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1 Introduction

 

In many fields of engineering, for instance kinematic analysis, it is necessary to solve systems
of polynomial equations. Mathematics software mostly uses the Buchberger Algorithm to find
a lexicographic Gröbner Basis and subsequently compute the solutions. Although in theory the
Buchberger Algorithm eventually terminates, the effort to compute Gröbner Bases from equa-
tions of higher degree or several unknowns grows rapidly. In fact for many problems it con-
sumes so much performance, that powerful computers fail to produce results.
This paper introduces the free software 

 

gfloat

 

 which numerically computes the Gröbner Basis
and the solutions. It is suited for problems which have zero dimensional solutions i.e. there
exists a finite set of solution points. Two techniques are used to reduce the demand of computer
memory and processor time. These are (1) the use of floating point/modular arithmetic and (2)
computing a lexicographic Gröbner Basis indirectly using a conversion algorithm.
Section 6 demonstrates an application with a problem from kinematic synthesis.

 

2 Solving algebraic equations using Gröbner Bases and floating point arithmetic

 

For a detailed description of the Buchberger Algorithm see [Cox, Little, O'Shea 1992]. During
the algorithm a large number of polynomials has to be stored, each having thousands of mono-
mials. Using integer arithmetic the coefficients of the monomials gradually grow, they have
more and more digits; this consumes memory and processor performance.
The use of floating point coefficients limits the storage space for the monomial coefficients, but
it raises several severe problems concerning the accuracy of the floating point arithmetic. The
only way to produce truly reliable error estimates is by using interval arithmetic. Interval arith-
metic is very pessimistic, because it usually does not consider interdependencies between inter-
mediate results [Knuth 1981] and uses strictly worse case criteria. Consequently one would
need huge mantissas for the large number of operations performed during the Buchberger Algo-
rithm, which leaves no advantage over integer arithmetic.



 

Looking at the computational side of floating point arithmetic two main reasons for inaccuracy
can be identified. Subtractive cancellation comes into effect, when two nearly equal floating
point numbers are subtracted. Some of the leading bits in the mantissa are cancelled to zero.
After that the mantissa is normalized i.e. it is shifted left until the highest bit is nonzero [Knuth
1981]. During the shifting inaccurate bits enter at the right side of the mantissa reducing the
number of accurate bits by the number of shifts (i.e. the number of leading bits that were can-
celled).
Additionally, rounding errors take place, being at most  bit per operation. It is important to
see that rounding errors tend to even out over a large number of operations, whereas subtractive
cancellation is an irreversible loss of accuracy.
During the Buchberger Algorithm subtractive cancellation is a much bigger problem than
rounding errors, because polynomial coefficients of nearly the same size are subtracted over and
over again. We want to stress that this assumption is determined by the nature of the algorithm.
In algorithms that do not perform subtractions of nearly equal terms, the rounding error is the
dominant source of inaccuracy.
Following this idea the floating point arithmetic in 

 

gfloat

 

 performs cancellation control, there-
fore it tracks the loss of mantissa bits due to subtractions. Additionally, a certain percentage of
bits in the mantissa are reserved for rounding errors. The remaining bits (significant bits) are
used as an estimate for the precision of the floating point number.

 

3 Replacing integers with a pair of modular coefficient / floating point coefficient

 

The usage of floating point coefficients makes it impossible to decide if the result of a subtrac-
tion 

 

a

 

–

 

b

 

 yields exactly zero. This would be necessary, because during the Buchberger Algorithm
it is checked if monoms are cancelled, i.e. the coefficient becomes zero. Incorrect cancellation
of a monomial has unpredictable effects in the algorithm, from minor changes in the result to
disastrous consequences like the wrong number of solutions or totally incorrect solutions. 
Using floating point arithmetic one usually defines a threshold value  and takes 
equivalent to . This is not applicable here because the difference of two integers can be
nonzero although the difference of the floating point representations of these integers is zero.
For example take 

 

a

 

=451614, 

 

b

 

=451638 represented by a decimal float with a 4 digit mantissa.

Float: 0.4516e6 – 0.4516e6 = 0.0e0 Integer: 451638 – 451614 = –24

All digits in the mantissa have been cancelled, but the integer result still is not zero.
In order to detect exact zeroes an additional modular coefficient is introduced where the modular
coefficient is the residue class of the integer coefficient modulo a prime modulus [Lazard 1992].
Consequently all polynomial operations are performed for the floating point coefficient and the
modular coefficient. The integer is zero if, and only if the modular and the floating point coef-
ficient are zero.
Taking the above example with modulus = 31991 then 

 

amod

 

 = 3740 and 

 

bmod

 

 = 3764.

Modular: 3740–3764 = 31967; Float: 0.4516e6–0.4516e6 = 0.0e0; Int: 451638–451614 =–24

The modular operation shows, that this is not a real zero. But this operation also has another,
more important result: all significant digits in the mantissa were cancelled. As we showed in the
previous section that means that the content of the mantissa has no meaning whatsoever. In order
to find useful results we have to restart the computation with a longer mantissa in the floats.
This can be summarized in the coefficient test [Lösch 1996].

1 2

ε | |a b− <ε
a b− = 0



 

if

 

 amod- bmod = 0

 

if

 

  afloat - bfloat = 0.0e0 *
The result is a real zero.

 

else if

 

 afloat - bfloat 

 

≠

 

 0.0e0 *
a - b is a multiple of the modulus. Choose different modulus and restart.

 

else if

 

 amod- bmod 

 

≠

 

 0

 

if

 

 afloat - bfloat = 0.0e0 *
All digits of the mantissa have been cancelled. Raise mantissa length and restart.

* afloat - bfloat = 0.0e0 means that all significant bits of the mantissa yield zero.

There only remains the very unlikely occurrence where the integer result is a multiple of the
modulus and the floating point operation yields zero. Then the monomial would be cancelled
falsely.
Repeating the calculations using a different modulus would further lower the probability for
false cancellation; the integer coefficient would have to be a multiple of the product of the two
moduli.

 

4 Transformation of Gröbner Bases

 

For polynomials with more than one variable there exist different monomial orderings, that is
sets of rules how to sort the monomials within the polynomial [Cox, Little, O'Shea 1992]. Fixing
different monomial orderings leads to different Gröbner Bases; for our purposes we need to find
a 

 

lexicographic

 

 Gröbner Basis. For equations with a zero dimensional solution it is possible to
transform a Gröbner Basis with respect to a certain monomial ordering to a Gröbner Basis with
respect to a different ordering. However it is much better in terms of number and size of the
polynomials involved to use 

 

total degree reverse lexicographic

 

 ordering to compute a Gröbner
Basis than using 

 

lexicographic

 

 ordering.
It is appropriate to produce a 

 

lexicographic

 

 Gröbner Basis indirectly by first computing a 

 

total
degree reverse lexicographic

 

 (tdegrev) Gröbner Basis and transforming it to a 

 

lexicographic

 

Gröbner Basis. In 

 

gfloat

 

 the transformation algorithm CONVGRÖBNER [Becker, Weispfennig
1993] is used.

 

5 The software 

 

gfloat

 

The floating point arithmetic uses multiple precision software floats with error estimation. It is
basically the free software library GNU gmp-2.0.2 where we added mantissa cancellation con-
trol (see section 2). If the precision of the result is not sufficient it is possible to increase the man-
tissa length of the floats to get the desired precision.
The solution of the input equation consists of four steps (Figure 1). First a total degree reverse
lexicographic Gröbner Basis with only modular coefficients is computed. During the computa-
tion all operations necessary for the tdegrev Gröbner Basis are recorded in the trace file
[Traverso 1988)]. The point about the trace file is, that all superfluous operations (i.e. zero
reductions of S-Polynomials) are not recorded and thus will not be performed during the
TRACE. The modular Gröbner Basis already allows to determine the dimension of the solution
and, if the solution is zero dimensional, the number of solution points including complex and
multiple solutions [Becker T., Weispfennig V. 1993]. The second step, TRACE, performs



 

exactly the operations recorded in the trace file using floating point arithmetic. Subsequently it
produces a total degree reverse lexicographic ordering Gröbner Basis with modular/floating
point coefficients. Step three, CONVERT, converts the tdegrev Gröbner Basis to a lexicographic

Gröbner Basis, which is finally used in step four
to find the actual solutions of the equations. The
roots are found with Laguerres method [Press, et
al. 1990]. For a detailed description of the algo-
rithms, implementation of the software as well
as examples see [Hirn 1999] and [Lösch 1996].

 

6 Example

 

In order to demonstrate the capabilities of the

 

gfloat

 

 software we took an example from mech-
anism synthesis. Figure 2 shows a planar four–
bar mechanism with its nine design parameters
( , , , , 

 

a

 

, 

 

b

 

, 

 

c

 

, 

 

p

 

, and 

 

q

 

) and the coupler–
curve traced by the coupler–point 

 

C 

 

during the
motion of the mechanism. For this example we
consider the specific synthesis problem where
the positions of the fixed pivots are prescribed
(for the example at hand , ,

, and ) and the remaining five
parameters (

 

a

 

, 

 

b

 

, 

 

c

 

, 

 

p

 

, and 

 

q

 

) have to be com-
puted such that the coupler–curve of the corre-
sponding mechanism passes through a set of 5
specified points. The coordinates of the 5 chosen
points are listed in Table 1. Substituting succes-
sively the coordinates of the 5 given points into
the equation of the coupler–curve and making
use of the given values for , , , and  we
obtain 5 algebraic equations for the five
unknown design parameters. These equations
possess a total 36 solutions and half of them turn
out to be real. The real sets are listed in Table 2
and the mechanism with the corresponding cou-
pler curves are depicted in Figure 3.
The input equations for 

 

gfloat

 

 are of total degree
8 and consist of 78 monomials each. The solu-
tions were computed using floating point arith-

metic with a mantissa length of 5700
bit. The total computation time to
obtain the lexicographic Gröbner Basis
was 1067s on a DEC Alpha 3000.

x1 y1 x2 y2

x1 0 5= − . y1 0=
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x1 y1 x2 y2

 

Figure 1. 

 

Flow–chart of the 

 

gfloat

 

 software.
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1 -0.25 0.25

2 -0.25 0.5

3 -0.25 0.75

4 0.25 0.25

5 0.25 0.75

i P  (x, y)i

 

Table 1. 

 

Coordinates of the 5 prescribed points
of the coupler–curve.
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Figure 2. 

 

A planar four–bar mechanism
and its design parameters together with 5
given points of the desired coupler–curve.



 

7 Conclusions

 

The concepts used in the imple-
mentation of 

 

gfloat

 

 reduce the com-
putational effort to obtain a
lexicographic Gröbner Basis. This
makes it possible to find the solu-
tions of more difficult (i.e. higher
degree or more variables) algebraic
equations than other implementa-
tions of Gröbner Bases, which are
using integer arithmetic and com-
puting the lexicographic Gröbner
Basis directly. 

 

Gfloat

 

 delivers approximate values
for all the solutions of a system of
polynomial equations including
multiple and complex solutions. It
is very likely that the correct num-
ber of solutions is found (see sec-
tion 3), this can be strengthened
further by repeating the whole pro-
cedure using a different modulus.
Although the precision of the solu-

tion points cannot be guaranteed, some verification is provided via automatic substitution of the
solutions in the input equations. The mantissa length of the floating point arithmetic can be
increased arbitrarily, so the precision of the result can be raised if necessary.
We are perfectly aware of the fact that 

 

gfloat

 

 cannot produce results that guarantee a certain pre-
cision - but the software is often able to deliver results where programs using integer or interval
arithmetic fail because of their demand of computer performance. 
Hence, 

 

gfloat

 

 is a useful tool for engineering applications, when it is sufficient to find results
with a limited precision rather than exact solutions. 
The source code of the software written in C is available on the internet via our home page.
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Table 2. 

 

The 18 sets of design parameters for the 18 different four–
bar mechanisms.
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3 0.353823 1.00999 0.353823 0.504996 0.504996

4 0.40334 0.933735 0.40334 0.466867 0.466867

5 0.461822 0.934294 0.461822 0.467147 0.467147
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Figure 3. 

 

The 18 synthesized four–bar mechanisms
together with their coupler–curves (or parts of
them) and the 5 points determining these various
coupler–curves and corresponding mechanisms.
Note: The mechanisms are always depicted in such
a position that the coupler–point coincides with one
of the prescribed points.


