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Abstract. Modern tourism in the 21st century is facing numerous chal-
lenges. Among these the rapidly growing number of tourists visiting
space-limited regions like historical cities, museums and bottlenecks such
as bridges is one of the biggest. In this context, a proper and accurate
prediction of tourism volume and tourism flow within a certain area is
important and critical for visitor management tasks such as sustainable
treatment of the environment and prevention of overcrowding. Static flow
control methods like conventional low-level controllers or limiting access
to overcrowded venues could not solve the problem yet. In this paper,
we empirically evaluate the performance of state-of-the-art deep-learning
methods such as RNNs, GNNs, and Transformers as well as the classic
statistical ARIMA method. Granular limited data supplied by a tourism
region is extended by exogenous data such as geolocation trajectories
of individual tourists, weather and holidays. In the field of visitor flow
prediction with sparse data, we are thereby capable of increasing the ac-
curacy of our predictions, incorporating modern input feature handling
as well as mapping geolocation data on top of discrete POI data.

Keywords: Tourism · Time series forecasting · Sustainable tourism ·
Sparse geolocation data

1 Introduction

With increasing population and travel capacities (e.g. easy access to interna-
tional flights) cultural tourism destinations have seen a rise in visitors. In ad-
dition, recent needs for social distancing and attendance limitations due to the
global COVID-19 pandemic have confronted tourism destinations with signif-
icant challenges in e.g. creating and establishing sustainable treatment of the
both urbanised and natural environment or e.g. preventing overcrowded waiting-
lines. The perception of tourists regarding health hazards, safety and unpleasant
tourism experiences may be influenced by social distance and better physical
separation [24].
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Based on The United Nation’s 2030 Agenda for Sustainable Development [25],
tourism is obligated to contribute to several Sustainable Development Goals, in-
cluding sustainable cities, responsible consumption, and economic growth. Sus-
tainable tourism can achieve this by understanding and controlling visitor flows,
preserving natural landmarks, reducing emissions and waste, establishing sus-
tainable energy consumption, creating harmony between residents and tourists,
and maximizing tourist satisfaction for economic prosperity.

Insufficient data availability in real-world problems is caused by factors such
as compliance issues, lack of data collection, and transfer. Nonpersonal data from
POIs, tourist facilities, and anonymized digital device data are used in research,
but location data collected by mobile apps is controversial due to profit-oriented
collection practices. It’s important to consider whether people are aware of what
they’re sharing when using these services, even if the datasets don’t contain
direct personal data.

The question of how to improve awareness of data shared by such apps or
services is not answered in this research. This scientific work is focusing on what
is possible to achieve in the given environment considering the given data and
data history in regards to tourist flow prediction since sparse data is a widespread
generic problem.

The first step in order to control tourist flows is to predict authentic move-
ment and behavior patterns. However, since the tourist visitor flow is affected
by many factors such as the weather, cultural events, holidays, and regional
traffic and hotspots throughout a specific day, it is a very challenging task to
accurately predict the future flow [15]. Due to the availability of large datasets
and computational resources, deep neural networks became the state-of-the-art
methods in the task of forecasting time-series data [20], including tourism flow
applications [21].

In this work, we focus on tourist flow prediction based on a local dataset
from the visitors of the tourist attractions of the city of Salzburg as well as
third-party geolocation data of individual tourists. After data preprocessing and
dataset preparation, we attempt to compare the performance of different deep-
learning-based methods for time-series prediction with ARIMA, a traditional
statistics-based method. According to Li and Cao [13], ARIMA is the most
popular classical time forecasting method based on exponential smoothing and
it was made popular in the 1970s when it was proposed by Ahmed and Cook [1]
to be used for short-term freeway traffic predictions.

We summarize the specific contributions of our paper as follows:

– We perform a comprehensive comparison of DL and ARIMA, a traditional
technique, on a real-world dataset to reveal the shortcomings and point out
necessary future improvements.

– Per point-of-interest (POI), we perform granular predictions on an hourly
basis, which is critical for the task of tourism flow control.

– We further evaluate modern DL techniques such as Transformers and GNNs.
– To the best of our knowledge, we are the first to apply a wide range of DL

models to tourist flow prediction.
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2 Related Work

Considering the importance of predicting tourist flows in a growing industry,
visitor forecasting has gained attention in recent years. Recurrent Neural Net-
works are used to forecast tourist demand, such as LSTMs that can be used in
conjunction with deep neural networks or hidden Markov Models [22,13]. Only
a limited set of models is used in most of these studies to make predictions.

Another important aspect of tourism data is its granularity. Several studies
focus on long-term estimates of monthly, quarterly, and yearly, or in the best
case daily numbers of tourists in large regions as a measure of city or country-
level tourism demand [2]. For tourism flow control, it is vital to perform granular
predictions on an hourly basis and per POI.

DL-based models. Time-series data prediction is typically handled by re-
current neural networks (RNNs). With RNNs, neural networks gain memory,
allowing them to forecast sequence-based data. Gated RNNs are able to produce
a good performance as LSTM [10] and GRU [5].

The RNN has limitations when faced with irregularly sampled time series,
such as that encountered in tourist flow forecasting. In order to overcome this
limitation, phased-LSTM [18] adds a time gate to the LSTM cells. GRU-D [4]
incorporates time intervals via a trainable decaying mechanism to deal with
missing data and long-term dependence in time series.

instead of discrete-time models, continuous-time models with latent state
defined at all times can also be used, such as CT-RNN [8], CT-LSTM [16],
and CT-GRU [17], as well as NeuralODEs [7], which define the hidden state
of the network as a solution to an ordinary differential equation. Augmented-
NeuralODEs [7] can alleviate some limitations of NeuralODEs, such as non-
intersecting trajectories, by using augmentation strategies. These continuous-
time models have favorable properties, such as adaptive computation and train-
ing with constant memory cost. GoTube [9] can be used to statistically verify
them by constructing stochastic reach tubes of continuous-time systems.

On the other hand, transformer-based models [26] have been successful in
various applications due to their powerful capability for sequence learning and
representation. They have also been explored in time-series forecasting tasks
for datasets with long sequences and high historical information. The multi-
head self-attention mechanism is the primary component of transformer models,
which can extract correlations in long sequences. However, the permutation-
invariant nature of self-attention requires positional encodings to prevent the
loss of temporal dependencies.

Graph Neural Networks (GNNs) are an interesting new class of Deep Learn-
ing Algorithms that allow for the inputs to be structured as graphs. Most GNN
models build on the notion of Graph Convolutions which can be seen as a general-
ization of Convolutional Neural Networks to graph structured data - as opposed
to being arranged in a grid. An even more fascinating type of DL models are
temporal GNNs that combine Graph Convolutions with RNNs. Such temporal
GNN models are most prominent in traffic flow prediction applications. [29]
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Traditional techniques. For time-series forecasting with traditional tech-
niques we use the Autoregressive Integrated Moving Average (ARIMA) model.
ARIMA has been used in recent studies as a baseline for the evaluation of novel
deep-learning based models [28] and is thus selected as a baseline model for this
paper as well.

3 Data

Two different data sources were combined to enable the use of their different
features in the training of the models and prediction of future visitor counts.

The first dataset we used stems from the "Salzburg Card" which was kindly
provided to us by TSG Tourismus Salzburg GmbH. Upon purchase of these
cards, the owner has the ability to enter 32 different tourist attractions and
museums included in the portfolio of the Salzburg Card. The dataset consists
of the time-stamps of entries to each POI. Additionally, we used data about
weather and holidays in Austria.

We utilized mobile phone location data from a third-party service to improve
tourist flow predictions in Salzburg. The dataset covers around 3% of tourists
and provides information on the number of tourists between points of inter-
est. However, the data is sparse and lacks a distinct recording frequency. To
further improve our predictions, we incorporated a street graph obtained from
OpenStreetMap using the osmnx python package. The resulting graph contains
2064 nodes and 5359 edges, with edge values corresponding to the lengths of the
street segments. We then mapped the location data to the graph by assigning
each location to the nearest node and aggregating the total number per hour.

CoVID-19 Tourism around the globe saw huge drops during the global CoVID-
19 pandemic. Starting in march of 2020, Austria started to take preemptive
measures to prevent the spread of the virus. These travel restrictions and closings
of public spaces, hotels and restaurants severely reduced the number of tourists
in and around the city of Salzburg. As a consequence, prediction accuracy could
be diminished when using models that have been trained on pre-CoVID data.

4 Methods

For this work, we built our own dataset on hourly data collected from tourist
attractions and then expanded this by including geolocation data. Including
many different datasources is a key challenge for this real-world prediction task.
Sparse geolocation data is therefore fed into our GNN model as features. With
this approach we aim to create models that are capable of easily integrating new
datasources that might be available in the future. We then perform predictions
with a rich set of models and do a comprehensive comparison of the results. In
this section we first introduce the dataset we used for the experiments. Then we
go over the methods we chose to evaluate and compare their performances.
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4.1 Deep-Learning models

We use a large set of RNN variations on the tourist-flow dataset to perform
a comprehensive comparison of the state-of-the art models and provide insight
on their performance. The set comprises vanilla-RNN, LSTM, phased-LSTM,
GRU-D, CT-RNN, CT-LSTM and Neural-ODE networks. Moreover, we used a
Transformer model, using only the encoder part with 8 heads, 64 hidden units,
and 3 layers, to forecast the tourist flow. Finally, we applied a naive continuous-
time temporal GNN approach based on CT-RNNs to our prediction problem in
order to utilize geolocation data of individual tourists. All of the Neural Networks
were trained with Backpropagation-Through-Time and the Adam optimizer [12]
using the parameters given in the Appendix 3.

In order to incorporate inductive bias stemming from the street layout from
Salzburg, we used a simplified CT-RNN based GNN model that we will call
Continuous-Time Recurrent Graph Network (CT-GRN) in the following. It
consists of one neuron per node in the street graph and exhibits the same con-
nectivity. This is done by point-wise multiplying the recurrent kernel with the
graph’s normalized adjacency matrix whose entries are the inverse of the corre-
sponding street segment lengths.

yt+1 = yt − τyt + a⊙ tanh((Wrec ⊙ Â)yt +Winxt + b)

Where yt is the network’s state at time t, xt is the exogenous input, τ , a, Wrec,
Win and b are trainable parameters, and Â = D−1A is the normalized Adjacency
matrix. The resulting model inherits all the favourable ODE properties of CT-
RNNs such as the ability to evaluate at arbitrary points in (continuous) time
and differentiable dynamics used in verification. Finally, we used a variation of
the Teacher Forcing [27] technique which basically translates to resetting the
nodes of the network to the target value after each step. Our Mixed Teacher
Forcing version forces the hidden state of the POI nodes to the true value and
adds up the predicted and true values for the other nodes.

4.2 Traditional methods

In this study, we used a non-seasonal ARIMA model (ARIMA (p,d,q)) that
ignores seasonal patterns in a time-series, where p is the number of autoregressive
terms, d is the number of non-seasonal differences, and q is the number of lagged
forecast errors in the prediction equation [3]. We utilized the auto.arima function
from the R forecast library to automatically determine the best values for p, d,
and q for each of the 32 POIs. The ARIMA model was then individually fitted
to each POI’s training dataset using the pmdarima library in Python. Each time
the number of visitors is predicted for the next hour in the test data, the true
value (i.e., number of visitors) for that hour is added to update the existing
ARIMA model and make it aware of all previous values before making the next
prediction. This approach prioritized prediction accuracy over time complexity.
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4.3 Preprocessing

We used the Salzburg card data from years 2017, 2018, and 2019 for our first
set of experiments. In order to create the time-series data, we accumulated the
hourly entries to each location. The data then consists of the hour of the day,
and the number of entries at that hour to each of the 32 POIs.

For the DL models, we added additional features to the dataset: Year, Month,
Day of month, Day of week, Holidays and Weather data. For the Holiday data
we used the national holidays and school holidays and count the days to the next
school day. For the Weather data, we used the hourly weather data with these
features: Temperature, Feels Like, Wind speed, Precipitation, and Clouds as well
as a One-Hot-Encoded single word description of the weather (e.g. "Snow").

We performed further pre-processing by normalizing all features to values
between 0 and 1. To account for seasons, we performed sine-cosine transformation
for the month. Intuitively, since it is a circular feature we do not want to have
the values for December and January to be far apart.

Finally, we split the data into sequences of length 30, and used the data from
years 2017 and 2018 as the training set, and 2019 as the test set.

Fig. 1. One sample of the series of OSM graphs of the Salzburg city center obtained
from preprocessing. Encircled nodes are the special POI nodes. Color coded are the
normalized aggregated entry and tracking data, where most of the nodes indicate zero
(pale)

Graph Neural Networks For the GNN we used the OSM graphs as il-
lustrated in Section 3. Our dataset of tourist locations was very sparse which
subsequently resulted in very sparse inputs for each node. Since we are trying to
predict numbers of entries at the POIs, we added them as additional nodes to
the graph connecting them to up to 5 of the nearest nodes present in the graph
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with a max distance of 80 m. Finally, the global features such as weather and
holidays are added to the graph by a linear mapping from features to nodes.
This way we obtained a series of graphs where each sample constitutes the OSM
graph with the edge values corresponding to the distance and the node values
corresponding to the aggregated number of people near this location / POI en-
tries. One sample is visualized in Figure 1. For inference we predicted the whole
graph and discarded the nodes that do not represent POIs.

Table 1. Averaged prediction errors

# Cells / Time only visitors external features
Model # Parameters Train (min) Pred (ms) MAE RMSE MAE RMSE
ARIMA 224 - 69k 5.217 7.833 - -
ANODE 64 / 21.3k 145.6 3.01 4.599 6.965 4.410 6.663
Vanilla RNN 128 / 43.7k 5.9 0.18 3.958 6.321 3.802 6.160
LSTM 32 / 11.9k 1.5 0.24 3.713 6.209 3.630 6.113
Phased LSTM 32 / 11.8k 27.0 0.46 3.825 6.359 3.651 6.120
CT-LSTM 32 / 19.9k 18.1 0.31 3.734 6.239 3.700 6.185
CT-RNN 128 / 27.4k 57.1 0.60 3.694 6.131 3.629 5.983
GRU-D 64 / 27.7k 16.6 0.33 3.638 6.121 3.621 6.073
Naive - - - 6.466 9.483 - -

5 Main Results

5.1 Forecasting visitor numbers

We performed a diverse set of experiments with ARIMA and DL models to evalu-
ate their forecasting accuracy, execution time and prediction time and compare
the models. Table 1 shows the Mean-Absolute-Error (MAE) and Root-Mean-
Squared-Error (RMSE) achieved for each method applied to the timeframe from
2017-2019 - before COVID. In order to find optimal model size, loss function,
and whether to use normalized visitor counts, we did a grid search conducting
three runs per configuration and keeping the one which achieved the lowest av-
erage RMSE. As a baseline we include the naive approach of using the last true
value as prediction at each step, i.e. ŷt = yt−1.

The table includes the model size, number of parameters, and training and
prediction times for the best run of each deep-learning model. We excluded
non-normalized models since normalized visitor counts consistently led to better
results. MAE was the best loss function for all models except ANODE, which
performed better with Huber loss. The phased LSTM achieved comparable re-
sults with the fewest parameters.

Our DL models outperformed ARIMA in both metrics, with and without
additional features. Adding more features did not significantly improve perfor-
mance, suggesting that it may lead to over-fitting. We report results with and
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without additional features for DL models to ensure fairness in comparison with
ARIMA, which cannot use external features. Additionally, ARIMA struggles
with short sequences, while DL models can handle them when trained on the
full dataset.

2019-10-01 15:00:00

2019-10-02 13:00:00

2019-10-03 11:00:00

2019-10-04 09:00:00

2019-10-04 19:00:00

2019-10-05 17:00:00

time

vi
sit

or
s

Funicular Railway Down Fortress Hohensalzburg
Ground Truth
CTRNN
GRUD
ARIMA

2019-12-29 08:00:00

2019-12-29 18:00:00

2019-12-30 16:00:00

2019-12-31 14:00:00

2020-01-01 12:00:00

time

vi
sit

or
s

Mozart Birthplace Museum - New Year
Ground Truth
CTRNN
GRUD
ARIMA

2019-02-27 13:00:00

2019-02-28 12:00:00

2019-03-01 10:00:00

2019-03-02 08:00:00

2019-03-02 18:00:00

time

vi
sit

or
s

Festival Hall Festspielhaus Salzburg
Ground Truth
CTRNN
GRUD
ARIMA

Fig. 2. Predicted and True visitor counts for the Funicular Railway (top) and Mozart’s
Birthplace Museum (mid) and the Festival Hall (bottom). Predictions are computed
using CT-RNN (orange), GRU-D (green) and ARIMA (red).

In Table 1, we compare the training and prediction times of ARIMA and
DL models. ARIMA took 69s to perform a single prediction for all POIs, while
the DL models took fractions of milliseconds, with the trade-off of having longer
training times. ARIMA does not have a dedicated training step, and its calcula-
tions are time-consuming since it makes predictions for each POI separately. In
contrast, DL models are trained with the visitors to all POIs in a single vector
and make predictions for all at the same time. This allows DL models to leverage
implicit data about the total number of visitors in the city, which ARIMA loses.

In order to visually explore the predictions made by the models, we plot-
ted the predictions and the ground truth for a few selected time-windows (see
Figure 2). We plot the predictions made by the DL models (including the ex-
ternal features) with the best MAE and RMSE, which were the GRU-D and
CT-RNN respectively. The prediction made by the DL models with the visitors
only data was only slightly worse than the others, which is why we omit these
evaluations in the plots. Our plots show that although ARIMA is out-performed
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by the DL methods in the average error of all predictions, there are cases where
it actually performs better than the other models. The plot on the Top shows
the forecast and real values for the tourists entered the Funicular Railway de-
scend which is the cable car ride leading up to Salzburg Castle. As visible in
the plot, the DL models show a better performance, especially in the valleys
where the ARIMA fails to predict the downfalls accurately. Mid shows visitor
predictions for Mozart’s Birthplace Museum around the time of New Year’s Eve.
The reduced numbers of visitors on the 1st and 2nd of January is overestimated
by all our models. Finally, on the bottom the predictions for the Festival Hall
Festspielhaus guided tour are shown which is sparse since it takes place once a
day at 2 pm. All models fail in prediction for the second and third peak at this
location. However, CT-RNN shows a very good performance in predicting the
first and last peak and at least shows an upward trend for the second and third
peak. ARIMA can not handle this type of sparse data at all.

Table 2. Average prediction results for 2021 after training on data from 2019 & 2020

MAE
Model only visitors + features + geolocation
Vanilla RNN 2.48 2.42 3.37
LSTM 2.66 2.58 3.54
Phased LSTM 2.44 2.44 3.05
CT-LSTM 2.61 2.57 3.32
CT-RNN 2.50 2.45 3.16
ANODE 2.63 2.57 3.64
GRU-D 2.99 2.87 3.58
Transformer 2.19 2.04 2.65
Naive 2.187 - -
CT-GRN - - 2.63

5.2 Including geolocation data

We conducted a second set of experiments on the timeframe from 2019 to 2021
that includes geolocation data of individual (anonymized) tourists. Results are
presented in Table 2 which shows for each model the number of Parameters and
MAE with and without additional features and also when using features and
the geolocation data. This time we included the Transformer and GNN models,
but excluded ARIMA due to computation time reasons. Since the Salzburg Card
dataset for this particular timeframe contains a significantly lower number of
datapoints due to lockdowns enforced by the government, the numbers must not
be compared directly to the results discussed in the last section.

This time the naive approach outlined above led to surprisingly good re-
sults and only the Transformers with exogenous features were able to surpass
it. Transformers can handle multi-variate data well due to the multi-head self-
attention mechanism which enables them to extract hidden correlations in input,
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and hence get better loss after using additional features. However, they require
considerably more parameters in comparison to the RNN models.

For the GNN we only conducted experiments with additional geolocation
data since input graph attributes would be even sparser without, defeating the
point of using a graph based approach. The CT-GRN algorithm scored a slightly
worse prediction error in comparison to the other models when not using visitors
and features as input. However, all other methods scored worse when trained on
the sparse geolocation data which shows the usefulness of the GNN approach.

Our GNN approach enables us to incorporate the sparse geolocation data into
our model. Since there is more sparse geolocation data expected to be processed
within real-life-scenarios, this is the only approach to fit these needs.

6 Conclusions and future work

Our study demonstrated the effectiveness of DL models for tourist flow time-
series forecasting, particularly when external features are included. DL models
outperformed the traditional ARIMA method and were faster in terms of pre-
diction time. We also showed that GNNs are more suitable for incorporating
spatial structure using sparse geolocation data.

Moving forward, there are several directions for future research. One possibil-
ity is to investigate methods to further improve the performance of DL models,
such as implementing regularization or learning rate scheduling. Another option
is to explore the use of Vector Auto-Regression (VAR) to address the limitations
of ARIMA for univariate data. Finally, we plan to develop specialized models
that can outperform existing state-of-the-art models in short-term prediction,
with the ultimate goal of helping tourism stakeholders make informed decisions
and promote sustainable tourism practices.
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A Appendix

A.1 Hyperparameters

Table 3. Hyperparameters used in RNN training.

Hyperparameter Value
sequence length 30
batch size 16
epochs 300
optimizer adam
Learning-rate 1e−3

β1,2 (0.9, 0.999)
ϵ 1e−8

loss function mse, mae, huber
model size 32, 64, 128
normalized visitors True, False
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