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ABSTRACT This paper presents a new technique for evaluating the consistency of the reference impedance
in multiline thru-reflect-line (TRL) calibration. During the calibration process, it is assumed that all
transmission line standards have the same characteristic impedance. However, these assumptions are prone
to errors due to imperfections, which can affect the validity of the reference impedance after calibration.
Our proposed method involves using multiple stepped impedance lines of different lengths to extract
the broadband reflection coefficient of the impedance transition. This reflection coefficient can be used to
validate the reference impedance experimentally without requiring fully defined standards. We demonstrate
this method using multiline TRL based on microstrip structures on a printed circuit board (PCB) with an
on-wafer probing setup.

INDEX TERMS calibration, microwave measurement, vector network analyzer, printed circuit board,
impedance, reflection coefficient

I. Introduction

THE accuracy of S-parameter measurements performed
by a vector network analyzer (VNA) heavily depends

on the calibration method and standards used. The multiline
thru-reflect-line (TRL) calibration procedure, first introduced
by the National Institute of Standards and Technology
(NIST) [1], provides a precise definition of the calibra-
tion plane. The high accuracy of multiline TRL method
comes from the fact that transmission line standards can be
manufactured with high precision, even with conventional
machinery capabilities, in contrast to resistive load standards.

Experimental validation of the calibration is a crucial as-
pect of any calibration technique. The multiline TRL method
is a self-calibration technique, where some of the calibration
standards are not fully specified in advance. However, the
multiline TRL algorithm requires consistency among the
line standards. This means that the line standards should be
identical in all aspects except for their length. Inconsistency

between line standards can lead to impedance mismatch [2]–
[4].

Traditional calibration validation techniques require com-
plete knowledge of a set of reference standards. These
techniques are often used in coaxial or waveguide interfaces
where traceable standards are available [5]–[7]. However,
multiline TRL calibration is also used for planar circuits,
such as printed circuit boards (PCBs) and wafers, where
the fabrication of traceable standards is more challenging.
Commercial impedance standard substrates (ISSs) are com-
monly used for on-wafer calibration. These standards can be
characterized using traceable on-wafer standards, as demon-
strated in [8], [9]. On the other hand, establishing traceable
standards with PCB technology is more challenging. PCB
manufacturing mostly uses composite materials made from
reinforced fiberglass with epoxy resin, which can introduce
significant delay skew depending on the location of the
transmission lines on the substrate [10], [11]. Manufacturing
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tolerances of PCBs are also much higher than those in on-
wafer applications [12], [13].

An illustration of microstrip lines on a PCB based on a
mixture of fiberglass and epoxy resin is shown in Fig. 1.
As part of our experimental measurements, we analyzed the
cross-section of microstrip lines on a Megtron 7 substrate, as
shown in Fig. 9. Previous studies have also presented cross-
sectional images of fiberglass dielectric substrates [11], [14].

Copper

(a)

Fiberglass Resin

(b)
FIGURE 1. An illustration of a cross-section of a microstrip on a PCB with
a substrate based on reinforced fiberglass in epoxy resin. (a) The
microstrip line is placed directly above the fiberglass. (b) The microstrip
line is placed between the glass yarns.

The calibration comparison method [15], [16] is a widely
used approach for validating on-wafer multiline TRL cali-
bration. This method involves comparing the multiline TRL
calibration to another multiline TRL calibration on a differ-
ent reference substrate. A major drawback of this method
is the requirement of a fully characterized calibration kit.
Furthermore, the method is sensitive to parasitic inductance
resulting from pads and material differences between the
calibration kits, as demonstrated in [17], [18].

A common technique for verifying multiline TRL cali-
bration is to investigate the calibrated reflect standard [19].
During calibration, the reflect standard is not specified but
identical at both ports. Ideally, the calibrated reflect standard
should exhibit behavior similar to that of an ideal reflect
standard (e.g., short or open). However, using the calibrated
reflect standard as a validation metric has a couple of short-
comings. First, predicting the parasitic behavior of the reflect
standard at high frequencies can be challenging, especially
at millimeter-wave and beyond. Second, even if the reflect
standard exhibits an ideal response, this does not inform
us about the accuracy of the reference impedance. Ideal
short or open standards are impedance independent. While
a reflect standard might not be advantageous for validating
the reference impedance, it can be useful in identifying user
error during calibration.

Another commonly used two-port device for calibration
validation is the stepped impedance line (also known as
the Beatty line) [19]. This device is widely used in the
validation of airline coaxial multiline TRL calibration. The
problem with using a single stepped impedance line is that
its desired mismatch behavior is bandwidth-limited due to
its physical length. In fact, maximum mismatch occurs at
integer multiples of quarter-wavelengths. Using a shorter
stepped line can increase the mismatch bandwidth, but at
the cost of the uncertainty at lower frequencies. Additionally,
the abrupt change in the impedance introduces some parasitic

effects that are more apparent at higher frequencies, which
could lead to a false interpretation of the mismatch.

In this paper, we adapt the method of using the stepped
impedance line for validation by increasing the mismatch
bandwidth and excluding the parasitic effect of the abrupt
impedance change. The bandwidth limitation of the mis-
match response due to the length of the line is no dif-
ferent from that of TRL calibration. Hence, we propose
using a second multiline TRL calibration using a set of
stepped impedance lines of different lengths. By using both
calibrations with matched and mismatched lines, we can
extract the broadband reflection coefficient of the impedance
transition. Additionally, we introduce a modeling approach
for the parasitic behavior of the impedance jump to eliminate
its impact on the extracted reflection coefficient.

The goal of extracting the broadband reflection coefficient
of the impedance transition is to use it as a validation
metric. This has a couple of advantages. First, the extracted
reflection coefficient is due to a finite impedance mismatch
(not open or short), meaning that the results of the re-
flection coefficient depend on the reference impedance of
the multiline TRL that we want to validate. Therefore, any
variation in the reference impedance of the first multiline
TRL should clearly translate to the extracted reflection of
the impedance transition. Secondly, since we are extracting
a broadband response of the mismatch of the stepped line
standards, the frequency response of the reflection coefficient
has a near-flat frequency response, even for quasi-TEM
(transverse electromagnetic) structures as microstrip lines,
as will be demonstrated in Sections III and V. Finally, for
PCB applications, the stepped lines are implemented on the
same substrate as the matched lines. Hence, we don’t require
any prior characterization of the standards. We can think of
the proposed method as artificially measuring a broadband
mismatch load. The validation of the calibration is accom-
plished by defining validation bounds through uncertainty
propagation in the geometrical and material variation of the
cross-section of the transmission lines.

The remainder of this paper is structured as follows.
Section II discusses the residual error in calibration resulting
from impedance variation in the calibration standards. Next,
in Section III, we present the mathematical derivation of the
proposed validation method. We then introduce the validation
bounds in Section IV. Finally, Sections V and VI discuss
PCB measurements and provide concluding remarks.

II. Analysis of Impedance Mismatch on Calibration
The purpose of this section is to highlight the impact of
mismatch on calibration, and to identify the appropriate
standards to be used for validation purposes. We begin the
analysis by defining the error box model of a two-port VNA,
as shown in Fig. 2. The measurement of a device under test
(DUT) with an uncalibrated VNA can be expressed using
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T-parameters as follows:

Mdut = kakb︸︷︷︸
k

[
a11 a12
a21 1

]
︸ ︷︷ ︸

A

T dut

[
b11 b12
b21 1

]
︸ ︷︷ ︸

B

, (1)

where the matrices A and B represent the T-parameters of
the individual port error boxes holding the first six error
terms, and k represents the 7th error term describing the
transmission error between the ports.

DUT

Error-box Error-box

Calibration plane

Measurement plane

FIGURE 2. Illustration of the error box model of a two-port VNA.

After performing a multiline TRL calibration, we obtain
estimates for the calibration coefficients A, B, and k. How-
ever, since measurements are never perfect, the estimates of
the calibration coefficients are prone to errors, which can be
described by the following notation:

Â = AÃ
−1 1

k̃a
, B̂ =

1

k̃b
B̃

−1
B, (2)

Here, the matrices Â and B̂ represent the estimated error
boxes obtained from the calibration process. On the other
hand, the matrices Ã and B̃ summarize the residual error
and are defined as follows:

Ã
def
=

[
ã11 ã12
ã21 1

]
, B̃

def
=

[
b̃11 b̃12
b̃21 1

]
, (3)

Since the error term k is defined as a common scalar from
the error boxes, we can define its residual error as the product
of the residual scalars from the error boxes, i.e., the terms
k̃a and k̃b from (2). This can be expressed as follows:

k̃
def
= k̃ak̃b. (4)

Thus, applying a non-ideal multiline TRL calibration to a
DUT can be described as follows:

T̂ dut =
1

k
Â

−1
MdutB̂

−1
= k̃ÃT dutB̃. (5)

Ideally, the calibrated measurement of the DUT should be
equal to the actual DUT. In this paper, we investigate the
influence of error in the reference impedance. We assume
that any residual errors are caused only by impedance vari-
ation in the line standards during multiline TRL calibration
[4]. Therefore, the residual errors can be reduced to an
impedance transformation error, which can be described by
the following expression [20]:

T̂ dut =
1

1− Γ̃2︸ ︷︷ ︸
k̃

[
1 Γ̃

Γ̃ 1

]
︸ ︷︷ ︸

Ã

T dut

[
1 −Γ̃
−Γ̃ 1

]
︸ ︷︷ ︸

B̃

, (6)

where Γ̃ is the residual reflection coefficient, defined by:

Γ̃ =
Z0 − Z̃

Z0 + Z̃
, (7)

Here, Z0 represents the true reference impedance, and Z̃
represents the perturbed reference impedance. In an error-
free scenario, Z̃ = Z0, and therefore Γ̃ = 0. However,
when we assume the presence of random error, we can
assign Γ̃ to be a random process described by its probability
distribution. In general, the exact probability distribution
of Γ̃ may be unknown. In such cases, we can assume a
normal distribution, Γ̃ ∼ N

(
0,ΣΓ̃

)
, where ΣΓ̃ represents

the covariance matrix of Γ̃.
For an arbitrary two-port DUT, its S-parameters after

calibration are determined by converting the T-parameters
in (6) to S-parameters. This results in the following:

Ŝdut =

 Γ̃2S22+Γ̃(det(S)+1)+S11

Γ̃2det(S)+Γ̃(S11+S22)+1

S12(1−Γ̃2)

Γ̃2det(S)+Γ̃(S11+S22)+1

S21(1−Γ̃2)

Γ̃2det(S)+Γ̃(S11+S22)+1

Γ̃2S11+Γ̃(det(S)+1)+S22

Γ̃2det(S)+Γ̃(S11+S22)+1

 ,

(8)
where det(S) = S22S11 − S12S21.

To analyze the impact of Γ̃ on the calibrated measure-
ments, we calculate the sensitivity of |Ŝij| with respect to the
real and imaginary parts of Γ̃. We can derive the sensitivity
equations of |Ŝij| using the Wirtinger formulation [21],
which relates complex-valued and real-valued differentiation
as follows:  ∂|Ŝij |

∂ Re(Γ̃)
∂|Ŝij |

∂ Im(Γ̃)

 =

[
1 1

j −j

]∂|Ŝij |
∂Γ̃

∂|Ŝij |
∂Γ̃∗

 , (9)

where the derivatives ∂|Ŝij |
∂Γ̃

and ∂|Ŝij |
∂Γ̃∗ are the derivatives of

|Ŝij | with respect to Γ̃ and its conjugate, which are computed
using the following equations:

∂|Ŝij |
∂Γ̃

=
1

2|Ŝij |

(
Ŝ∗
ij

∂Ŝij

∂Γ̃
+ Ŝij

∂Ŝ∗
ij

∂Γ̃

)
, (10a)

∂|Ŝij |
∂Γ̃∗

=
1

2|Ŝij |

(
Ŝ∗
ij

∂Ŝij

∂Γ̃∗
+ Ŝij

∂Ŝ∗
ij

∂Γ̃∗

)
, (10b)

with |Ŝij | > 0. Since Ŝij is a rational function with respect
to Γ̃, it is straightforward to show that

∂Ŝij

∂Γ̃∗
=

∂Ŝ∗
ij

∂Γ̃
= 0,

∂Ŝ∗
ij

∂Γ̃∗
=

(
∂Ŝij

∂Γ̃

)∗

. (11)

Accordingly, combining the results of (10) and (11) and
inserting them into (9), we have the general sensitivity
equations of |Ŝij | with respect to Γ̃ given by ∂|Ŝij |

∂ Re(Γ̃)
∂|Ŝij |

∂ Im(Γ̃)

 =

Re
(

Ŝ∗
ij

|Ŝij |
∂Ŝij

∂Γ̃

)
Im

(
−Ŝ∗

ij

|Ŝij |
∂Ŝij

∂Γ̃

)
 =

Re
(

|Ŝij |
Ŝij

∂Ŝij

∂Γ̃

)
Im
(

|Ŝij |
−Ŝij

∂Ŝij

∂Γ̃

)
 .

(12)
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For calibration verification, we require a standard that is
most sensitive to mismatch error. Such a standard allows
us to identify the error in the reference impedance of the
calibration. For instance, we can consider a one-port device
described by the following expression when setting S21 =
S12 = 0 in (8).

Ŝ11 =
Γ̃ + S11

Γ̃S11 + 1
,

∂Ŝ11

∂Γ̃
=

1− S11Ŝ11

Γ̃S11 + 1
. (13)

The sensitivity equations of |Ŝ11| is obtained by plugging
(13) into (12). Fig. 3 depicts (12) for an arbitrary one-port
device. It is clear from Fig. 3 that we achieve the highest sen-
sitivity for Re

(
Γ̃
)

in the regions where the phase of S11 is at
an integer multiple of π and when it is closely matched. This
evaluation also shows that we achieve the lowest sensitivity
when highly reflective standards are used. The sensitivity
to Im

(
Γ̃
)

is greatest for S11 measurements with standards
having a phase at an integer multiple of π/2 and with high
reflectivity. It is worth mentioning that for the majority of
transmission lines we have | Im

(
Γ̃
)
| ≪ |Re

(
Γ̃
)
| (for

example, see the measurements in Section V). Therefore,
a one-port device closely matched to the reference plane
would be the best candidate to identify errors in the ref-
erence impedance. However, manufacturing and accurately
characterizing load standards is challenging at millimeter-
wave frequencies and beyond [22]. Therefore, using a one-
port load standard is not ideal for calibration verification
unless it is well characterized.
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FIGURE 3. Plot of the sensitivity of the calibrated one-port device for Γ̃.
The left plot corresponds to ∂|Ŝ11|/∂ Re

(
Γ̃
)

, while the right plot

corresponds to ∂|Ŝ11|/∂ Im
(
Γ̃
)

.

An inconvenience of using one-port devices as verification
standards is the inability to assess uncertainties in trans-
mission terms, specifically S12 and S21. A commonly used
two-port device for calibration verification is the stepped
impedance line, also known as the Beatty line [19]. The
S-parameters of an ideal stepped impedance line are given
below:

Sstep =

Γnm(e2γl−1)
e2γl−Γ2

nm

eγl(1−Γ2
nm)

e2γl−Γ2
nm

eγl(1−Γ2
nm)

e2γl−Γ2
nm

Γnm(e2γl−1)
e2γl−Γ2

nm

 , (14)

where l and γ are the length and propagation constant of the
stepped line. The term Γnm is the reflection coefficient of
the impedance transition from Zn to Zm, which is given by

Γnm =
Zm − Zn

Zm + Zn
, (15)

Similar to the one-port case, we can calculate the sensi-
tivity of the calibrated stepped impedance line by inserting
(14) into (8), computing the derivatives with respect to Γ̃,
and evaluating (12). The expressions for the derivatives are
lengthy and are not presented here. However, they were
assessed using the Python symbolic package SymPy [23].
The sensitivities of |Ŝ11| and |Ŝ21| are shown in Fig. 4. From
the figure, we see that |Ŝ21| is not sensitive to impedance
variation when the stepped impedance is matched, regardless
of the electrical length. This is equivalent to a line standard
without any discontinuity. Due to this reason, we cannot
use the line standards used in the calibration as verification
standards to identify impedance errors, as they have the
same impedance as the reference impedance. Generally, the
sensitivity of |Ŝ11| and |Ŝ21| varies as a function of elec-
trical length and equals zero at an integer multiple of half-
wavelength. Therefore, using a single stepped impedance line
cannot cover all frequencies.
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FIGURE 4. Plot of the sensitivity of the calibrated stepped impedance line
(Beatty line) for Γ̃. The top left and right plots correspond to
∂|Ŝ11|/∂ Re

(
Γ̃
)

and ∂|Ŝ11|/∂ Im
(
Γ̃
)

, while the bottom plots

correspond to ∂|Ŝ21|/∂ Re
(
Γ̃
)

and ∂|Ŝ21|/∂ Im
(
Γ̃
)

, respectively.

The frequency limitation that we observe in the sensitivity
graph shown in Fig. 4 is similar to the frequency limitation of
the TRL calibration. Therefore, we can cover a wide range of
frequencies by using multiple stepped impedance standards
of different lengths. To combine the results of every stepped
impedance standard, we propose a second multiline TRL
calibration that uses the stepped impedance lines as stan-
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dards. The error boxes between the reference multiline TRL
calibration and the stepped impedance calibration correspond
to the impedance transformation.

III. Extraction the Reflection Coefficient of the Impedance
Transition
The objective of our methodology is to conduct two multiline
TRL calibrations using lines with different impedances. This
approach enables us to evaluate the error boxes associated
with the impedance transition segment between the two
calibrations. From the error boxes, we can derive the reflec-
tion coefficient of the impedance transition, which serves
as our validation metric later on. We begin the derivation
with Fig. 5, which depicts an example of a microstrip thru
standard with two different impedances (i.e., different trace
widths).

mTRL 1 calibration plane

kaA kbB

kcC

kaA kgG khH kbB

kdD

mTRL 2 calibration plane

FIGURE 5. Illustration of a thru standard using two multiline TRL
calibration kits. The letters kaA and kbB correspond to the error boxes
of the primary TRL calibration, while the letters kcC and kdD correspond
to the error boxes of the second TRL calibration. The letters kgG and
khH indicate the left and right stepped impedance segments.

Similar to the discussion in the previous section, we
use T-parameters to describe the error box model of both
multiline TRL calibrations. The error box model of the
primary multiline TRL calibration is given by

M1 = kakb︸︷︷︸
k1

[
a11 a12
a21 1

]
︸ ︷︷ ︸

A

T dut

[
b11 b12
b21 1

]
︸ ︷︷ ︸

B

, (16)

and the error box model of the second multiline TRL
calibration is given by

M2 = kckd︸︷︷︸
k2

[
c11 c12
c21 1

]
︸ ︷︷ ︸

C

T dut

[
d11 d12
d21 1

]
︸ ︷︷ ︸

D

. (17)

Based on Fig. 5, we can see that the error boxes of the
second multiline TRL include those of the first multiline
TRL and the impedance transition segments. By performing
both multiline TRL calibrations, we can determine the ma-
trices A and B from the primary multiline TRL calibration,
and the matrices C and D from the second multiline TRL
calibration. It is important to note that the second multiline
TRL is performed without a previous calibration, similar to
the first one, but in reference to the stepped impedance. With

the help of these matrices, we can calculate the T-parameters
of the left stepped impedance segment as follows:[

g11 g12
g21 1

]
︸ ︷︷ ︸

G

=
a11 − a21a12
a11 − a21c12

A−1C, (18)

and the T-parameters of the right stepped impedance segment
are determined as follows:[

h11 h12

h21 1

]
︸ ︷︷ ︸

H

=
b11 − b12b21
b11 − b12d21

DB−1. (19)

Note that we have not considered the terms kg and kh
in the previous equations. This is because the transition
segments are reciprocal devices, i.e., S12 = S21. The terms
kg and kh are implicitly contained in g11 and h11 through
the conversion relationship between S- and T-parameters.
Therefore, there is no mathematical benefit in including kg
and kh in the derivation.

A. Modeling the Stepped Impedance Transition
In order to accurately extract the reflection coefficient of the
impedance transition, we need a model that accounts for the
non-ideal parasitic effects of the structure, which are unre-
lated to the impedance transformation itself. For simplicity,
we will focus only on the left impedance transition in the
following derivation.

To determine the reflection coefficient of the left
impedance transition, we propose three possible models to
characterize the parasitics of the transition, as shown in
Fig. 6. In general, the stepped impedance segment can be
divided into four blocks.

1) Initial offset: This offset accounts for the case when
the impedance discontinuity occurs at a distance from
the primary multiline TRL calibration. Generally, this
offset is characterized by the propagation constant γ1
and the physical length d1 of the offset.

2) Transition parasitic: The transition between
impedances does not occur instantaneously. Instead, it
exhibits non-ideal parasitic behavior due to the abrupt
discontinuity. This can be accounted for by one of the
three proposed parasitic models shown in Fig. 6.

3) Ideal impedance transformer: This element accounts
for the actual impedance transformation, which is
defined by Γnm in (15). For simplicity of notation,
we drop the indices, i.e., Γnm = Γ.

4) Second offset: The offset after the impedance transfor-
mation is an essential part of the transition design. This
is because the stepped impedance cannot be realized
without some length. We can determine this offset
based on knowledge of the propagation constant γ2
and the physical length d2.

It is worth mentioning that the placement of the parasitic
model before or after the ideal impedance transformer is ar-
bitrary. This is because the behavior of the parasitic transition
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Initial offset Second offsetTransition 
parasitic

Symmetric
network

Impedance 
transformer

y
z

y
z

d1
d2mTRL 1 

calibration plane
mTRL 2 

calibration plane

Model 1

Model 2

Model 3

FIGURE 6. Proposed models for the impedance transition segment. All
matrices are given as T-parameters.

is unknown, and scaling it with an impedance transformation
makes no difference in the derivation.

To solve for the unknowns, we write the cascaded matrices
of Fig. 6 in relation to the matrix G as follows:

kgG =
1√

1− Γ2
L1P

[
1 Γ

Γ 1

]
L2, (20)

where L1 and L2 represent the left and right offsets,
respectively, as shown in Fig. 6. The matrix P represents
the parasitic transition, which is defined by one of the three
models in Fig. 6 to be equal to:

P (1) =
1

2

[
(1− y)(1− z) + 1 (1− y)(1 + z)− 1

(1 + y)(1− z)− 1 (1 + y)(1 + z) + 1

]
(21a)

P (2) =
1

2

[
(1− y)(1− z) + 1 (y + 1)(z − 1) + 1

(y − 1)(z + 1) + 1 (1 + y)(1 + z) + 1

]
(21b)

P (3) =
1

t

[
−r2 + t2 r

−r 1

]
. (21c)

The T-parameters expressions for P (1) and P (2) were
symbolically derived using the SymPy package in Python
[23]. This was done by converting the ABCD-parameters of
the L-circuit models in Fig. 6 into T-parameters [24]. Models
1 and 2 assume that parasitic behavior can be described
using lumped elements z and y. Model 3, given by P (3),
describes an arbitrary symmetric network with reflection and
transmission coefficients r and t, respectively. Mathemati-
cally, any model with one or two unknown variables can

model the parasitic. However, if the model is inadequate
in describing the parasitic behavior of the discontinuity,
the values extracted for the reflection coefficient of the
impedance transformer will incorporate errors. This is be-
cause the model cannot properly separate the effects of the
parasitic from the impedance transformation. In Section III-
B, we demonstrate this possible inadequacy with an example
by incorporating line offset error, where lumped element
models cause deviation in the extracted reflection coefficient
of the impedance transformer.

What sets the proposed parasitic models apart from ex-
isting model approaches is their generality; they can be
solved independently at each frequency. This is in contrast
to the conventional lumped element approach that uses LC
elements [25]–[27], which are solved through nonlinear
fitting over all frequency points. For the third model, a
similar model was considered in [28] as part of a calibration
comparison method for on-wafer calibration. The method
used an equivalent symmetric T-circuit with Y-parameters,
which can be reformulated into an arbitrary symmetric
network using T-parameters.

To solve for the unknowns (Γ and parasitics), we need
to construct three equations relating to the elements of G.
We can take the inverse of L1 and L2 on both sides of
(20), as they are assumed to be known from performing both
calibrations. Additionally, we can normalize the equation by
the fourth element of the matrix, since kg is not needed. The
resulting expression is as follows:[

g11 g12

g21 1

]
=

[Γp12+p11

Γp21+p22

Γp11+p12

Γp21+p22

Γp22+p21

Γp21+p22
1

]
, (22)

where pij are the elements of the parasitic matrix P , and
gij are defined as

g11 = g11e
2γ1d1+2γ2d2 , (23a)

g21 = g21e
2γ2d2 , (23b)

g12 = g12e
2γ1d1 , (23c)

with gij being the elements of (18), the parameters {γ1, d1}
and {γ2, d2} represent the propagation constant and offset
length of the offset line, respectively. These parameters are
illustrated in Fig. 6.

For the first and second models, the unknowns are Γ, y,
and z. For the third model, the unknowns are Γ, r, and t2.
The solution for Γ in the first and second models is given
by:

Γ(1,2) = ± (g11 ± g21 ± g12 + 1)2 − 4(g11 − g21g12)

(g11 ± g21 ± g12 + 1)2 + 4(g11 − g21g12)
,

(24)
where the plus and minus signs are the solutions for the
first and second models, respectively. Similarly, the reflection
coefficient of the third model is given by:

Γ(3) =
g21 + g12
g11 + 1

. (25)
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Likewise, we can also derive a solution for the parasitic
elements. For the first model, y and z are given as follows:

y(1) =
−g11 + g21 − g12 + 1

g11 + g21 + g12 + 1
, (26a)

z(1) =
(g12 + 1)2 − (g11 + g21)

2

4(g11 − g21g12)
, (26b)

and for the second model, y and z are given as follows:

y(2) =
(g12 − 1)2 − (g11 − g21)

2

4(g11 − g21g12)
, (27a)

z(2) =
−g11 − g21 + g12 + 1

g11 − g21 − g12 + 1
. (27b)

Lastly, for the third model, t2 and r are given by:

t2 =
(g11 − g21g12)

(
(g11 + 1)2 − (g21 + g12)

2
)

(g11 − g21g12 − g221 + 1)2
, (28a)

r =
g12 − g11g21

g11 − g21g12 − g221 + 1
. (28b)

It should be noted that the equations for the parasitic
elements of the three models are not used in the following
discussion, as we are mainly concerned with Γ. However,
these equations could be used as an accurate approach for the
general characterization of impedance transitions of various
transmission lines. Additionally, all the equations derived
for the left side of the stepped impedance transition can be
used for the right side by simply substituting gij with the
following relationships:

g11 ←→ h11, (29a)
g21 ←→ −h12, (29b)
g12 ←→ −h21. (29c)

B. Differences Between the Proposed Parasitic Models
The models presented in Fig. 6 are general, and their parame-
ters are determined independently at each frequency point. In
the error-free case, all three models should produce identical
results for Γ, as they are exact solutions to (22). However,
they behave differently under certain types of errors. For
instance, the first and second models in Fig. 6 are sensitive to
length offset because the parasitic effects are modeled with
complex impedances (i.e., y and z). In contrast, the third
model can account for any symmetrical error. In fact, the
sensitivity of the first and second models to length offset
can be advantageous in experimentally identifying length
offset errors that could arise from probing and manufacturing
tolerances.

To illustrate this point, we tested the three models to
extract Γ using electromagnetic (EM) simulation with the
software ANSYS HFSS (high-frequency structure simula-
tor). We used a microstrip line with an average impedance of
approximately 53.8Ω on one side and approximately 32.7Ω

on the other side, which results in a reflection coefficient of
−0.244 based on (15). The geometric and material properties
used in the simulation are the same as the mean values
given in Table 1. A wave port extension in the simulation
compensated for the offset length of the transition. Fig. 7
shows the extracted Γ for the three proposed models and for
the case when no model is considered for the parasitic (i.e.,
identity matrix). We also introduced an error of +0.03 mm
offset at the 53.8Ω line segment, whose effects can be seen
in the magnitude of Γ for the first and second models. The
third model does not show a significant impact under this
small offset variation. Additionally, we can see that when
we do not consider a model for the parasitic, we observe
deviation in both the magnitude and phase of Γ.
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FIGURE 7. Extracted reflection coefficient of a simulated microstrip
impedance transition segment. The port extension shifts the simulation
plane to the transition. The +0.03 mm offset error was applied at the left
port.

In general, the third model is the most reliable for captur-
ing the reflection of the stepped impedance because it does
not assume any particular type of parasitic behavior, except
that it must exhibit symmetric response. For validation
purposes, it is better to use all three models. If the first and
second models deviate from the third model, we know that
there is an error in the location of the reference plane.

IV. Defining Validation Bounds
To validate the consistency of the reference impedance of a
multiline TRL calibration, we require the extracted reflection
coefficient of the impedance transition to fall within a confi-
dence bound. For instance, the confidence bound can be set
to 95 % coverage of a Gaussian distribution. The advantage
of transmission line standards is that they can be fully
characterized by knowing their cross-sectional geometry and
material properties. Thus, if we know the geometric and
material parameters [29]–[31], along with their uncertainties,
the extracted reflection coefficient from the measurement
must remain within the confidence interval derived from the
propagated uncertainties. Here, we exclude the contribution
from instrumentation noise and length uncertainty, which
will be discussed later in the measurements in Section V.
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To determine the confidence interval for the reflection
coefficient, we propagate the uncertainties of the characteris-
tic impedance of both transmission lines through expression
(15). First, we need the covariance matrix of the characteris-
tic impedance of both transmission lines. This can be calcu-
lated using the Jacobian matrix and the uncertainties of the
considered parameters [32] by means of linear propagation,
which is given by:

ΣZi
= JZi

(µθ)diag
([
σ2
θ1

σ2
θ2
· · ·

])
JT

Zi
(µθ), (30)

where θ is the vector that contains all parameters whose
mean values µθi and standard uncertainties σθi are known.
The Jacobian matrix JZi(θ) is defined as follows:

JZi
(θ) =

[∂ Re(Zi)
∂θ1

∂ Re(Zi)
∂θ2

· · ·
∂ Im(Zi)

∂θ1

∂ Im(Zi)
∂θ2

· · ·

]
. (31)

The derivatives in the Jacobian matrix can be determined
from analytical models of the transmission line or directly
from an EM solver. The standard uncertainty of the absolute
value of the reflection coefficient is determined similarly
by propagating the covariance matrices of the characteristic
impedance of both calibrations from (30) through |Γ| by (15).
The derived variance of |Γ| is given as follows:

σ2
|Γ| = J |Γ|(µZ1 , µZ2)

[
ΣZ1

0

0 ΣZ2

]
JT

|Γ|(µZ1 , µZ2), (32)

where µZ1
and µZ2

represent the expected values of the
characteristic impedance of both transmission lines. The
Jacobian matrix J |Γ|(Z1, Z2) is given by:

J |Γ|(Z1, Z2) =
[

∂|Γ|
∂ Re(Z1)

∂|Γ|
∂ Im(Z1)

∂|Γ|
∂ Re(Z2)

∂|Γ|
∂ Im(Z2)

]
.

(33)
The partial derivatives in (33) are determined following

the discussion in Section II, using (12). The same derivative
calculation can be applied to the phase of Γ in a similar way.

Finally, the multiline TRL calibration is validated if the
extracted reflection coefficient meets the following condition:

multiline TRL
Validity =

{
True, −κσ|Γ| ≤ |Γ| − µ|Γ| ≤ κσ|Γ|

False, otherwise
(34)

where µ|Γ| represents the expected value of the reflection
coefficient, and κ denotes the coverage factor of a Gaussian
distribution. For 68 % coverage, κ = 1. For 95 % coverage,
κ = 2, and for 99.7 % coverage, κ = 3. If the result
exceeds the confidence bounds, other types of errors may
exist besides impedance variation, such as noise.

V. Experiment
A. Measurement setup
The setup comprises of two multiline TRL calibration
kits based on microstrip technology. As we are using a
probe station with ground-signal-ground (GSG) probes for
measurements, the interface pads of the microstrip lines
were designed as a tapered grounded coplanar waveguide
(GCPW) with optimized low-return loss based on the work

in [33]. The measurements were performed using an Anritsu
VectorStar VNA with millimeter-wave extenders that support
frequencies up to 150 GHz. The probes used are ACP probes
from FormFactor, with a pitch of 150µm. The probe station
utilized is the semi-automatic SUMMIT200, also from Form-
Factor. A photo of the PCB on the probe station is shown
in Fig. 8.

FIGURE 8. Photo of the measured PCB on the probe station. The bottom
left inset photo shows the transition segment, whereas the top right inset
photo shows the GCPW-to-microstrip pad used to transition into the
microstrip structure.

The PCBs were designed using four copper layers and
three dielectric substrates, with the top and bottom substrates
being prepreg and the middle substrate being a core laminate.
The measured structures were fabricated on the top prepreg,
while the other layers were used for mechanical support.
The design parameters for the microstrip lines are as follows:
substrate thickness of 0.05 mm, copper thickness (trace thick-
ness) of 0.02 mm, first trace width (primary multiline TRL)
of 0.107mm, and second trace width of 0.220mm. From
ANSYS HFSS simulation, these dimensions correspond to
line standards with an average characteristic impedance
across frequency of approximately 53.8Ω and 32.7Ω, re-
spectively. To better model the microstrip lines, a cross-
sectional inspection was performed, as shown in Fig. 9. The
fabricated dimensions are within the expected manufacturing
tolerances, but differ slightly from the nominally designed
values. From several cross-section photos and information
from the PCB manufacturer, the estimated dimensional pa-
rameters with their uncertainties are presented in Table 1.

TABLE 1. Microstrip line parameters used in the EM simulation to establish

the expected response and the validation bounds.

Trace
width 1
(mm)

Trace
width 2
(mm)

Trace
thickness

(mm)

Substrate
thickness

(mm)

Dielectric
constant

(1)

Loss
tangent

(1)

Copper
conductivity

(Ms/m)

0.094

±0.015

0.209

±0.015

0.013

±0.007

0.048

±0.002

3.04

±0.42

0.0022

±10%

58

±10%

For the copper foil, we assumed ideal conductivity since
the traces are without surface finish, to which we assumed

8 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJIM.2023.3315349

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



a 10% uncertainty for demonstration purposes. For the di-
electric substrate, we used the Megtron 7 R-5680(N) prepreg
substrate from Panasonic with a fiberglass cloth style 1027
and a resin content of 77%. The datasheet of Megtron 7 [34]
provides typical values of the dielectric constant and loss tan-
gent that were derived using the balanced type circular disk
resonance method [29]. The values for dielectric constant
and loss tangent in Table 1 were obtained from the datasheet
[34] by averaging the values across frequency. In the EM
simulation using Ansys HFSS, these values were treated
as frequency-independent because we needed to calculate
derivatives to propagate uncertainty, as Ansys HFSS only
allows for specifying a single variable to each considered
quantity when computing derivatives. Since there were no
available uncertainties for the measured quantities, we as-
sumed a 10% uncertainty in the loss tangent for the sake of
demonstration. However, we considered the uncertainty of
the dielectric constant by accounting for random placement
of the microstrip line above the substrate. In some cases, the
microstrip might be located on a fiberglass weave, while in
other cases, it might be located on the epoxy resin. Generally,
fiberglass has a higher dielectric constant than epoxy resin.
From the reference [35], the “low Dk glass” Panasonic uses
is expected to have a dielectric constant around 5. As a
result, we can infer the dielectric constant of the epoxy resin
by using the resin filling ratio of 77% [34], which leads to
the epoxy resin having a dielectric constant of around 2.5.
Therefore, we can estimate the standard uncertainty in the
dielectric constant seen by the microstrip lines using these
maximum and minimum values as the 99.7% coverage of
a Gaussian distribution. Under these conditions, we get a
standard deviation for the dielectric constant by the below
expression [36].

σϵr ≈
1

6
(max(ϵr)−min(ϵr)) =

5− 2.5

6
≈ 0.42. (35)

Both multiline TRL calibrations use six microstrip
lines with lengths (relative to the first line) of
{0, 0.5, 1, 3, 5, 6.5}mm. The reference planes were
set to the middle of the thru structure for both calibration
kits (similar to the illustration in Fig. 5). The offset length
of the impedance transition was chosen to be 0.5 mm on
both sides (that is, d1 = d2 = 0.5mm in Fig. 6). The reflect
standard was implemented as offset-open by setting the
probes floating, with an offset of −5.3mm.

B. Results and discussion
The measurements were taken as direct wave parameters,
and corresponding S-parameters were computed. To account
for noise in our analysis, we recorded 25 frequency sweeps
of each measured standard to form an estimate for the
covariance of the measurements due to noise from the VNA.
The measurement was conducted in the frequency range
from 1 GHz to 150 GHz with a power level of -10 dBm and
an IF (intermediate frequency) bandwidth of 100 Hz. The
data were processed offline in Python using the package

(a) (b)

(c) (d)
FIGURE 9. Cross-section photos of the fabricated transmission lines. (a)
and (b) are the cross-section of the primary multiline TRL calibration,
while (c) and (d) are from the second multiline TRL calibration (stepped
lines).

scikit-rf [37]. The multiline TRL algorithm used is based on
[38], and the uncertainty propagation through the calibration
is based on the approach of [39], [40].

The validation bounds were determined by EM simulation
using the software ANSYS HFSS, which also provides cal-
culation of derivatives while performing the simulation [41].
The values listed in Table 1 were used for the simulation and
defining the validation bounds. In the uncertainty budget, we
took into account the noise with help of the estimated sample
covariance matrix and the uncertainty in the length of the line
standards. We approximated the latter to be 50µm, which
includes both the length uncertainty of the standards due
to manufacturing and the repeatability of the probe contact
location.

In Fig. 10, we present the results of the extracted reflection
of the impedance transition from both sides. The figure
includes all three models, as well as the average value
obtained by combining the results from both sides. The
results indicate that all models produce identical results
in the mean value, revealing no deterministic length offset
error. However, one can observe small difference in the
uncertainty bounds between the models in the magnitude
response, which is related to the sensitivity of the models to
length offset.

In general, the magnitude response of the extracted re-
flection coefficient remains within the 95% interval and
mostly within the 68% interval. On the other hand, the
phase component has an average value of π, but is mostly
impacted by noise. In general, the phase of the reflection (or
equivalent the imaginary part) is mostly impacted by noise,
with the confidence interval due to cross-sectional variation
being much smaller than the influence of noise. For the
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measured magnitude, noise and length uncertainty have a
more apparent impact at higher frequencies (> 100GHz).
Therefore, impedance mismatch due to cross-sectional vari-
ation has an influence across all frequencies, but starting at
higher frequencies, noise becomes prominent as well.
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FIGURE 10. The measured reflection coefficient of the impedance
transition based on all three models from Fig. 6: (a) Model 1, (b) Model 2,
and (c) Model 3. The validation bounds only include cross-sectional
variation that corresponds to the uncertainty values presented in Table 1.
The uncertainty bounds around the measurements are due to propagated
noise and length uncertainty through the calibration, and are reported as
95% coverage.

While the reflection measurement of the impedance tran-
sition and the validation bounds are useful indications of
the calibration quality, we can also quantify the amount
of error in terms of Ohms by considering the error in
the characteristic impedance of the stepped line. First, we
rewrite the reflection of the impedance transition in terms of
normalized impedance as follows:

Γ =
Zstep − Zref

Zstep + Zref
=⇒ Z ′ =

Zstep

Zref
=

1 + Γ

1− Γ
(36)

Then, we define the error in the measured impedance of
the stepped line as follows:

∆Z = (Z ′
meas − Z ′

ideal)Zref (37)

where Z ′
meas represents the normalized impedance computed

from the measurement of Γ, while Z ′
ideal is the expected

normalized impedance, which can be determined from sim-
ulation. Zref is the expected characteristic impedance of the

matched multiline TRL calibration, and can also be estimated
through simulation.

In Fig. 11, we present the error in impedance by using the
simulated reflection coefficient of the impedance transition to
compute the ideal normalized impedance and the simulated
characteristic impedance of the reference line. The figure
shows that the real part of the error exhibits impedance
variation of ±4Ω, which falls within typical values of
controlled impedance design in the PCB industry. However,
after 100GHz, noise from the VNA dominates the variation.
This is also reflected in the uncertainty budget, where noise
becomes the dominant cause of variation in the real part
at higher frequencies. For the imaginary part, noise is the
primary cause of variation.
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FIGURE 11. Error in the characteristic impedance of the stepped line
based on “Model 3”, and its associated uncertainty budget due to noise
and length uncertainty. Other models are not shown as they produce
similar results with small increase in uncertainty contribution due to
length. The uncertainties are reported as 95% coverage. The curves in the
uncertainty budget graph are filtered for better readability using a
Savitzky-Golay filter [42] with a window size of 9 and a polynomial order
of 2.

VI. Conclusion
We have proposed a method to validate the reference
impedance accuracy of multiline TRL calibration. To achieve
this, we performed an additional multiline TRL calibration
using multiple stepped impedance standards of different
lengths. We then extracted the reflection coefficient of the
impedance transition structure between the two multiline
TRL calibrations, while accounting for the parasitic effects
of the abrupt impedance change, and used it as a broadband
validation metric. Our method can assess the accuracy of
the reference impedance across a wide range of frequencies
without explicitly measuring the characteristic impedance of
the line standards.

The reflection coefficient of the impedance transition
generally has a flat frequency response, even for quasi-TEM
transmission lines such as microstrip lines, as demonstrated
in this paper. As a result, it is an ideal validation metric
that is easy to interpret. One disadvantage of our method
is that it requires the measurements of another complete
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set of multiline TRL standards, which can be a laborious
task if done manually. The upside is that we do not need
to pre-characterize any standards. One way the proposed
method could be improved is by using it for on-wafer
applications with fully motorized probes. This allows for an
automated measurement process, eliminating the need for
user intervention and reducing errors that might otherwise
be introduced by the user, such as those related to probe
contact repeatability.
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