Enhancing Water Analysis for improved Performance and Durability of FCEVs Maximilian Käfer, Viktor Hacker, Merit Bodner

Graz University of Technology

Addressing the Challenges

In order to tackle the aforementioned challenges, this [1] Liu Z., et. al., Applied Energy, 275, 115110, 2020. work intends to have an open multi-functional [2] Fluckiger R., et. al. J Power Sources, 172, 324-333, modular system employed to conduct further 2007.

investigations. Within the exhaust path of this system, [3] Wu J., et. al., et. al. J Power Sources, 188, 199-204, 2009. a product water sensor should be integrated to [4] Wang X. R., et. al., Journal of Hydrogen Energy, 46, facilitate the development of a fluoride detection 12206-12229, 2021.

sensor. Additionally, plans are underway to develop [5] Bodner M., Hohenauer C., Hacker V., Journal of Power heatable optical windows for monitoring water Sources, 295, 336-348, 2015.

transport. To quantify the presence of liquid water, [6] Bodner M., Rami M., Marius B., ECS Transactions, 75, optical cells incorporating spectroscopic methods are 703-706, 2016.

being considered.

[7] Hacker V., Mitsushima S., Fuel Cells and Hydrogen -From Fundamentals to Applied Research.

Potential Benefits and Application

- Enhance fuel cell performance
- Improved efficiency
- Improved reliability
- Improved durability
- Directly applied to real-world scenarios

Acknowledgement

The project ECO-FCEV (www.eco-fcev.at), is funded by the Climate and Energy Fund and is carried out within the framework of the programme "Zero Emission Mobility".

- -

Institute of Chemical Engineering and Environmental Technology

Graz University of Technology, Inffeldgasse 25/C/II, 8010 Graz, Austria, Tel.: +43(0)316 873-4972

e-mail: maximilian.kaefer@tugraz.at, http://www.icvt.tugraz.at

