

New Techniques in Coating Layer Analysis: Light Microscopy and Micro Tomography

J. Kritzinger¹, U. Hirn¹, H. Schröttner² and W. Bauer¹

¹ Institute for Paper, Pulp and Fiber Technology (IPZ); Graz University of Technology RSA µSTRUCSCOP

² Institute for Electron Microscopy and Fine Structure Research (felmi); Graz University of Technology

Content

Review

- Coating Layer Analysis: Trends and Methods
- Scanning Electron Microscope (SEM)
- X-ray Micro Tomography (µCT)
- Serial Sectioning Technique (µSTRUCSCOP)

Comparisons

- Serial Sectioning versus SEM
- Serial Sectioning versus X-ray Micro Tomography

Summary

Coating Structure Analysis

Targets

- Coating uniformity and its influence of behavior of coated papers (printability....)
- Coating coverage and coating holdout
- Analysis of defects in the coating layer
- Surface characterization
-

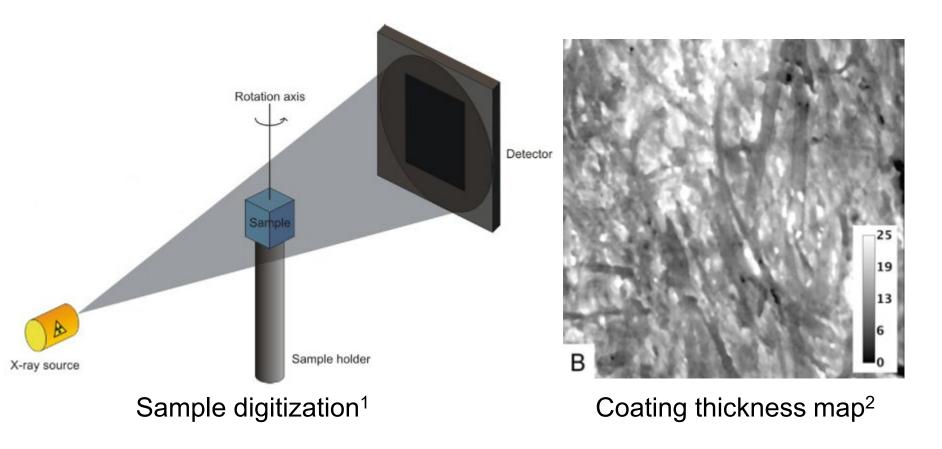
Requirements

- Resolution in (below) the micrometer-range
- Fast analysis of large samples areas

Coating Structure Analysis

Methods used

- Scanning electron microscopy (backscatter)
 - Coating thickness uniformity (Allem; JPPS, 24(10), 329-336)
 - Coating Coverage (Grön et.al.; JPPS, 27(2), 66-73)
 - Leveling / contour coat (Dahlström et.al.; 10th ACFS 2008)
- X-ray micro tomography
 - Surface characterization (Chinga et.al.; 23th PTS Coating Symposium 2007, 31.1-31.12)
 - Analysis of coating structures (Turpeinen et.al.; 22nd PTS Coating Symposium 2005, 36.1-36.14)
- Serial sectioning, light optical microscopy
 - Curtain versus blade coating (Wiltsche et.al.; 9th ACFS 2006)
 - Coating layer uniformity (Kritzinger et.al.; 10th ACFS 2008; 24th PTS Coating Symposium 2009)


Scanning Electron Microscopy (SEM)

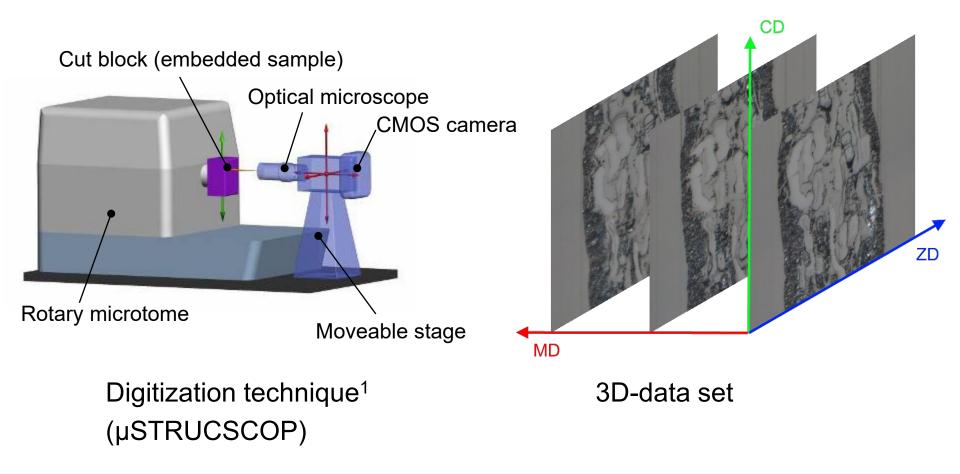
- Sample preparation: embedding in resin, sometimes staining
- Digitization of paper cross sections (2D)
 (3D approaches like serial grinding are not common)
- Resolution for coating layer analysis: wide range (~0,2 µm/Pixel)
- Application:
 - Coating structure analysis

(coating thickness & coverage, interactions base sheet - coating)

X-ray Micro Tomography (µCT)

¹ Turpeinen et.al..; 22nd PTS Coating Symposium 2005, 36.1-36.14 ² Chinga-Carrasco et.al..; Journal of Microscopy; 232(2), 212-224

X-ray Micro Tomography (µCT)


Desktop scanners most common.

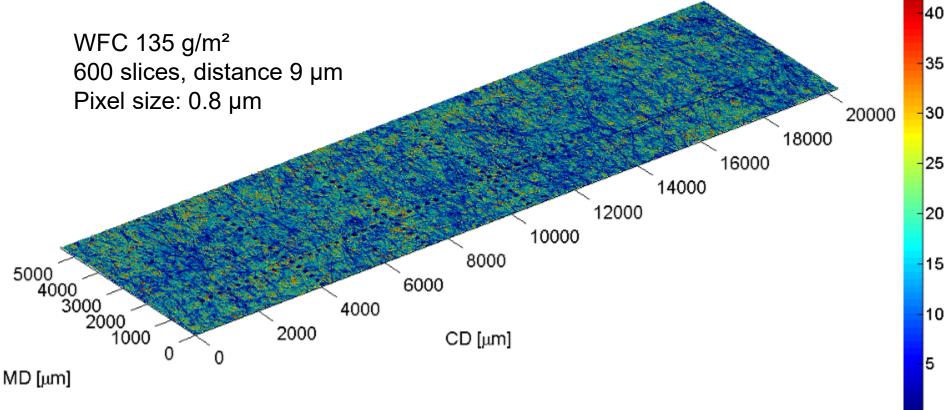
- Sample preparation: not required (cutting)
- Accessibility to 3D-data sets 2 x 2 mm² (the higher the resolution, the lower the sample size)
- Resolution for coating layer analysis: 0.86 µm/Voxel
- Application:
 - Analysis of coating structures
 - (base paper and final paper topography, coating thickness ...)
 - 3D reconstructions of fibrous webs
 - (textiles, press felts,...)

Serial Sectioning Technique (µSTRUCSCOP)

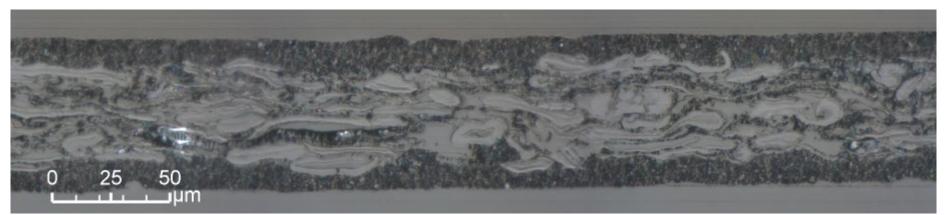
¹ Wiltsche et.al.; Transaction of 13th Fundamental Research Symposium 2005, 853-899

Serial Sectioning Technique (µSTRUCSCOP)

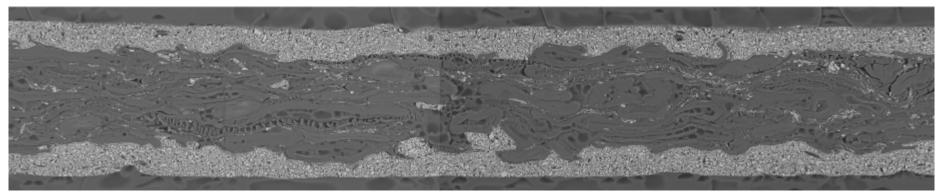
- Sample preparation: embedding in resin
- Accessibility of large 3D-data sets (>1 cm²)
- Resolution for coating layer analysis:
 - Image plane: 0.8 0.4 µm/Pixel
 - Slice thickness: 2 12 µm
 - Slice length: >20 mm
- Application:
 - Representative analysis of coating structures
 (coating thickness & coverage, interactions base sheet coating)
 - Coating thickness maps


(correlation coating thickness - printing result)

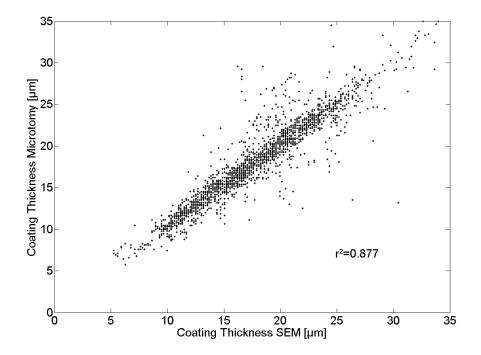
Map of coating thickness on paper



Hirn et.al.; Transaction of 14th Fundamental Research Symposium 2009



Serial Sectioning versus SEM


Serial Sectioning IPZ-system (µSTRUCSCOP), pixel size 0.16 µm

SEM (felmi), pixel size 0.0558 µm

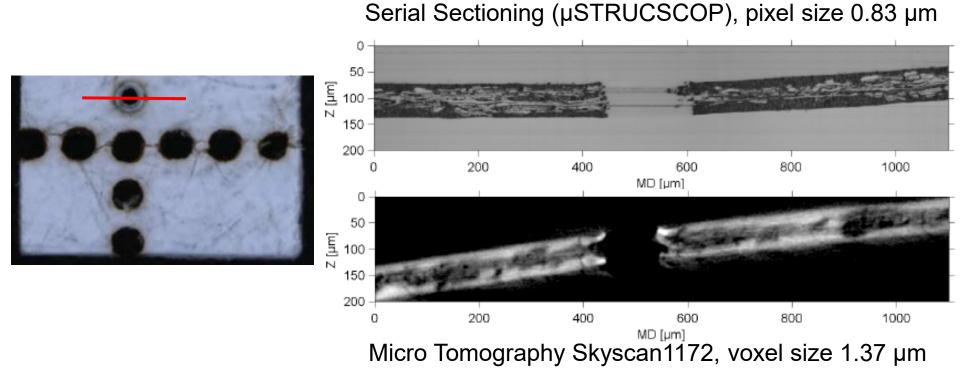
Serial Sectioning versus SEM

• Strong correlation of coating thickness data obtained from SEM and serial sectioning images (at the same position).

Serial Sectioning versus SEM

• 2D-analysis: similar results in coating layer analysis

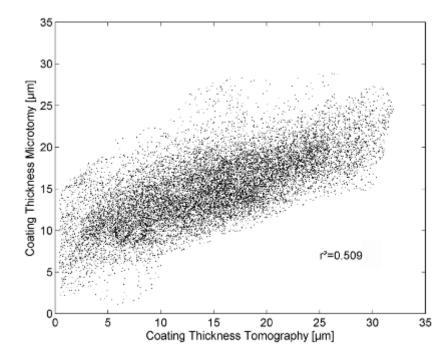
SEM


- Very high resolution
 - \rightarrow Details (pigments, pores) in the coating layer are visible
- Coating layer analysis on single cross sections

Serial Sectioning

- Surface irregularities are visible
- Coating base paper interface sometimes not very clear (better at lower resolutions)

Serial Sectioning versus Micro Tomography



Hirn et.al.; Transaction of 14th Fundamental Research Symposium 2009

Serial Sectioning versus Micro Tomography

- Limited correlation of coating thickness data obtained from X-ray micro tomography and serial sectioning
- Trend to overestimate coating thickness with micro tomography

Serial Sectioning versus Micro Tomography

• 3D analysis: variations in the obtained results

X-ray micro tomography

- Detection of fine structures in the coating layer is difficult (threshold level, noise,...)
- Non-destructive measurement

Serial Sectioning

- 3D data set almost free of artifacts
- No relation between sample size and resolution

Summary						
	Resolution	Image Quality	Sample Size 2D	Sample Size 3D	Time Effort	Remarks
SEM	+	+0	+	_	_	well established Technique
μCT	_	-	-o	ο	+	rapid development
µSTRUCSCOP	ο	+0	+	+	ο	sample size

→ All methods are suited for coating structure analysis