doi.org/10.1145/3465084.3467928

[24] Michael Elkin and Shaked Matar. 2019. Near-Additive Spanners In Low Poly-

nomial Deterministic CONGEST Time. In Proceedings of the 2019 ACM Sympo-
sium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019, Peter Robinson and Faith Ellen (Eds.). ACM, 531–540.

https://doi.org/10.1145/3293611.3331635

166

https://doi.org/10.1007/s00453-021-00816-9
https://doi.org/10.1145/2213556.2213560
https://doi.org/10.1145/2213556.2213560
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.6
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.4230/LIPIcs.DISC.2022.9
https://doi.org/10.4230/LIPIcs.DISC.2022.9
https://doi.org/10.1145/3519935.3520027
https://doi.org/10.1145/3519935.3520027
https://doi.org/10.1137/20m1381770
https://doi.org/10.1137/20m1381770
https://doi.org/10.1145/3382734.3404504
https://doi.org/10.1145/3382734.3404504
https://doi.org/10.1145/3382734.3405750
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2611462.2611512
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1137/19M1249527
https://doi.org/10.1137/19M1249527
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1145/3350755.3400282
https://doi.org/10.1145/3465084.3467937
https://doi.org/10.1145/3465084.3467937
https://doi.org/10.1145/3293611.3331626
https://doi.org/10.4230/LIPIcs.OPODIS.2019.35
https://doi.org/10.1145/3465084.3467928
https://doi.org/10.1145/3293611.3331635

Distributed Symmetry Breaking on Power Graphs via Sparsification PODC ’23, June 19–23, 2023, Orlando, FL, USA

[25] Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav

Rozhoň. 2022. Local Distributed Rounding: Generalized to MIS, Matching, Set

Cover, and Beyond. https://doi.org/10.48550/ARXIV.2209.11651

[26] Manuela Fischer and Mohsen Ghaffari. 2017. Sublogarithmic Distributed Algo-

rithms for Lovász Local Lemma, and the Complexity Hierarchy. In 31st Inter-
national Symposium on Distributed Computing, DISC 2017, October 16-20, 2017,
Vienna, Austria (LIPIcs), AndréaW. Richa (Ed.), Vol. 91. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 18:1–18:16. https://doi.org/10.4230/LIPIcs.DISC.2017.18

[27] Manuela Fischer, YannicMaus, andMagnúsM.Halldórsson. 2022. Fast Distributed

Brooks’ Theorem. CoRR abs/2211.07606 (2022). https://doi.org/10.48550/arXiv.

2211.07606 arXiv:2211.07606

[28] Sebastian Forster, Martin Grösbacher, and Tijn de Vos. 2022. An Improved

Random Shift Algorithm for Spanners and Low Diameter Decompositions. In

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
16:1–16:17. https://doi.org/10.4230/LIPIcs.OPODIS.2021.16

[29] Pierre Fraigniaud, Magnús M. Halldórsson, and Alexandre Nolin. 2020. Dis-

tributed Testing of Distance-k Colorings. In Structural Information and Commu-
nication Complexity - 27th International Colloquium, SIROCCO 2020, Paderborn,
Germany, June 29 - July 1, 2020, Proceedings (Lecture Notes in Computer Science),
Andrea Werneck Richa and Christian Scheideler (Eds.), Vol. 12156. Springer,

275–290. https://doi.org/10.1007/978-3-030-54921-3_16

[30] Beat Gfeller and Elias Vicari. 2007. A Randomized Distributed Algorithm for the

Maximal Independent Set Problem in Growth-Bounded Graphs. In Proceedings of
the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing
(Portland, Oregon, USA) (PODC ’07). Association for Computing Machinery, New

York, NY, USA, 53–60. https://doi.org/10.1145/1281100.1281111

[31] Mohsen Ghaffari. 2016. An Improved Distributed Algorithm forMaximal Indepen-

dent Set. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, Robert
Krauthgamer (Ed.). SIAM, 270–277. https://doi.org/10.1137/1.9781611974331.ch20

[32] Mohsen Ghaffari. 2017. Distributed MIS via All-to-All Communication. In Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing (PODC).
141–149. https://doi.org/10.1145/3087801.3087830

[33] Mohsen Ghaffari. 2019. Distributed Maximal Independent Set using Small Mes-

sages. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, Timothy M.

Chan (Ed.). SIAM, 805–820. https://doi.org/10.1137/1.9781611975482.50

[34] Mohsen Ghaffari. 2022. Local Computation of Maximal Independent Set. In 63rd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver,
CO, USA, October 31 - November 3, 2022. IEEE, 438–449. https://doi.org/10.1109/

FOCS54457.2022.00049

[35] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and

Ronitt Rubinfeld. 2018. Improved Massively Parallel Computation Algorithms

for MIS, Matching, and Vertex Cover. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC). 129–138. https://doi.org/10.1145/

3212734.3212743

[36] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. 2018. On Derandomizing

Local Distributed Algorithms. In 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, Mikkel Thorup

(Ed.). IEEE Computer Society, 662–673. https://doi.org/10.1109/FOCS.2018.00069

[37] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. 2021. Improved

distributed Δ-coloring. Distributed Comput. 34, 4 (2021), 239–258. https://doi.

org/10.1007/s00446-021-00397-4

[38] Mohsen Ghaffari and Fabian Kuhn. 2021. Deterministic Distributed Vertex

Coloring: Simpler, Faster, and without Network Decomposition. In Proceed-
ings of the Symposium on Foundations of Computer Science (FOCS). 1009–1020.
https://doi.org/10.1109/FOCS52979.2021.00101

[39] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. 2017. On the complexity of

local distributed graph problems. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, Hamed Hatami, Pierre McKenzie, and Valerie King (Eds.). ACM, 784–797.

https://doi.org/10.1145/3055399.3055471

[40] Mohsen Ghaffari and Jara Uitto. 2019. Sparsifying Distributed Algorithms with

Ramifications in Massively Parallel Computation and Centralized Local Com-

putation. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA). https://doi.org/10.1137/1.9781611975482.99

[41] Magnús M. Halldórsson, Fabian Kuhn, and Yannic Maus. 2020. Distance-2 Col-

oring in the CONGEST Model. In PODC ’20: ACM Symposium on Principles of
Distributed Computing, Virtual Event, Italy, August 3-7, 2020, Yuval Emek and

Christian Cachin (Eds.). ACM, 233–242. https://doi.org/10.1145/3382734.3405706

[42] Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Alexandre Nolin. 2020.

Coloring Fast Without Learning Your Neighbors’ Colors. In 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Con-
ference (LIPIcs), Hagit Attiya (Ed.), Vol. 179. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 39:1–39:17. https://doi.org/10.4230/LIPIcs.DISC.2020.39

[43] Magnús M. Halldórsson and Alexandre Nolin. 2021. Superfast Coloring in

CONGEST via Efficient Color Sampling. In Structural Information and Com-
munication Complexity - 28th International Colloquium, SIROCCO 2021, Wrocław,

Poland, June 28 - July 1, 2021, Proceedings (Lecture Notes in Computer Sci-
ence), Tomasz Jurdzinski and Stefan Schmid (Eds.), Vol. 12810. Springer, 68–83.

https://doi.org/10.1007/978-3-030-79527-6_5

[44] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardesh-

mukh, and Michele Scquizzato. 2015. Toward Optimal Bounds in the Congested

Clique:Graph Connectivity and MST. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC). 91–100. https://doi.org/10.1145/

2767386.2767434

[45] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2021. A

Deterministic Almost-Tight Distributed Algorithm for Approximating Single-

Source Shortest Paths. SIAM J. Comput. 50, 3 (2021). https://doi.org/10.1137/

16M1097808

[46] Tomasz Jurdziński and Krzysztof Nowicki. 2018. MST in𝑂 (1) Rounds of Con-
gested Clique. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA). 2620–2632. https://doi.org/10.1137/1.9781611975031.167

[47] Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. 2013. Toward more

localized local algorithms: removing assumptions concerning global knowledge.

Distributed Comput. 26, 5-6 (2013), 289–308. https://doi.org/10.1007/s00446-012-

0174-8

[48] Kishore Kothapalli and Sriram V. Pemmaraju. 2012. Super-Fast 3-Ruling Sets. In

IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India (LIPIcs),
Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan (Eds.), Vol. 18.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 136–147. https://doi.org/10.

4230/LIPIcs.FSTTCS.2012.136

[49] Sven Oliver Krumke, Madhav V. Marathe, and S. S. Ravi. 2001. Models and

Approximation Algorithms for Channel Assignment in Radio Networks. Wirel.
Networks 7, 6 (2001), 575–584. https://doi.org/10.1023/A:1012311216333

[50] Fabian Kuhn, Yannic Maus, and Simon Weidner. 2018. Deterministic Distributed

Ruling Sets of Line Graphs. In Structural Information and Communication Com-
plexity - 25th International Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Is-
rael, June 18-21, 2018, Revised Selected Papers (Lecture Notes in Computer Sci-
ence), Zvi Lotker and Boaz Patt-Shamir (Eds.), Vol. 11085. Springer, 193–208.

https://doi.org/10.1007/978-3-030-01325-7_19

[51] Christoph Lenzen and Roger Wattenhofer. 2010. Brief Announcement: Expo-

nential Speed-up of Local Algorithms Using Non-Local Communication. In Pro-
ceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC). 295–296. https://doi.org/10.1145/1835698.1835772

[52] Nati Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput. 21,
1 (1992), 193–201.

[53] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent

Set Problem. SIAM J. Comput. 15 (11 1986), 1036–1053. https://doi.org/10.1145/

22145.22146

[54] YannicMaus, Saku Peltonen, and Jara Uitto. 2023. Distributed Symmetry Breaking

on Power Graphs via Sparsification. arXiv:2302.06878 [cs.DS]

[55] Krzysztof Nowicki. 2021. A Deterministic Algorithm for the MST Problem in

Constant Rounds of Congested Clique. In Proceedings of the ACM Symposium
on Theory of Computing (STOC). 1154—-1165. https://doi.org/10.1145/3406325.

3451136

[56] David Peleg. 2000. Distributed computing : a locality sensitive approach. SIAM.

[57] Václav Rozhoň and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic

Network Decomposition and Distributed Derandomization. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing (Chicago, IL,

USA) (STOC 2020). Association for Computing Machinery, New York, NY, USA,

350–363. https://doi.org/10.1145/3357713.3384298

[58] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. 1995. Chernoff–

Hoeffding Bounds for Applications with Limited Independence. SIAM Jour-
nal on Discrete Mathematics 8, 2 (1995), 223–250. https://doi.org/10.1137/

S089548019223872X

[59] Johannes Schneider, Michael Elkin, and Roger Wattenhofer. 2013. Symmetry

breaking depending on the chromatic number or the neighborhood growth.

Theoretical Computer Science 509 (10 2013). https://doi.org/10.1016/j.tcs.2012.09.

004

[60] Salil P. Vadhan. 2012. Pseudorandomness. Now Publishers. https://books.google.

fi/books?id=iam4lAEACAAJ

Received 10 January 2023; accepted 26 March 2023

167

https://doi.org/10.48550/ARXIV.2209.11651
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.48550/arXiv.2211.07606
https://doi.org/10.48550/arXiv.2211.07606
https://doi.org/10.4230/LIPIcs.OPODIS.2021.16
https://doi.org/10.1007/978-3-030-54921-3_16
https://doi.org/10.1145/1281100.1281111
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1145/3087801.3087830
https://doi.org/10.1137/1.9781611975482.50
https://doi.org/10.1109/FOCS54457.2022.00049
https://doi.org/10.1109/FOCS54457.2022.00049
https://doi.org/10.1145/3212734.3212743
https://doi.org/10.1145/3212734.3212743
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1007/s00446-021-00397-4
https://doi.org/10.1007/s00446-021-00397-4
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1145/3382734.3405706
https://doi.org/10.4230/LIPIcs.DISC.2020.39
https://doi.org/10.1007/978-3-030-79527-6_5
https://doi.org/10.1145/2767386.2767434
https://doi.org/10.1145/2767386.2767434
https://doi.org/10.1137/16M1097808
https://doi.org/10.1137/16M1097808
https://doi.org/10.1137/1.9781611975031.167
https://doi.org/10.1007/s00446-012-0174-8
https://doi.org/10.1007/s00446-012-0174-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.136
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.136
https://doi.org/10.1023/A:1012311216333
https://doi.org/10.1007/978-3-030-01325-7_19
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1145/22145.22146
https://doi.org/10.1145/22145.22146
https://arxiv.org/abs/2302.06878
https://doi.org/10.1145/3406325.3451136
https://doi.org/10.1145/3406325.3451136
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1137/S089548019223872X
https://doi.org/10.1137/S089548019223872X
https://doi.org/10.1016/j.tcs.2012.09.004
https://doi.org/10.1016/j.tcs.2012.09.004
https://books.google.fi/books?id=iam4lAEACAAJ
https://books.google.fi/books?id=iam4lAEACAAJ

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Why Should We Care About Problems on Power Graphs?
	1.3 Further Related Work
	1.4 Roadmap

	2 Notation and k-wise independent random variables
	3 Technical overview
	3.1 Deterministic Sparsification
	3.2 Randomized MIS of Gk̂
	3.3 Shattering in G, in LOCAL and CONGEST.

	4 Sparsification of Power Graphs
	4.1 Randomized Sparsification via Sampling
	4.2 Deterministic Sparsification via Derandomization (Sketch)
	4.3 Sparsification in Power Graphs (Sketch)

	Acknowledgments
	References

