Check for
Updates

ATTEST: Automated and Thorough Testing of Embedded

Software in Teaching
Meinhard Kissich Klaus Weinbauer Marcel Baunach
meinhard kissich@tugraz.at klaus.weinbauer@student.tugraz.at baunach@tugraz.at
Graz University of Technology Graz University of Technology Graz University of Technology
Graz, Austria Graz, Austria Graz, Austria
ABSTRACT to continue [1, 12], demanding a considerable amount of well-

Dependability requirements are getting increasingly stringent in
embedded systems, demanding highly skilled developers. One cru-
cial point in building up expertise is getting precise feedback in
programming courses at university to recognize flaws and learn
from mistakes. Depending on the assignment and learning outcome,
the assessment may include testing for the implementation’s com-
pleteness, correctness, performance, and robustness. A timely and
in-depth review for a large number of course participants relies
on test automation. However, embedded software often includes
hardware-dependent code that can only be executed on the target
device. Thus, we provide an open-source and remote hardware-in-
the-loop testing solution with pre-defined test cases for embedded
software particularly designed for teaching in university courses.
This paper defines and elaborates on the requirements, gives an in-
sight into design decisions, and evaluates the test system on metrics
of our Real-Time Operating Systems course.

CCS CONCEPTS

« Social and professional topics — Student assessment; « Com-
puter systems organization — Embedded software; Real-time
operating systems.

KEYWORDS

student assessment, embedded software, embedded systems, testing,
real-time operating systems

ACM Reference Format:

Meinhard Kissich, Klaus Weinbauer, and Marcel Baunach. 2023. ATTEST:
Automated and Thorough Testing of Embedded Software in Teaching. In
ECSEE 2023: European Conference on Software Engineering Education (ECSEE
2023), June 19-21, 2023, Seeon/Bavaria, Germany. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3593663.3593678

1 INTRODUCTION AND MOTIVATION

Embedded software challenges. Computing is getting increas-
ingly ubiquitous in modern society, and embedded devices found
their way into almost all areas of daily life. This trend is expected

This work is licensed under a Creative Commons Attribution International
4.0 License.

ECSEE 2023, June 19-21, 2023, Seeon/Bavaria, Germany
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9956-2/23/06.
https://doi.org/10.1145/3593663.3593678

engineered embedded software to cope with increasing dependabil-
ity requirements. In such cases, embedded Operating Systems (OSs)
can decompose complexity and increase reusability by introduc-
ing abstraction layers between the application and the underlying
hardware. Developers can significantly benefit from having an OS,
and most do not implement IoT devices bare metal [5]. However,
the OS must be well-designed, robust to untrusted user code, and
thoroughly tested to ensure safe operation.

Real-time operating systems course. We encourage students
to build expertise in the abovementioned fields. In our course, stu-
dents design and implement an embedded Real-Time Operating
System (RTOS) - a spin-off of our research OS SmartOS [10]. They
explore the impacts and trade-offs of design decisions and chal-
lenge themselves against others by defined benchmarks. We use an
MSP430 microcontroller as a simple-to-understand target platform
while providing sufficient features for real-world applications.

Building expertise. At the beginning of the semester, students
receive a development kit they can use to work independently at
home. While supported by a comprehensive script, the RTOS lecture,
and face-to-face Q&A sessions, we want to drive self-engagement
as programming and software design is a skill that can only be
obtained by (a) actively working on involving tasks, (b) getting
precise and constructive feedback on the design, implementation,
and potential flaws, and (c) being motivated to pro-actively driving
clean and maintainable code, and paying attention to robust design.

Student assessment and feedback. One prerequisite to pro-
viding meaningful and individual feedback to a large number of
participants is automated submission testing. Besides being used
for grading, students can submit their assignments and receive a re-
port on completeness and code quality. Although many test system
requirements are consistent with widely used test solutions, a need
for teaching-specific features and adaptions emerged. Thus, we pro-
pose a testing solution for embedded software that precisely targets
the needs of a university course from the very core. In a nutshell,
we summarize the contributions of this paper as follows:

e We define and elaborate on the requirements when design-
ing a testing solution for university courses that demand
implementing code (Section 2).

e We give an insight into the design and implementation of the
proposed open-source test system! for embedded software
in teaching (Section 3).

e We evaluate design decisions for a real-world embedded
software course (Section 4).

Section 5 discusses related work and Section 6 concludes with an
outlook on: additions, experience evaluations and student feedback.

Uhttps://iti.tugraz.at/attest

199

https://orcid.org/0000-0003-4810-8312
https://orcid.org/0000-0002-3349-9157
https://orcid.org/0000-0002-3716-2682
https://doi.org/10.1145/3593663.3593678
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3593663.3593678
https://iti.tugraz.at/attest
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593663.3593678&domain=pdf&date_stamp=2023-06-19

ECSEE 2023, June 19-21, 2023, Seeon/Bavaria, Germany

2 REQUIREMENTS AND FEATURES

Table 1 summarizes the high-level requirements for the test system:
first and foremost, the test system shall be easily deployable on
Linux-based systems but also (RQ1) be able to run on most com-
mon systems without elaborated setup procedures. Furthermore,
(RQ2) different test types to check the submitted code shall be
supported, including (a) tests that compare sent messages from
the target device against a reference (message tests), (b) tests that
probe the target device’s pins by a measurement device (probe tests),
and (c) tests on the built software without executing the binary
on the target device (static tests). For message tests, we focus on
inspecting the occurrence and temporal order of check marks that
the device sends to the host by print statements within the code.
Probe tests monitor voltage patterns at the target device’s pins and
shall particularly be used to check the timing of pulses. Finally,
static tests do not rely on the target device, as no code is executed.
They can, e.g., be used to track the size of the built software.

When interacting with many participants in a course, (RQ3)
a secure and reliable interface is needed that is well-known to a
broad audience. As Git fulfills the abovementioned criteria and is
the preferred version control system by many software developers,
Git shall be supported to submit code to the test system. However,
the test system shall not be limited to Git, as (RQ4) modularity and
extensibility are primary design objectives. Each building block,
such as the interface to data or communication channels, shall be
easily adaptable. The test system is thus to be understood as a
framework that can be adapted to different university courses and
use cases with little effort.

Testing hardware-dependent software inherently relies on the
target device when no simulation models are available. Thus, (RQ5)
the test system throughput shall be increased by executing test cases
in parallel on multiple target devices. In addition, (RQ6) each device
is part of a heterogeneous test unit that can consist either solely
of a target device or a target device attached to a measurement
device. Depending on the capabilities, a test unit can execute all or
only a subset of the test types. A test unit without a measurement
device, e.g., cannot run a probe test. Although all test units may be
equipped with a measurement device, a heterogeneous approach
can substantially contribute to lowering the costs of the setup.

Different reports shall be generated (RQ7) with the level of de-
tail adjusted to the recipient. Supervisors shall see all test results,
including possible build errors and deviations from the reference.
Students, however, shall only see the test case names and the final
result. Thus, students get early feedback on their submissions by
the number of passed/failed test cases and a slight indicator of the
reason. Still, students need to understand their code thoroughly to
locate the flaws. In addition, the report includes an anonymized
ranking with fellow students as part of the report to drive construc-
tive competition and innovative ideas. Finally, (RQ8) the test system
implementation needs to be sufficiently tested to run stably over
the semester without manual intervention and little maintenance.

In addition to the requirements above that we treat as a must,
we define four features that have proved useful. The test system
primarily targets microcontrollers that store their firmware in flash
memory. Due to physics, flash memory suffers from a limited num-
ber of write cycles [11]. Thus, (F1) a monitoring system should be

200

Kissich et al.

Table 1: High-level requirements (RQ) for the test system
and additionally implemented features (F).

Name Description Approach

(RQ1) host system independent Docker, Python
(RQ2) diverse test types {message, probe, size} tests
(RQ3) secure and well-known interface Git
(RQ4) modular and extensible framework modular, abstraction layers
(RQ5) scalable by parallelization worker pattern
(RQ6) heterogeneous test units state awareness, scheduling
(RQ7) customized reports report generation
(RQ8) testing of the test system testing suite
(F1) predictive test units maintenance flash cycle counter
(F2) usage supervision scheduling logic
(F3) runtime configurability config variables, config files
(F4) easy test unit installation automatic test unit detection

added for predictive maintenance to prevent failures during the
course due to flash wear-out. Testing performance is increased by
adding test units but is still limited by a practicable number of
devices. Thus, (F2) supervisors should have means to influence the
scheduling order, e.g., by assigning priorities relative to the number
of already performed test runs by a student. Therefore, the test
system should be runtime-reconfigurable (F3). As a final feature,
(F4) test units should be plug-and-play by an automated detection
process that renders manual configuration at startup unnecessary.

3 DESIGN & IMPLEMENTATION

Design overview. Two types of users primarily interact with the
test system, as shown in Figure 1: students participating in the
course and supervisors. After students have tested their implemen-
tation locally by self-crafted tests, they can submit the code to the
test system. Data exchange currently happens via a Git server, ac-
cording to (RQ3). A commit to the main branch or merging a dev
branch triggers a test run, i.e., one evaluation of the student’s code.

The test system software is executed in a Linux-based Docker
container on the test system’s host computer. It stores the state, e.g.,
the already tested commit hashes, in an internal database, exchanges
data with students, builds the embedded software, delegates the
test units, and generates reports. In case newly submitted code is
found, tests are started to check the completeness (Is all functionality
for the assignment implemented?), robustness (Does the submitted
code break in certain situations?), and other benchmark metrics.

) Student Code Submissi)
.................................. '
v
/> + Test System N i
T = :
.. T — Test Unit !
Student S.. v | — v | Test
v —
5 ' “ Target Device ' IRun
3 [s=] | ’
€+----- e E Measurement Dev :
'
'
Supervisor '___E-I:)S_t____________________________:
(Test Results (

Figure 1: Overview of the test system setup and interactions
with involved parties. Students submit their code to be tested
with the available N test units in the test system. After completing
the test run, reports are generated and published.

ATTEST: Automated and Thorough Testing of Embedded Software in Teaching

After executing all test cases, i.e., finishing a test run, reports are
generated for the individual recipients according to (RQ7) and
published. When using Git, students receive the report by a commit
to a testresults branch in their working repositories.

A test run usually evaluates a set of individual test cases. From
the host’s perspective, each test case is one task intended to run
on a test unit. Static tests are still tasks that may use a test unit,
although it is not utilized to obtain the results. Processing a test
case includes building, deploying, and executing the submitted code
- and evaluating the result. However, a task can generally be any
job that needs to be processed. It is registered to the system’s task
queue and waits for scheduling. The scheduler manages the queue
and selects the tasks according to a prioritization metric.

Host system independence. As deployability and host system
independence are essential objectives, the test system is imple-
mented in Python and deployed via Docker to satisfy (RQ1) and
contribute to (RQ4). The system core is implemented as a stand-
alone Python package. Its modular design enables the creation of a
sophisticated test framework with end-to-end testability required
by (RQ8). Also, Docker is an elegant way to reduce the repetitive
effort of setting up the environment and installing dependencies on
the host system, e.g., Software Development Kits (SDKs) required
by the test units can be included in the Dockerfile.

Test types. A rich set of scenarios shall be covered during a test
run to detect flaws in the implementation by different test types
according to (RQ2). The test system builds the submitted code, in-
cluding specifically designed test case code. In the RTOS course, test
cases are user space tasks that invoke the student’s OS kernel imple-
mentation. For a message test, the target device sends messages to
the host. In the simplest case, executed print statements transmit
an ASCII-encoded message via UART. The host receives the data
and compares it against a reference text file, yielding a binary pass
or fail result. However, more than message tests are required to
check the OS implementation thoroughly. Embedded systems usu-
ally interact closely with the physical world and depend on accurate
and correct timing. Thus, the system uses probe tests to check the
timing of output signals. In our case, PicoScopes 2205A MSO [9]
oscilloscopes sample the target device’s I/O pins and send the data
to the host. It computes the time between falling and rising signal
edges generated by the test case code.

As the memory footprint is a critical metric in small embedded
systems, static tests are invoked to inspect the size of the binary
that is programmed into the flash memory. The probe tests to check
timing and static tests to get the binary size do not directly produce
a pass or fail status but rather a metric that can be further evaluated.

Interface. The test system does not expose a direct interface to
students or supervisors. Instead, it builds on existing version control
and file-sharing services. Thus, data can be exchanged via GitLab,
as in the presented implementation, but also via SVN or plain folder
sharing with minimal modifications in the corresponding module
(cf. Figure 2, Filesystem Abstraction). The data exchange interface
needs a reliable authentication and authorization framework, which
is challenging and time-consuming to maintain. If not correctly
implemented and frequently updated, it will lead to security issues.
The utilization of existing services elegantly circumvents this prob-
lem and fulfills (RQ3). Also, it provides a well-known interface, as
software developers are usually familiar with Git.

201

ECSEE 2023, June 19-21, 2023, Seeon/Bavaria, Germany

Support A
s 1 | T | e I |
Monitoring
NZ/\ Task =
Logging Reporting I Testin, -
Task Module £
Module | Worker " g
;
Filesystem Abstraction Hardware Abstraction
DB Git Directory Pico f]
M] [Mgmt. Mgmt. Measure Toolchain IN

-~ A A

Figure 2: Block diagram of the host software’s internal system
components organized as a logical stack: from low abstrac-
tion at the bottom to high abstraction at the top. The Scheduler,
Core, and Task Worker are independent threads. The grey arrows
depict the logic flow of one test run through the test system.

System structure. Figure 2 depicts the block diagram of the host
software. Interfaces to external dependencies are kept low-level and
in a small scope for increased modularity and reusability. The Core
component is the main thread that starts the parallelized test system
application by spawning the Scheduler and Task Worker threads.
Once the scheduler and worker threads are created, the main thread
is primarily idle and only intervenes for some system-level events,
like a shutdown request.

Among others, the scheduler manages the task queue, i.e., the
waiting tasks such as test cases, and regularly checks for new code
submissions. Each task is finally assigned to a worker, i.e., the
execution thread of a test unit that utilizes functionality provided
by Testing and Reporting modules. Although tasks are selected by
their priority, the scheme is designed to have no interleaving test
runs of different students. When using heterogeneous test units, the
scheduler also needs to consider task requirements in addition to
priorities, e.g., the availability of a measurement device in the test
unit for probe tests. Also, the Core component manages the global
system state, and the Support modules accompany the system stack.
Its modules do not strictly belong to one of the abstraction layers
and are used throughout the system — but with a clear and thin
interface to reduce coupling.

In addition, the arrows in Figure 2 illustrate the logical flow of
one test run. Submitted code enters the flow through the Filesystem
Abstraction, e.g., through Git Management. The Scheduler takes
the code and creates tasks for the individual test cases that are
eventually processed by a set of Task Worker threads. Once a task
is in progress, a test unit executes the test (if not a static test), and
data is returned to the task. Finally, a report is generated by the
Reporting Module and sent to the recipients.

Modularity and scalability. (RQ4) demands well-defined ab-
straction layers to limit the scope of dependencies to external tools
and systems. Also, abstraction simplifies the software architecture
by hiding data structures, process flow details, communication pro-
tocol, and exception handling for calls to third-party components.

The Filesystem Abstraction is responsible for data exchange be-
tween students, supervisors, and the test system. This includes
loading student code, publishing test reports, and maintaining the
file and directory structure for the build and deployment process.

ECSEE 2023, June 19-21, 2023, Seeon/Bavaria, Germany

The Hardware Abstraction block encapsulates the utilization of
the specific target and measurement devices used in the test units.
Thus, it prevents being locked into one device vendor, as the in-
terface is clearly defined and can be easily adapted. The used Pico-
Scopes oscilloscopes in the presented setup for probe tests are, e.g.,
operated through a vendor-specific SDK. The concept of abstraction
allows the easy replacement of measurement devices in the future.

Parallelization. The majority of time for a task is spent waiting
for the target device, primarily waiting for the software flashing
process to finish. As hardware-dependent code relies on the target
device, performance is increased by adding additional test units
according to (RQ5). We neglect test case and test pattern optimiza-
tion, as these are use-case-specific and out of the scope of the test
system. The parallelization potential is estimated to be high, as the
host is not utilized during the waiting time. Additionally, heteroge-
neous test units, required by (RQ6), largely contribute to increasing
the performance. PicoScopes are by an order of magnitude more
expensive than the used MSP430 target devices and test units only
consisting of MSP430 devices allow scaling with minimized cost
overhead. The scheduler is aware of the test units’ capabilities and
selects a sufficiently equipped one for each test case. Thus, the ratio
of test units with a measurement device must be aligned to the
execution time ratio of probe tests to all tests.

Reporting. The test system produces data on various topics that
shall only be visible to the correct recipient. Students who submit
the code and supervisors shall receive the test outcome. In contrast,
information on the test system state is only meant for supervisors.
In this sense, (RQ7) led to three types of reports. For GitLab as a
data exchange platform, each student has a working repository also
used to publish the student’s test reports in a testresult branch.
This report also includes an anonymized leaderboard of all students
participating in the given semester. In a team assignment, a group
repository is used instead of an individual repository, with all in-
volved students being members. Supervisors get the other two types
of reports into their repository: one for the overall system status
and one for each submitted code with comprehensive information
on the test run. The students’ report and the test run report for
supervisors are created when a test run is completed. System status
reports are typically generated upon completed test runs but may
also be generated on other occasions, e.g., system startup. After
completing the last task of a test run, the executing task worker
invokes the Reporting Module (cf. Figure 2) for report generation.
It is responsible for the content and style of the reports. After the
reporting module layouts the data in Markdown format, the report
is handed over to the filesystem abstraction layer for publication.

Testing. Testing the test system implementation is crucial for
reliable operation. Two test approaches are derived in addition to
unit tests to satisfy (RQ8). Both focus on high-level end-to-end
tests to ensure system correctness. Testing calibration of the test
units’ measurement device is currently not implemented as device
manufacturer guarantees on calibration proved sufficient for the
described use case.

The first approach embeds Python code of the test system and al-
lows the execution of tests from a student perspective. Its significant
advantage is performing complex end-to-end tests (i.e., including
the whole process chain from receiving the code to returning a
report) on the test system via a simple Application Programming

202

Kissich et al.

Figure 3: Test system setup for the RTOS course consisting
of eight test units. Three of them are equipped with a mea-
surement device (front stack).

Interface (API). The second approach utilizes existing data. An in-
dependent script flow creates tuples of code and known test results
from the predecessor test system that shall be replaced by the more
modular and parallelizable solution proposed in this paper. Then,
the code is submitted to the test system, and the report is compared
against the known reference. While the first approach is used to
check the correct functionality for a particular set of code and re-
port tuples, the second method stress tests the system by running
hundreds of test runs. This checks for rare issues in long-term
operation and evaluates the performance under high utilization.

4 EVALUATION

Design trade-offs are often not clear from the very beginning, es-
pecially for university courses with evolving content and a largely
varying number of participants. Thus, this section evaluates some
design decisions regarding scalability and the chosen Git interface.

Setup. The evaluation is performed on the setup for the RTOS
course shown in Figure 3. It consists of eight test units, of which
three are equipped with a measurement device. One test run cur-
rently consists of 57 test cases; only a small subset of eight test cases
utilize the measurement device. Thus, the parallelization speedup
is determined by the number of MSP430 boards instead of the Pi-
coScopes in the subsequent evaluation. However, three test units
include a measurement device for redundancy.

Parallelization capabilities. As most of the execution time of
a test case is spent waiting for the target device, there is a high
potential to increase the throughput by parallelization significantly.
The waiting time hardly consumes any processing time from the
host, who can, in the interim, prepare the following test case to
be executed on another test unit. Amdahl’s law [2] describes the
theoretical speedup when increasing the computational resources.
It can be used to quantify the performance gain when adding test
units to parallelize test case execution. Table 2 lists the measured
execution time for a test run. It shows the number of used test units
and the speedup compared to a single test unit. By assuming that
the parallelizable parts have a speedup according to the number of
test units, Amdahl’s law can be written as

_N-(s-1)

PN (1)

ATTEST: Automated and Thorough Testing of Embedded Software in Teaching

Table 2: Measured execution times for a test run with N test
units, the resulting speedup s, and the parallelization portion
according to Amdahl’s law p.

Test units N Exec.time/s Speedups Parall. portion p

1 788 N N

2 411 1.92 0.958

4 222 3.55 0.958

8 131 6.02 0.953
800 F 4 I I I ! 116
J14

.~

600 | —=" 12
PR ERI

A Execution time / s
%] -
(=3 [=3
o <
T T
.

=)

1 2 4
Test units

Figure 4: Measured reduction of execution time and speedup
by adding test units.

where s is the speedup and N is the number of test units. All three
computed parallelization portions show a solid consistency with a
small decrease from 95.8% to 95.3% depending on the number of
test units according to (1) and depicted in Table 2. This confirms
the good parallelization capabilities. The measured execution times
and achieved speedups are plotted in Figure 4. Although this is
the theoretical speedup, it provides a fairly accurate prediction for
what can be expected by further increasing resources.

Consistency to predecessor test solution. As mentioned in
Section 3, the tool was stress-tested by hundreds of test runs with
known testing results. The stress test was performed in four waves
with over 450 test runs in total (>25k test cases) and achieved
consistency above 99%. The deviation from complete accuracy is
most likely due to physical conditions.

Git for reports. Besides being used to check for correctness and
stable operations, the test also provides actual data on the required
disk space for reports. Unknown error message lengths, frequency
and type of errors in the submitted code, and how Git stores files left
room for either highly optimistic or pessimistic estimations. Figure 5
depicts the required disk space for the supervisors’ reports on an
ext4 file system with a 4 KiB block size as reported by the Linux du
command. It compares a Git repository as a report container to a
plain folder structure. As can be seen, both approaches are suitable
for a large number of test runs, but Git outperforms.

5 RELATED WORK

While testing embedded systems has been subject to active research
for decades [3], most solutions are industry oriented. Nonetheless,
educational test frameworks such as Canary Framework [4], Xest [8],
or the workflow provided by Mattos [7] exist. Although they use
a remote test server, not all required features are addressed, like
testing on dedicated hardware with measurement devices or suffi-
cient abstraction to students. EmbedInsight [6], a web service-based
framework, has good parallelization capabilities but no direct ver-
sion control integration, and a dedicated web interface opposes

203

ECSEE 2023, June 19-21, 2023, Seeon/Bavaria, Germany

64 MiB — : T T T [———
32 MiB -_.’_‘_._____.—--—-]
16 MiB - =
% SMiB | 1
A 4 MiB e
g 2MiB[s
g 1MiBp g
g B12kiB et —-= Using a folder structure 7
256 kiB et —— Using a Git repository (checkout main)
128kiBFHFH— e Using a Git repository (.git folder) i
64 kiB b—L I I L L L L
0 200 400 600 800 1000 1200
Reports

Figure 5: Size of the reports on the file system using a Git
repository or a folder structure.

our needs. With the proposed test system, we aim to provide more
flexibility, as elucidated in Section 2, with a focus on parallelization
capabilities and heterogeneous reporting to meet our requirements.

6 CONCLUSION AND FUTURE WORK

Test automation for university courses differs from test solutions
used in industry. A test system targeting the requirements elabo-
rated in Section 2 adds significant value to embedded programming
courses by providing meaningful feedback to students during as-
signments. Learning from mistakes based on the evaluation results
is crucial to building expertise and coping with tight dependability
demands. We give an insight into the design of the proposed test
system and elaborate on the implementation details of the setup
used in our RTOS course. An evaluation based on actual course
data demonstrates good parallelization capabilities and advocates
a Git repository storing reports. Additional features, such as the
integration of plagiarism detection and gamification elements, as
well as an evaluation that incorporates student feedback, will be
part of future work after the first semester of use.

REFERENCES

[1] Thomas Alsop. 2022. Global embedded computing market revenue from 2018
to 2027. [Online] https://www.statista.com/statistics/1058799/worldwide-
embedded- computing-market-revenue/ (March 2023).

[2] Gene M Amdahl. 1967. Validity of the single processor approach to achieving
large scale computing capabilities. In Proc. of Spring Joint Computer Conf.

[3] Vahid Garousi, Michael Felderer, Cagr1 Murat Karapigak, and Ugur Yilmaz. 2018.
Testing embedded software: A survey of the literature. Information and Software
Technology.

[4] Sarah Heckman and Jason King. 2018. Developing Software Engineering Skills
using Real Tools for Automated Grading. In Computer Science Education Symp.

[5] IEEE (Internet of Things), European Commission (Agile IoT), Eclipse IoT Working
Group. 2016. Distribution of operating systems used for Internet-of-Things
(IoT) devices, as of 2016. [Online] https://www.statista.com/statistics/659581/
worldwide-internet- of-things-survey-operating-systems/ (March 2023).

[6] Hao Li, Bo-JThang Ho, Bharathan Balaji, Yue Xin, Paul Martin, and Mani Srivastava.
2017. EmbedInsight: Automated Grading of Embedded Systems Assignments.

[7] André Mattos. 2023. Tests for embedded systems. https://github.com/
andrempmattos/tests-embedded-systems (March 2023).

[8] Matthew H Netkow and Dennis Brylow. 2010. Xest: An Automated Framework
for Regression Testing of Embedded Software.

[9] Pico Technology 2016. PicoScope 2200A Series. Pico Technology.

[10] Tobias Scheipel, Leandro Batista Ribeiro, Tim Sagaster, and Marcel Baunach. 2022.
SmartOS: An OS Architecture for Sustainable Embedded Systems. In Tagungsband
des FG-BS Friihjahrstreffens 2022.

[11] Texas Instruments Incorporated. 2006. MSP430 Flash Memory Characteristics.
Application Report SLAA334B. Revised August 2018.

[12] Lionel Sujay Vailshery. 2022. Number of Internet of Things (IoT) connected
devices worldwide from 2019 to 2030, by use case. [Online] https://www.statista.
com/statistics/1194701/iot- connected- devices-use-case/ (March 2023).

https://www.statista.com/statistics/1058799/worldwide-embedded-computing-market-revenue/
https://www.statista.com/statistics/1058799/worldwide-embedded-computing-market-revenue/
https://www.statista.com/statistics/659581/worldwide-internet-of-things-survey-operating-systems/
https://www.statista.com/statistics/659581/worldwide-internet-of-things-survey-operating-systems/
https://github.com/andrempmattos/tests-embedded-systems
https://github.com/andrempmattos/tests-embedded-systems
https://www.statista.com/statistics/1194701/iot-connected-devices-use-case/
https://www.statista.com/statistics/1194701/iot-connected-devices-use-case/

	Abstract
	1 Introduction and Motivation
	2 Requirements and Features
	3 Design & Implementation
	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

