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ABSTRACT: 
Information is being extracted from vertical aerial photography and various data products for an efficient interpretation of terrain 
objects. Our focus lies on characterizing individual properties as accurately as possible, using aerial imagery. We want to determine 
the size of buildings, their number of floors, the number and size of windows, the existence of impervious surfaces, status of 
vegetation, roof shapes with chimneys and sky lights etc. To achieve robust results it is very important to incorporate all data that a 
set of images can offer. A key aspect therefore is the inclusion of the 3rd dimension when interpreting façade images and to deal with 
the different imaging angles when interpreting the details of building facades from vertical aerial photography. This paper first 
addresses the question which incidence angles are sufficiently large to get useful results. And secondly it describes a plane sweep 
algorithm to detect 3D façade objects such as eaves, balconies and porches. We expect to achieve an enhanced quality of the floor 
counts and window detection results. The topics are closely related since one first needs to understand which façade images have 
been taken under an angle that is too small, so that the facades excessively distorted. Second, the plane sweep algorithm needs 
images with as small a distortion as possible, and given a high degree of overlaps, one will need to prune-down the set of images 
actually used.  
 
 

INTRODUCTION 
Can one analyze façade details of buildings from overlapping 
vertical, not oblique, aerial photography, and at what level of 
completeness and accuracy? Our research seeks to clarify those 
questions. The topic is relevant since the Internet has started to 
inspire an interest in modeling urban areas in 3D from vertical 
and oblique aerial photography, aerial LiDAR and from street 
side imagery and street side LiDAR. Vertical aerial 
photography is the workhorse to provide complete maps, 
orthophotos and dense 3D point clouds (Leberl, 2010). With the 
transition to digital sensing, image overlaps can increase 
without adding costs (Leberl & Gruber, 2005). This improves 
the accuracy, the automation opportunities and it reduces the 
occlusions. It is thus meaningful to extract from the aerial 
photography all the information about man-made objects such 
as buildings, and thus of their facades, from ubiquitous vertical 
aerial imagery. If successful, such façade information will be 
created at no added cost for new sensor data. 
 
Our specific interest is the “value” of real properties (Meixner 
& Leberl, 2010a). That value is certainly based, among other 
factors, on a characterization of each property by as complete a 
set of numbers as can be extracted from sensor data. This 
includes the size of a lot, the building dimensions and building 
details, the impervious surfaces, the vegetation, the effect on a 
property by its neighbors such as shadows, etc.  
 
In this paper we focus on façades, and we limit the sensor 
source data to easily available vertical aerial photography. We 
show that façades can indeed be mapped in 3D, provided we 
have aerial images at high overlaps and with small pixel sizes to 
support the modeling of human scale objects. 
 

THE PROCESSING FRAMEWORK 
We start with geometric data from two sources: the aerial 
imagery and the cadastral information. Figure 1 shows an 
example for a 400 m x 400 m urban test area in the city of Graz 

(Austria) and the suitable cadastral information of this area. We 
merge these two data sources to define each property as a 
separate entity for further analysis. The cadastral data also may 
contain preliminary information about a 2D building footprint.  
 
In a next step we produce dense 3D point clouds associated with 
the aerial photography and extracted from it by means of a so-
called dense matcher applied to the triangulated aerial 
photographs (Klaus, 2007), and we segment the data per 
property. This results in the areas occupied by one building as 
well as its height. The building footprints get refined vis-à-vis 
the cadastral prediction using image segmentation and 
classification to define roof lines. 
 
The next step now is the determination of the façades (see 
Figure 4): For each façade we must find its intersection with the 
ground, thus its footprint. This is the basis for a definition of the 
façade in 3D by intersecting the footprint with the elevation 
data. We compute the corner points of each façade along the 
footprint and the roof line. These corners can then be projected 
into each image of a block of overlapping aerial photography. 
We can search in all aerial images for the best representation of 
the façade details; typically this will be the image with the 
maximum number of pixels for a given façade. Since there are 
multiple façade images, we prepare for a multi-view process. 
 
What follows is a search for rows and columns of windows in 
the redundant photographic imagery. First of all, this serves to 
determine the number of floors. Second, we also are interested 
in the window locations themselves. And finally, we want to 
take a look at attics and basement windows to understand 
whether there is an attic or basement. Figure 2 summarizes the 
workflow towards a property characterization and represents the 
framework in which the effort is executed. Additionally the 
vegetation can be interpreted and roof details like eaves, 
skylights, chimneys or the type of attic can be detected.  
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believe that this is a weakness of the method caused by the 
Winner-Takes-All WTA-approach that we need to eliminate. 
 
Given that we have multiple matches per pixel from the many 
image overlaps, a remedy would involve consideration of 
neighborhoods as the match results get fused, for example by 
means of the so-called Belief Propagation method. (e.g. Weiss 
and Freeman, 200). This is an approximation technique for 
global optimization on graphs, which is based on passing 
messages on the arcs of the underlying graph structure. The 
algorithm iteratively refines the estimated probabilities of the 
hypotheses within the graph structure by updating the 
probability weighting of neighboring nodes (see Zach 2007).  
 
 

REFERENCES 
Hartley R., Zisserman A. (2004) Multiple View Geometry in 
Computer Vision. Second Edition. Cambridge University Press, 
March 2004, pp. 219-243. 
 
Klaus A. (2007) Object Reconstruction from Image Sequences. 
Dissertation, Graz University of Technology, 2007. 
 
Leberl F., M. Gruber (2005) Ultracam-D: Understanding Some 
Noteworthy Capabilities Proceedings, Proceedings of the 
Photogrammetric Week 2005, Stuttgart University; Wichmann-
Verlag Heidelberg. 
 
Leberl F. (2010) Human Habitat Data in 3D for the Internet. 
Ranchordas, A., Madeiras Pereira, J., Araújo, H.J., Tavares, 
J.M.R.S. (Eds.); Springer Communications in Computer and 
Information Science (CCIS) Volume 68, Computer Vision, 
Imaging and Computer Graphics: Theory and Applications · 
International Joint Conference, VISIGRAPP 2009, Lisboa, 
Portugal, February 5-8, 2009. Revised Selected Papers, pp. 3-
17. 
 
 
 
 
 

Meixner P. Leberl F. (2010a) From Aerial Images to a 
Description of Real Properties: A Framework. Proceedings of 
VISAPP International Conference on Computer Vision and 
Theory and Applications, Angers 2010. 
 
Meixner P. Leberl F. (2010b) Describing Buildings by 3-
dimensional Details found in Aerial Photography. Proceedings 
of ISPRS Commission VII, Vienna 2010. 
 
Prandi F. (2008) Lidar and Pictometry Images Integrated Use 
for 3D Model Generation. Proceedings of the XXI ISPRS 
Congress, Beijing 2008. 
 
Weiss, Y. and Freeman, W. T. (2001). On the optimality of 
solutions of the max-product belief propagation algorithm in 
arbitrary graphs. IEEE Transactions on Information Theory, 
pp. 723–735. 
 
Zach C. (2007) High-Performance Modeling from Multiple 
Views using Graphics Hardware. Dissertation, Graz University 
of Technology, 2007 
 
Zebedin L., Klaus A., Gruber B., Karner K. (2006) Façade 
Reconstruction from Aerial Images by Multi-view Plane 
Sweeping. ISPRS Commission III, Proc. PCV Photogrammetric 
Computer Vision, PCV’06. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


