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Abstract—This paper proposes a new approach, the symmetric-
reciprocal-match (SRM) method, for calibrating vector network
analyzers (VNAs). The method involves using multiple symmetric
one-port loads, a two-port reciprocal device, and a matched
load. The load standards consist of two-port symmetric one-
port devices, and at least three unique loads are used. However,
the specific impedances of the loads are not specified. The
reciprocal device can be any transmissive device, although a
non-reciprocal device can also be used if only the one-port error
boxes are of interest. The matched load is fully defined and
can be asymmetric. We numerically demonstrated the proposed
method’s accuracy with synthetic data and with measurements of
coaxial standards using a commercial short-open-load-reciprocal
(SOLR) calibration kit with verification standards. An advantage
of the proposed method is that only the match standard is defined,
whereas the remaining standards are partially defined, either
through symmetry or reciprocity.

Index Terms—vector network analyzer, calibration, microwave
measurement

I. INTRODUCTION

THE most commonly used method for calibrating vector
network analyzers (VNAs) is the short-open-load-thru

(SOLT) method [1], which requires that all four standards to be
fully characterized or modeled. In the past, many VNAs used a
three-sampler architecture with three receivers.To account for
the non-driving port’s termination mismatches (switch terms),
the VNA is modeled with the well-known 12-term model [2].
This model forms the foundation of the SOLT calibration.

Nowadays, modern VNAs use a full-reflectometry architec-
ture that allows for sampling all waves, thus directly measuring
the switch terms of a VNA by simply connecting a transmis-
sive device between the ports [3]. This upgraded architecture
enabled the use of the simplified error box model of VNAs
[4], which has led to many new advanced calibration methods
that surpass the accuracy of SOLT [2]. Furthermore, even with
the three-sampler VNA architecture, it is possible to indirectly
measure the switch terms of the VNA using a set of reciprocal
devices, which enable the application of the error box model
[5]. A well-known family of calibration methods based on
the error box model is the self-calibration methods [2], which
do not require full characterization of some of the standards.
One of the most used self-calibration methods nowadays is the
short-open-load-reciprocal (SOLR) method [6], which is the
same as SOLT, but with any transmissive reciprocal device

Software implementation and measurements are available online:
https://github.com/ZiadHatab/srm-calibration

instead of the thru standard. SOLR has proven useful in
scenarios where a direct connection is unavailable. However,
the drawback of the SOLR method is the requirement of the
full definition of the short-open-load (SOL) standards, which
bounds the accuracy of SOLR to the SOL standards.

Other self-calibration methods include thru-reflect-line
(TRL) and multiline TRL [7]–[10], which use line standards
of different lengths, thru connection, and symmetric unknown
reflect standard. The thru standard in TRL is fully defined.
However, there is an implementation that eliminates the re-
quirement of the thru standard for any transmissive device
with an additional reflect standard [11]. While multiline TRL
is a very accurate calibration method, especially at millimeter-
wave frequencies, it cannot be applied at lower frequencies,
as it results in using an extremely long line standard. A
common replacement for the multiline TRL method for on-
wafer application is the line-reflect-match (LRM), thru-match-
reflect-reflect (TMRR), and line-reflect-reflect-match (LRRM)
methods [12]–[15]. These methods use unknown symmetric
reflect standards and one known match standard. However,
these methods suffer from some impracticality, especially in
defining the line standard and shifting the reference plane,
as opposed to the TRL method. These methods can also be
extended to account for crosstalk [16]–[18]. Additionally, due
to the requirement of defining the thru/line standard, such
methods can be challenging to use in on-wafer measurement
scenarios where the probes are orthogonal or at an angle [19].

In this paper, we propose a new approach to self-calibration
of VNAs using multiple symmetric one-port loads, a two-port
reciprocal device, and a matched load. The multi-load one-
port standards are two-port symmetric loads, and at least three
unique loads must be used. The values of the loads themselves
are not specified. For example, a short, an open, and any finite
impedance load would be suitable. The reciprocal device can
be any transmissive device. In fact, if we only care about the
one-port error boxes of the VNA, then the two-port device can
be any transmissive device, even if it is non-reciprocal. Lastly,
the matched load is fully defined but can be asymmetric. The
match standard can be implemented as part of the symmetric
one-port loads to reduce the number of standards. We refer
to this calibration method as the symmetric-reciprocal-match
(SRM) method. All standards are generally partially defined,
except for the match standard. We demonstrate the method
using synthetic data of coplanar waveguide (CPW) structures,
as well as measurements with commercial SOLR coaxial
standards.
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A significant benefit of the proposed approach is that all the
standards are partially defined, except for the match standard.
This is in contrast to LRRM/LRM/TMRR approaches, which
necessitate fully defined thru/line standards. As a result, such
techniques can be challenging in the case of on-wafer setups
where the probes are positioned at an orthogonal angle.
Equivalently, the SOLR calibration addresses the problem
of the thru/line connection by using any two-port recipro-
cal device instead but necessitates the specification of the
remaining standards. In brief, our SRM technique combines
the benefits of LRRM/LRM/TMRR techniques in utilizing
undefined symmetric standards, as well as the SOLR technique
in utilizing a two-port reciprocal device. This revised definition
of the standards enables accurate calibration by limiting the
definition to solely the match standard.

The remainder of this article is structured as follows. In
Section Section II, we discuss our SRM method when using a
thru standard instead of any reciprocal device, highlighting
the method’s fundamentals. Afterward, in Section III, we
extend the mathematics of the calibration to consider any
transmissive reciprocal device. Section IV introduces a special
case of the SRM method when considering a fixed distance
between measuring ports, which is often the case in on-
wafer applications. Lastly, in Section V, we provide numerical
analysis using synthetic data and experimental measurements
using commercial coaxial 2.92mm calibration and verification
standards and conclude in Section VI.

II. THE SIMPLE CASE USING A THRU STANDARD

In the general case of SRM calibration, no thru standard
is required. Any transmissive reciprocal device would suffice.
If only the one-port error boxes are desired, any transmissive
device would be acceptable. However, the derivation of the
generalized SRM calibration is based on creating an artificial
thru standard via mathematical reformulation and additional
one-port measurements. The handling of the artificial thru
standard is explained in more detail in Section III. In this
section, we assume a fully defined thru standard to derive
the calibration workflow and extend it to the general case in
Section III.

To start the derivation, we use the error box model of a two-
port VNA, as illustrated in Fig. 1. This model is expressed in
T-parameters as follows:

M stand = kakb︸︷︷︸
k

[
a11 a12

a21 1

]
︸ ︷︷ ︸

A

T stand

[
b11 b12

b21 1

]
︸ ︷︷ ︸

B

, (1)

where M stand and T stand represent the measured and actual
T-parameters of the standard, respectively. The matrices A
and B are the one-port error boxes containing the first six
error terms, and k is the seventh error term that describes the
transmission error between the ports.

For a thru standard, the measured T-parameters are provided
as follows:

M thru = kAB. (2)

In the next step, we will focus on measuring one-port
standards. For the SRM method, we require at least three

Standard

Error box Error box

Calibration plane

Measurement plane

Fig. 1. Two-port VNA error box model. Matrices are given as T-parameters.

symmetric two-port standards made from one-port devices,
and at least three of them should exhibit unique electrical
responses. Examples of such standards include short, open,
and impedance. It is not necessary to know the exact response
of the standards themselves. Fig. 2 provides an illustration of
the error box for one-port measurements.

Error box Error box

Calibration plane

Fig. 2. Two-port VNA error box model that illustrates the measurement of
one-port standards. All matrices are provided as T-parameters. The index i
indicates the measured standard, where i = 1, 2, . . . ,M , with M ≥ 3.

The measured input reflection coefficient seen from each
port is given as follows:

Γ(i)
a =

a11ρ
(i) + a12

a21ρ(i) + 1
; Γ

(i)
b =

b11ρ
(i) − b21

1− b12ρ(i)
, (3)

where Γ
(i)
a and Γ

(i)
b are the ith measured reflection coefficients

from the left and right ports, respectively. The actual response
of the standard, which is assumed to be unknown, is denoted
by ρ(i).

The expression for the input reflection coefficient, as given
in (3), is in the form of a Möbius transformation (also
known as a bilinear transformation) [20, Chapter 3]. One
important property of the Möbius transformation is that it
can be described by an equivalent 2× 2 matrix notation. For
instance, (4) provides a general Möbius transformation with
coefficients a, b, c, d ∈ C, along with its corresponding 2 × 2
matrix representation.

f(z) =
az + b

cz + d
←→ [f ] =

[
a b

c d

]
(4)

In (4), we use brackets [·] to describe matrices associated
with a Möbius transformation. The transformation coefficients
are only unique up to a complex scalar multiple. This property
of the Möbius transform can be easily shown by multiplying
the numerator and denominator with a non-zero complex
scalar. In terms of matrix notation, scaling the matrix with
a complex scalar still represents the same Möbius transforma-
tion. Therefore,

[f ] ≡ κ[f ], κ ̸= 0 (5)
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The matrix representation of the Möbius transformation pos-
sesses an elegant property in its ability to describe composite
Möbius transformations. In essence, when we compose one
Möbius transformation with another, we obtain a new Möbius
transformation with updated coefficients. This property can be
expressed in matrix notation by computing the matrix product
of the individual Möbius transformations. To illustrate this
concept, we provide an example of the composition of two
Möbius transformations f1(z) and f2(z), which are defined
as follows:

f1(z) =
a1z + b1
c1z + d1

←→ [f1] =

[
a1 b1
c1 d1

]
(6a)

f2(z) =
a2z + b2
c2z + d2

←→ [f2] =

[
a2 b2
c2 d2

]
(6b)

The composite transformation is given as follows:

g(z) = (f1 ◦ f2)(z) =
a1f2(z) + b1
c1f2(z) + d1

=
(a1a2 + b1c2)z + a1b2 + b1d2
(a2c1 + c2d1)z + b2c1 + d1d2

(7)

Therefore, the corresponding matrix equivalent of the com-
posite Möbius transformation g(z) is given as follows:

[g] =

[
a1a2 + b1c2 a1b2 + b1d2

a2c1 + c2d1 b2c1 + d1d2

]
= [f1][f2] (8)

which is the same as multiplying the matrices [f1] and [f2].
Using matrix notation for the Möbius transformation, we

can describe the input reflection coefficient measured from
the left port as follows:

Γ(i)
a =

a11ρ
(i) + a12

a21ρ(i) + 1
←→ [Γ(i)

a ] =

[
a11 a12

a21 1

]
︸ ︷︷ ︸

A

(9)

To address the error box on the right side, we perform a
similar process as before, but instead of using the measured
reflection coefficient, we reformulate in terms of the reflec-
tion coefficient ρ(i) as a function of the measured reflection
coefficient Γ(i)

b , which is given as follows:

ρ(i) =
Γ
(i)
b + b21

b12Γ
(i)
b + b11

←→ [ρ(i)] =

[
1 b21

b12 b11

]
︸ ︷︷ ︸

PBP

(10)

where P is a 2× 2 permutation matrix defined as

P = P T = P−1 =

[
0 1

1 0

]
. (11)

By composing (10) with (9), we obtain a new Möbius
transformation that describes the input reflection coefficient
from the left port using measurements of the right port. This
relationship can be written as follows:

Γ(i)
a =

h11Γ
(i)
b + h12

h21Γ
(i)
b + h22

←→ [Γ(i)
a ] = H =

[
h11 h12

h21 h22

]
(12)

Here, we use the variable H to describe the Möbius
transformation in (12) and differentiate it from the Möbius
transformation in (9) to avoid confusion. It is important to note
that both transformations are different, as they have distinct
input parameters.

Due to the composite property of Möbius transformations,
the coefficients of the transformation can be expressed as
follows:

H = νAPBP , ∀ ν ̸= 0. (13)

It is important to note that the constant ν is included because
the coefficients of a Möbius transformation can only be defined
up to a non-zero complex-valued scalar constant.

By solving for the coefficients hij , we can determine (13).
This equation is later used for establishing the calibration
procedure by combining it with the thru standard. Since the
coefficients hij are defined by the Möbius transformation in
(12), which is based on the measurements of the symmetric
one-port standards, we can rewrite the Möbius transformation
as a linear system of equations in terms of its coefficients.
Assuming that M ≥ 3 one-port standards were measured, the
coefficients hij can be described as follows:

−Γ(1)
b −1 Γ

(1)
b Γ

(1)
a Γ

(1)
a

−Γ(2)
b −1 Γ

(2)
b Γ

(2)
a Γ

(2)
a

...
...

...
...

−Γ(M)
b −1 Γ

(M)
b Γ

(M)
a Γ

(M)
a


︸ ︷︷ ︸

G


h11

h12

h21

h22


︸ ︷︷ ︸

h

= 0 (14)

The solution for the vector h is found in the nullspace of
G, as the system matrix G contains at least one nullspace due
to the equality to zero in (14). We may have more than one
nullspace, but only if rank(G) < 3, which can only happen
if we do not use at least three unique one-port standards.

While the nullspace G satisfies the solution of (14), we
can optimally estimate the nullspace of G in the presence
of disturbance by computing its singular value decomposition
(SVD) and using the right singular vector that corresponds to
the smallest singular value [21]. As G is of dimension 4 (i.e.,
number of columns), it has four singular values and vectors.
We decompose the matrix G using SVD as follows:

G =

4∑
i=1

siuiv
H
i (15)

where si is the ith singular value, while ui and vi are the ith
left and right singular vectors, respectively. The conventional
ordering of the singular values is in decreasing order. There-
fore, the smallest singular value is s4. Hence, the solution for
h is given by the fourth right singular vector as follows:

h = v4 (16)

Now that we have solved for h, and hence H in (13), we
can combine the measurements of the thru standards with the
results of H to form an eigenvalue problem regarding the error
box coefficients. The combined result for the left error box is
defined as follows:

M thruPH−1 =
k

ν
APA−1 (17)
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Although (17) is not strictly in the canonical form for
an eigenvalue decomposition, as the middle matrix is not
diagonal, it can still be decomposed because the middle matrix
is a constant permutation matrix. If we apply the eigendecom-
position to (17), we obtain the following decomposition:

M thruPH−1 =
k

ν
APA−1 = W aΛW−1

a , (18)

where the matrix W a corresponds to the eigenvectors, and the
matrix Λ corresponds to the eigenvalues. Both are calculated
as follows:

W a =

[
w

(a)
11 w

(a)
12

w
(a)
21 w

(a)
22

]
=

[
a11+a12

a21+1
−a11+a12

−a21+1

1 1

]
(19a)

Λ =

[
λ1 0

0 λ2

]
=

[
k
ν 0

0 −k
ν

]
(19b)

Generally, the order of the eigenvectors and eigenvalues is
not unique. To ensure the correct order, we need to know the
value of k/ν. However, this term is still unknown at this stage.
After solving for the error terms using both possible solutions,
the sorting is done through trial and error. For instance, once
the error terms have been solved, we could use one of the
one-port standards as a metric to determine the correct order.

We can solve the eigenvalue problem for matrix B by
reversing the multiplication order of the matrices in (17). This
gives us the following equation:(

PH−1M thru

)T
=

k

ν
BTPB−T = W bΛW−1

b (20)

Using the transpose operation is optional, but it allows us
to derive the eigenvectors in a similar order as with the left
error box. As a result, the eigenvectors and eigenvalues are
given as follows:

W b =

[
w

(b)
11 w

(b)
12

w
(b)
21 w

(b)
22

]
=

[
b11+b21
b12+1

−b11+b21
−b12+1

1 1

]
(21a)

Λ =

[
λ1 0

0 λ2

]
=

[
k
ν 0

0 −k
ν

]
(21b)

Finally, we need an additional equation for each port to
calculate the error terms from each error box. This equation
comes from the match standard, which defines the reference
impedance of the calibration. In general, the match standard
does not have to be the same at each port. However, since we
are most likely to use an impedance standard as part of the
symmetric one-port devices, it makes sense to reuse the match
standards. For each port, the reflection coefficient of a match
standard is given as follows:

ρ(m)
a =

Z
(m)
a − Z

(ref)
a

Z
(m)
a + Z

(ref)
a

; ρ
(m)
b =

Z
(m)
b − Z

(ref)
b

Z
(m)
b + Z

(ref)
b

(22)

where Z
(m)
a and Z

(m)
b represent the complex impedance

definition of the match standard from each port. The user
sets the values of Z

(ref)
a and Z

(ref)
b to specify the reference

impedance, for example, 50Ω.

By utilizing knowledge of the match standard and the
equation that describes the input reflection coefficient, as given
in (3), we can combine this result with the eigenvectors to form
a linear system of equations for each port. The following is
for the left port: −1 −1 w

(a)
11 w

(a)
11

1 −1 −w(a)
12 w

(a)
12

−ρ(m)
a −1 Γ

(m)
a ρ

(m)
a Γ

(m)
a



a11
a12
a21
1

 = 0 (23)

The system of equations for the right port can be obtained in
a similar way, resulting in the following system of equations: −1 −1 w

(b)
11 w

(b)
11

1 −1 −w(b)
12 w

(b)
12

−ρ(m)
b 1 −Γ(m)

b ρ
(m)
b Γ

(m)
b



b11
b21
b12
1

 = 0 (24)

The error terms are solved by finding the nullspace of the
system matrix. However, since the nullspace is only unique
up to a scalar factor, we normalize it by the last element to
make it equal to 1. The system matrix can be extended by an
arbitrary number of defined impedance standards to improve
the solution. It is important to note that we obtain two systems
of equations for each port since the order of the eigenvectors
is unknown. As a result, we solve for both possible orderings
and choose the answer that results in a calibrated measurement
closest to a known estimate, like the usage of a reflect standard.

An interesting observation to note is the structure of (23)
and (24), where the first two rows in the system matrix
obtained from the eigenvectors resemble measurements of
ideal short and open standards. In general, the expression of
(23) and (24) are identical to that of a one-port SOL calibration
when assuming ideal short and open standards. Thus, we
were able to replicate measurements of ideal open and short
standards by using symmetric undefined one-port devices and
a thru standard.

The final error term that needs to be solved is the transmis-
sion error term k. Since we are working with a thru standard,
we can directly extract k by multiplying the inverse of the one-
port error boxes by the measurements of the thru standard. In
Section III, we introduce a different approach for computing k
using any transmissive reciprocal standard, as done in SOLR
calibration [6].

III. GENERALIZATION WITHOUT A THRU STANDARD

In the previous section, we explained how to calculate the
error terms using at least three symmetric one-port standards,
a thru standard, and a match standard. The thru standard can
cause difficulties, as it is not always possible to physically
achieve such a standard.

The equations derived in the previous section can be used
without changes if we obtain an equation similar to that of a
thru standard, as given in (2). Therefore, this section aims to
derive what we will refer to as a virtual thru standard by using
additional one-port standards.

The necessary standards, excluding the match standard,
for the generalized SRM calibration are shown in Fig. 3.
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The network standard is an unknown transmissive two-port
standard. This standard does not need to be reciprocal for
deriving only one-port error terms. The additional network-
load standard uses the same two-port network standard and
the same one-port symmetric standards. As mentioned in the
previous section, we require at least M ≥ 3 one-port symmet-
ric standards. Hence, we also need a corresponding network-
load standard for every symmetric one-port load standard.
Generally, we only need the network-load standard from one
port, which could be from either ports.

Port-A network-load

Unknown trasmissive network

Symmetric load

Port-B network-load (optional)

Fig. 3. Two-port VNA error box model illustrating the standards used to create
a virtual thru standard. All matrices are provided as T-parameters. The index
i indicates the measured standard, where i = 1, 2, . . . ,M , with M ≥ 3.

Based on the network standard, the following measurement
is available:

Mnet = kA

[− det(S)
S21

S11

S21

−S22

S21

1
S21

]
︸ ︷︷ ︸

N

B (25)

where det (S) = S11S22 − S12S21.
A similar expression to the matrix H in (13) can be obtained

using the network-load standard from the left port and the load
standards from the right ports. This results in an expression
similar to (13), but with A replaced by AN and with an
adjustment to the scaling factor. The scaling factor is unknown
and does not need to be equal to the constant in (13). We can
also achieve the same result by considering the network-load
standards from the right port and symmetric load standards
from the left port. As a result, combining the network-load
standards with the symmetric load standards, we obtain the
following result for each port depending on where the network-

load was implemented:

F a = ηANPBP , ∀ η ̸= 0, (26a)
F b = ζAPNBP , ∀ ζ ̸= 0 (26b)

Using the results of Mnet, H , and F from (25), (13), and
(26), respectively, we can create a virtual thru standard by
combining them in the following manner:

M thru = HF−1
a Mnet =

ν

η
kAB (27a)

M thru = MnetPF−1
b HP =

ν

ζ
kAB (27b)

Therefore, we can obtain a thru measurement without mea-
suring a thru standard using the results of (27). We simply
use the results from the previous section and substitute (27)
in place of the thru measurements. The only difference we
obtain are the eigenvalues, which result in ±k/η or ±k/ζ.
However, this change does not affect anything, as ν, η, and
ζ are the result of the normalization choice of the Möbius
transformation and are assumed regardless unknown.

To complete the two-port calibration, we must solve for
the transmission error term k. We can use the same method
as in SOLR calibration [6] by calculating k through the
determinate of the one-port corrected measurement of the
network standard, given that it is reciprocal (i.e., S21 = S12).
Assuming the network standard is indeed reciprocal, we can
solve for k by first applying the one-port error boxes to the
measurement of the network standard as follows:

A−1MnetB
−1 = kN (28)

Afterward, by taking the determinant from both sides, we
obtain the following:

det
(
A−1MnetB

−1
)
= k2 det (N)︸ ︷︷ ︸

=1

(29)

Hence, k is solved as follows:

k = ±
√

det
(
A−1M recipB

−1
)

(30)

where the selection of the appropriate sign is determined by
comparing it to a known estimate of the network.

IV. SPECIAL LAYOUT FOR ON-WAFER APPLICATION

The presented SRM calibration method applies to any
measurement setup where the standards can be implemented.
However, a particular case for on-wafer calibration arises when
considering that the distance between the probes must remain
constant. Semi-automatic probe station users often request this
requirement, where only the chuck platform is motorized. For
these measurement setups, the standards must be implemented
with a constant distance between the probes to perform the
calibration automatically.

Considering the standards depicted in Fig. 3, we can see that
the right probe would need to be moved to the right to measure
the network-load standard. The network standard already dic-
tates the distance between the probes, and cascading another
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standard would naturally increase the spacing, requiring probe
movement.

In planar circuit calibration, as in on-wafer measurement
setups, we can advantageously apply the property of the
network standard to represent any symmetric transmissive
network. Hence, we can split the network into two cascaded
flipped asymmetric networks. With this notation, we can use
half of the network to define the network-load standard. An
illustration of coplanar waveguide (CPW) standards is depicted
in Fig. 4.

Network Symmetric loads Half-network loads

Calibration 
plane

Short Open Impedance

Short Open Impedance

Match

Half-network plane

Fig. 4. Illustration of CPW structures implementing the proposed half-
network approach of SRM calibration. The match standard is optional if the
symmetric impedance standard is reused as the match standard.

For any symmetric network (i.e., Sij = Sji), we can divide
its T-parameters into two cascaded networks that are identical
and flipped [22]. This network can be expressed as follows:

N = RPR−1P (31)

where P represents the permutation matrix, as defined in (11),
and R is the half-asymmetric part of the network standard.

By substituting the new definition of the network standard
from (31) into the expressions (25), (13), and (26), we arrive
at the following expressions:

Mnet = kARPR−1PB (32a)
F a = ηARPBP , ∀ η ̸= 0 (32b)

F b = ζAR−1PBP , ∀ ζ ̸= 0. (32c)

Therefore, by combining the results of the above expres-
sions with H from (13), we create a virtual thru standard as
follows:

M thru = HF−1
a MnetPH−1F aP = kAB, (33a)

M thru = F bH
−1MnetPF−1

b HP = kAB. (33b)

With the virtual thru standard being established, the remain-
ing calibration process follows the same procedure discussed
in the previous section.

One elegant application using half-network standards is the
use of angled calibration. This method involves positioning the
probes at an angle rather than facing each other. Traditional
calibration methods such as TRL, LRM, and LRRM do
not allow this type of calibration, whereas SOLR is often
used for such scenarios [19]. Fig. 5 illustrates a potential
implementation of the network and half-network standards at
a 90◦ angle.

Half-network plane

Short Open Impedance

Network Half-network loads Calibration plane

Fig. 5. Illustration of CPW structures implementing the half network-load
standards in an orthogonal orientation. The symmetric one-port standards
are not shown, as they do not pose any mechanical challenge in orthogonal
orientation.

V. EXPERIMENTS

This section discusses two experiments. The first exper-
iment involves numerical analysis using synthetic data to
demonstrate different aspects of SRM calibration. It includes
a demonstration of the SRM method using network-load
standards with a full-network (as discussed in Section III) and
with half-network (as discussed in Section IV). In the second
experiment, we present measurements using SOLR coaxial
standards and compare the SRM method against SOLR cali-
bration using characterized verification standards with defined
uncertainties.

A. Numerical Analysis

The procedure for the numerical analysis involves creating
synthetic data of CPW standards using the model developed in
[23]–[25]. To emulate an on-wafer setup accurately, we utilize
error boxes from an actual on-wafer setup that was extracted
using multiline TRL calibration on an impedance substrate
standard (ISS). Further details on the measurement setup can
be found in [10], where the accuracy of the CPW model was
tested against the measurements. The measurement data set
is available via [26]. In this numerical setting, the aim is to
generate SRM standards based on the CPW model and embed
them within the error boxes of the actual VNA setup. A block
diagram summarizing this numerical experiment is depicted in
Fig. 6.

Cal standards 
& DUT

Simulation plane

Error boxes obtained from an actual VNA setup

Simulated model

Calibration plane

Fig. 6. Block diagram illustration of the numerical simulation concept to
generate realistic synthetic data.

Regarding the geometric parameters of the CPW structure
used for simulation, we employed the following dimensions,
which are based on the actual measured ISS: signal width
of 49.1µm, ground width of 273.3µm, conductor spacing of
25.5µm, and conductor thickness of 4.9µm. The substrate is
made of lossless Alumina with a dielectric constant of 9.9.
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The conductor is made of gold with relative conductivity to
copper of 70%, where the conductivity of copper is 58MS/m.

For the SRM standards, we implemented match, short, and
open standards as non-ideal standards, as shown in Fig. 7.
To create the network-load standards, we used a 4mm CPW
line as the reciprocal standard, which is combined with the
non-ideal match, short, and open standards. Additionally, as
discussed in Section IV, we created half network-load stan-
dards using half of the reciprocal standard, i.e., a 2mm CPW
line. The CPW standards are similar to the illustration in Fig. 4
for the half network-load standards, except that the match is
reused from the symmetric standards.

We used Zref = 50Ω as the reference impedance for
calibration for both ports. In the SRM calibration procedure,
all standards are not specified except for the match that enables
the definition of the reference impedance.

CPW

(a)

CPW

(b)

CPW

(c)

Fig. 7. Models used to simulate non-ideal load standards (a) 50Ω match
standard with L0 = 5pH, C0 = 0.5 fF, (b) short standard with L0 =
10pH, C0 = 0.5 fF, and open standard with C0 = 10 fF, L0 = 0.5 pH. All
standards are offset by a 200µm CPW line segment.

To verify the accuracy of the calibration, we included a
stepped impedance line as DUT, which uses the same CPW
structure with the only exception of signal width equal to
15µm. The data has been processed using Python with the
help of the package scikit-rf [27]. Fig. 8 shows the DUT before
and after embedding in the error boxes.
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Fig. 8. DUT S-parameter response before and after embedding within the
error boxes.

To verify the numerical accuracy of the calibration, we
define an error metric as the magnitude of the error vector

of the calibrated response to the actual response given by

Errorij (dB) = 20 log10
∣∣Scal

ij − Strue
ij

∣∣ (34)

where Scal
ij represents the calibrated value and Strue

ij is the
corresponding true value.

Applying the SRM method using both full-network and
half-network variants, we observe in Fig. 9 that both meth-
ods yield errors approaching zero, constrained only by the
numerical precision of the software.
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Fig. 9. The error of the calibrated DUT using the SRM method, once with
a full-network approach and secondly with a half-network approach.

B. Coaxial Measurements

The measurement involves comparing the proposed SRM
method with a SOLR calibration using a commercial SOLR
coaxial calibration kit with a 2.92mm interface [28]. The cali-
bration results are compared to fully characterized verification
standards with defined uncertainty bounds. The VNA used for
the measurement is a ZVA from Rohde&Schwarz (R&S), and
the used calibration kit is the ZN-Z229 2.92mm calibration kit
from R&S. The standards used from the kit are short, open,
and match standards with female interfaces, along with two
adapters, one female-female and one female-male of equal
length. This data is used to conduct the SOLR calibration.
The adapter standard is assumed to be unknown during the
SOLR calibration process.

For the implementation of SRM standards, the symmetrical
standards are directly measured by connecting the three one-
port devices at both ports: short, open, and match. The female-
female adapter is used to represent the reciprocal network. For
the network-load standard, the symmetrical one-port devices
are connected to the female-male adapter and measured at the
left port. In all steps, the standards are assumed unknown,
except for the match standard, which is only defined in the
final step of the calibration via (23) and (24). An example
that illustrates the measurement of the standards is shown in
Fig. 10.

Calibration plane

Load standard

(a)

Calibration plane

Adapter

(b)

Calibration plane

Load standardAdapter

(c)

Fig. 10. Example photos of measured coaxial standards. (a) load standard,
(b) adapter (network), and (c) load connected with an adapter (network-load).

The verification kit utilized for the comparison is the ZV-
Z429 2.92mm verification kit from R&S. The kit contains a
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mismatch standard and an offset short standard with female
interfaces. These verification standards have been previously
characterized by the manufacturer, and their S-parameters are
provided with uncertainty bounds.

The results from calibrating the mismatch and offset short
verification kit using both SOLR and SRM calibration methods
are depicted in Fig. 11. The plots reveal that both calibration
methods produced similar outcomes, with errors relative to the
reference data of the verification kit remaining below −30 dB.
To facilitate visual comparison, we opted to plot the group
delay instead of the phase. In both, the SOLR and SRM
calibration, the group delay overlaps with the reference data
for both mismatch and offset short. However, we observe a
small discrepancy in the magnitude response of the offset
short standard after 15GHz, where ripples can be observed.
Nevertheless, this falls within the uncertainty bounds of the
magnitude response of the offset short.
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Fig. 11. Comparison of calibrated mismatch and offset short verification kits
using SOLR and SRM methods. The uncertainty bounds are of the reference
measurement and reported as 95% expanded uncertainty.

A possible cause for the variation in the magnitude of the
calibrated offset short with the SRM method is likely due to
the pin gap of the connectors, as the SRM method involves
more measurements using the network-load standards. We
have summarized the pin gap after mating for the different
standards in Table I. The table shows that the adapter stan-
dard used to create the network-load standard has the most
significant pin gap distance (i.e., 54.61µm). This ripple is also
noticeable when analyzing the difference between the error
terms of SOLR and SRM calibrations, as shown in Fig. 12.
It is evident that both ports exhibit ripple in source matching
term, which is most likely caused by the pin gap, as the source
match error term describes the reflection at the calibration
plane, which is where the pin gap would show its most effects
[29].

A final comparison is made between the calibrated female-
female adapter of both calibration methods. In both SOLR
and SRM methods, the adapter was assumed to be unknown

TABLE I
PIN GAP OF MATED CONNECTORS. VALUES ARE REPORTED IN µm. THE

PIN DEPTH GAUGE HAS A RESOLUTION OF 2.54µm (0.0001 in). THE
LETTER “F” STANDS FOR FEMALE (JACK) AND “M” FOR MALE (PLUG).

Short
(f)

Open
(f)

Match
(f)

Adapter
(ff)

Adapter
(fm)

Port 1
(m)

31.75 31.75 31.75 35.56 54.61

Port 2
(m)

31.75 31.75 31.75 36.83 -

Adapter
(fm)

31.75 31.75 31.75 - -
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Fig. 12. The magnitude of the error vector of the VNA’s error terms obtained
from SOLR and SRM calibration methods.

but reciprocal during the calibration process. The reference S-
parameters of the adapter were provided by the manufacturer
and used to establish the error metric. However, no uncertainty
bounds were available. Fig. 13 depicts the calibrated adapter
derived from both SOLR and SRM methods. These measure-
ment results are compared to the reference S-parameters of
the adapter. Both calibration procedures deliver comparable
results with similar errors.

Although SOLR and SRM delivered similar results in this
experimental example, it is important to note that for the SOLR
method, all SOL standards already have be characterized
beforehand, whereas for the SRM method only the match
standard must be characterized.
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Fig. 13. Comparison of the calibrated female-female adapter using SOLR
and SRM methods.
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VI. CONCLUSION

This article presents a new VNA calibration method based
on partially defined standards. The proposed SRM method uses
one-port symmetric standards, a two-port reciprocal device, a
combination of the reciprocal device with the one-port device,
and a match standard. Only the match standard must be
characterized among all standards, defining the calibration’s
reference impedance.

We have extended our proposed method to the particular
case of an on-wafer setup, where the probes are fixed in
distance. To do this, we restricted the two-port reciprocal
device to be symmetric, allowing us to use half of it to define
the network-load standards.

To demonstrate the SRM method, we performed numerical
analysis using CPW synthetic data based on an actual on-wafer
measurement setup. Additionally, we have shown the SRM
method using measurements based on commercial 2.92mm
coaxial standards, indicating that the method is compatible
with commercial SOLR standards where only the match stan-
dard is specified. Overall, the proposed SRM method offers
greater flexibility in standard definition, potentially decreasing
errors associated with inadequate calibration standard specifi-
cations.

ACKNOWLEDGMENT

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs and the National Foundation
for Research, Technology, and Development is gratefully ac-
knowledged.

REFERENCES

[1] W. Kruppa and K. Sodomsky, “An explicit solution for the scattering pa-
rameters of a linear two-port measured with an imperfect test set (corre-
spondence),” IEEE Transactions on Microwave Theory and Techniques,
vol. 19, no. 1, pp. 122–123, 1971, doi: 10.1109/TMTT.1971.1127466.

[2] A. Rumiantsev and N. Ridler, “VNA calibration,” IEEE Mi-
crowave Magazine, vol. 9, no. 3, pp. 86–99, jun 2008, doi:
10.1109/mmm.2008.919925.

[3] J. A. Jargon, D. F. Williams, and A. Sanders, “The relationship between
switch-term-corrected scattering-parameters and wave-parameters mea-
sured with a two-port vector network analyzer,” IEEE Microwave and
Wireless Components Letters, vol. 28, no. 10, pp. 951–953, oct 2018,
doi: 10.1109/LMWC.2018.2867076.

[4] R. B. Marks, “Formulations of the basic vector network analyzer error
model including switch-terms,” in 50th ARFTG Conference Digest,
vol. 32, 1997, doi: 10.1109/ARFTG.1997.327265. pp. 115–126.

[5] Z. Hatab, M. E. Gadringer, and W. Bösch, “Indirect measurement of
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