

5th International Conference on Light Materials LightMAT 2023

WISSEN TECHNIK LEIDENSCHAFT

Heterogeneous microstructural evolution of AA6082 during plastic deformation

T. Terrazas ^{1,2,*}, P. Wang ¹, F. Miller ^{1,2}, R. Buzolin ^{1,2}, D. Knogler ¹, C.Poletti ^{1,2}, A.Hämmerle ³

¹ Institute of Materials Science, Joining and Forming, TU Graz, Kopernikusgasse 24/I, 8010 Graz, Austria

² Christian Doppler Laboratory for Design of High-Performance Alloys by Thermomechanical 8 Processing, Kopernikusgasse 24/I, 8010 Graz, Austria

³ Neuman Aluminium Industries, Werkstraße 1, 3182 Marktl, Austria

* Corresponding author

21 of June 2023

Simulations of industrial processes

Improvement of processing parameters

Desired mechanical properties in final components

Reduction of costs

OBJECTIVES

- To study heterogeneous microstructural evolution during hot deformation of AA6082, representative of hot extrusion processes
 - To generate heterogeneous deformation conditions at the labscale by compressing hat-shaped samples
 - To model and simulate compression tests using a phyicsbased model implemented in DEFORM (FEM software)

DEFORMATION IN ALUMINIUM

Terrazas 21th of June 2023

IMAT

Methodology - Mean field model for deformation

IMAT

8

MICROSTRUCTURE DESCRIPTION – AA6082

Formation of the substructure

Transformation of LAGBs into HAGBs

Fully recrystallized steady state

Methodology

Methodology

IIMAT

HAT-SHAPED SAMPLES Why is this geometry interesting?

- Flow curves?
- Local Τ, ε,
 ἐ gradients
- Representative of HOT EXTRUSION

Selected results

Selected results- Model predictions

MICROSTRUCTURE EVOLUTION 500°C, 0.01s⁻¹, ND

density [m-2] Subgrains become 0.030 10¹⁵ Rate [s-1] 0.020 0.015 larger Grains become smaller Homogenous 10¹⁴ Dislocation . Strain .010.0 .005 grain/subgrain structure in P1 and P2 0.000 P1_o 65 35 520 size [um] 34 P Temperature [C°] 515 60 33 Grain size [um] 510 32 55 31 505 30 500 Subgrain **50** 29 495 · **28** · 490 45 27 26-485 25 40 Ρ 480 160 180 200 160 180 200 180 200 160 Time [sec] **P2** Time [sec] Time [sec] Terrazas

> Christian Doppler Forschungsgesellschaft

21th of June 2023

Selected results- Model predictions

MICROSTRUCTURE EVOLUTION 350°C, $10s^{-1}$, ND

Selected results- Model predictions

IIMAT

Terrazas 21th of June 2023

- Subgrains smaller in P1 than P2
- Grain sizes?

- Subgrains become larger than for 300°C 10s-1
- Homogenous grain/subgrain structure in P1 and P2

Christian Doppler Forschungsgesellschaft **Selected results**

MICROSTRUCTURE EVOLUTION DURING SHEAR DEFORMATION

CONCLUSIONS

- Substructure becomes coarser for higher temperatures and lower strain rates
- For analyzed areas, higher temperatures and lower strain rates produce homogeneous grain and subgrain formation
- For low temperatures and high strain rates further analysis is required to assess grain/subgrain sizes
- Grain/subgrain formation is not influenced significantly by compression direction, but by the deformation conditions (T, $\dot{\epsilon}$)

SUMMARY AND ACKNOWLEDGEMENTS

- We generated heterogeneous deformation conditions using by hot compressing hat-shaped samples to represent hot extrusion processes
- The compression tests were modeled and simulated using a phyicsbased model implemented in DEFORM (FEM software)
- The **heterogeneous microstructural evolution** during hot deformation was studied

Terrazas 21th of June 2023

IMAT

18

5th International Conference on Light Materials LightMAT 2023

WISSEN TECHNIK LEIDENSCHAFT

Thank you for your attention!

T. Terrazas

terrazasmonje@tugraz.at

Institute of Materials Science, Joining and Forming, TU Graz, Kopernikusgasse 24/I, 8010 Graz, Austria

Christian Doppler Laboratory for Design of High-Performance Alloys by Thermomechanical 8 Processing, Kopernikusgasse 24/I, 8010 Graz, Austria

21 of June 2023

References

IMAT

20

- [1] J Lof, Y Blokhuis, FEM simulations of the extrusion of complex thin-walled aluminium sections, Journal of Materials Processing Technology, Volume 122, Issues 2–3, 2002, Pages 344-354, ISSN 0924-0136, <u>https://doi.org/10.1016/S0924-0136(01)01266-3</u>.
- [2] Ricardo Henrique Buzolin, Friedrich Krumphals & Maria Cecilia Poletti (2022): Topological aspects in the microstructural evolution of AA6082 during hot plastic deformation, European Journal of Materials, DOI: 10.1080/26889277.2022.2125350
- [3] S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization, Acta Materialia, Volume 51, Issue 9, 2003, Pages 2685-2699, ISSN 1359-6454, <u>https://doi.org/10.1016/S1359-6454(03)00078-8</u>.
- [4] Ricardo Henrique Buzolin, Michael Lasnik, Alfred Krumphals, Maria Cecilia Poletti, A dislocation-based model for the microstructure evolution and the flow stress of a Ti5553 alloy, International Journal of Plasticity, Volume 136, 2021, 102862, ISSN 0749-6419, https://doi.org/10.1016/j.ijplas.2020.102862.

5th International Conference on Light Materials LightMAT 2023

WISSEN TECHNIK LEIDENSCHAFT

BACK-UP SLIDES

T. Terrazas terrazasmonje@tugraz.at

Institute of Materials Science, Joining and Forming, TU Graz, Kopernikusgasse 24/I, 8010 Graz, Austria

Christian Doppler Laboratory for Design of High-Performance Alloys by Thermomechanical 8 Processing, Kopernikusgasse 24/I, 8010 Graz, Austria

21 of June 2023

