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Abstract—Fully Homomorphic Encryption (FHE) has emerged
as a promising technology for processing encrypted data without
the need for decryption. Despite its potential, its practical imple-
mentation has faced challenges due to substantial computational
overhead. To address this issue, we propose the first chiplet-
based FHE accelerator design ‘REED’, which enables scalability
and offers high throughput, thereby enhancing homomorphic
encryption deployment in real-world scenarios. It incorporates
well-known wafer yield issues during fabrication which signif-
icantly impacts production costs. In contrast to state-of-the-art
approaches, we also address data exchange overhead by propos-
ing a non-blocking inter-chiplet communication strategy. We
incorporate novel pipelined Number Theoretic Transform and
automorphism techniques, leveraging parallelism and providing
high throughput.

Experimental results demonstrate that REED 2.5D integrated
circuit consumes 177 mm2 chip area, 82.5 W average power in
7nm technology, and achieves an impressive speedup of up to
5,982× compared to a CPU (24-core 2×Intel X5690), and 2×
better energy efficiency and 50% lower development cost than
state-of-the-art ASIC accelerator. To evaluate its practical impact,
we are the first to benchmark an encrypted deep neural network
training. Overall, this work successfully enhances the practicality
and deployability of fully homomorphic encryption in real-world
scenarios.

I. INTRODUCTION

Data breaches compromising large cloud storage, and jeop-
ardizing millions of private accounts, have become a daily
threat [26], [37], [43]. The vulnerability stems from storing
data in an unencrypted format, leaving it susceptible to attacks.
Even if the server encrypts the data for storage, it needs
to decrypt it for processing, exposing it to potential privacy
breaches. This is where Fully Homomorphic Encryption (FHE)
comes into play. FHE is a promising cryptographic tech-
nique that enables secure and privacy-preserving computa-
tion, communication, and storage. Servers can compute on
homomorphically encrypted data and return encrypted outputs.
This approach ensures that every client holds the key to
his/her privacy. FHE’s potential utility spans a wide range
of applications, including cloud computing, data processing,
and machine learning. The concept of Homomorphic Encryp-
tion was first presented in 1978 by Rivest, Adleman, and
Dertouzos [54], and the first FHE scheme was introduced in
2009 by Craig Gentry [22]. Since then, numerous algorithmic
proposals have emerged [6], [11]–[13], [17].

A common limitation shared by these schemes is the
significant computation and memory overhead. This results

in a performance degradation of 10,000× to 100,000× [30]
compared to unencrypted computation. It can be attributed
to the fact that plain data expands into large polynomials
during homomorphic computation, and simple operations,
like multiplication, translate into complex polynomial oper-
ations homomorphically. Consequently, this drawback hinders
FHE deployment in real-life scenarios. To bridge this per-
formance gap between plain and homomorphic computations,
researchers have proposed acceleration techniques on various
platforms, including CPU, GPU, FPGA, and ASIC [1], [4],
[18], [19], [21], [29], [32]–[34], [40], [46], [50]–[53], [55]–
[57], [61], [64], [67]–[70].

Software implementations offer flexibility but suffer from
poor performance. While attempts have been made to bridge
this gap with GPU-based solutions [4], [29], they have yet
to match the performance of FPGA-based works [1], [40],
[53], [70], which not only exhibit superior performance but
also provide re-programmability and real-time verifiability.
Nonetheless, there is still a need to narrow the runtime gap
between plain and homomorphic computations in FPGA-based
solutions. Currently, the most notable acceleration results have
been achieved through ASIC works. However, it is important
to note that in pursuit of maximizing acceleration, several
works have deviated from the critical requirement of ensuring
real-life deployability. This is mainly due to the monolithic
implementation approach adopted by all ASIC-based works
in the literature.

In a monolithic design, all components are integrated into
a single chip which is relatively easy to design. However, it
suffers from various limitations such as inflexibility, low yield,
and higher manufacturing costs [23]. Works such as [32]–[34]
propose chips with an approximate size of 400mm2, resulting
in a manufacturing yield of only 67% [39]. They also face
high development costs (≈25M$ [45]) and very long time-to-
market (>3 years). In such cases, architecture is excessively
large, surpassing manufacturing capabilities and making pre-
silicon verification on FPGAs infeasible. These limitations
pose a significant obstacle to the fast implementation of
homomorphic encryption techniques.

Additionally, these proposals overlook the crucial need
for communication-computation parallelism. Off-chip to on-
chip communication is considerably slower than the chip’s
computation speed. Therefore, while the proposed designs may
demonstrate good performance on shallow benchmarks [25],
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[59], they are likely to experience significant performance
degradation for complex tasks like neural network training.
Enhancing the overall efficiency of the design requires lever-
aging communication-computation parallelism.

Overall, we have observed that research on FHE acceler-
ation has reached a saturation point with limited scalability.
The general approach to address this is proposing larger chips.
However, this has already reached a stage where manufactur-
ing has become infeasible, making the proposed acceleration
unattainable. To overcome this major challenge, we embrace
chiplet-based design [24], [39], [72]- a modular approach to
building big architectures and offers numerous advantages,
including scalability, high yield, low cost, quick pre-silicon
verification, and less time-to-market [7], [23]. Since existing
designs cannot be efficiently scaled down to chiplet-based
designs, we introduce a scalable design methodology that can
be easily scaled up or down depending on requirements and
constraints. We hope this will open practical possibilities for
privacy-preserving computation.

A. Our Contribution

We unfold our major contribution across two dimensions
of scalability- configurable design methodology and modular
implementation approach. Our contributions are as follows:

• Scalable hardware design- REED: We propose a
configuration-based (N1×N2) design methodology while
incorporating communication bandwidth of N2 coeffi-
cients. All the building blocks under this design method-
ology offer a thought of f/N1 operations per second,
where f is the design operating frequency. By changing
the configuration parameters (N1, N2), the architecture
can be adapted to the desired area and throughput re-
quirements. Thus, it addresses the various constraints in
real-world scenarios, improving utility.

• Chiplet-based implementation- REED 2.5D: We take
a step back from existing implementation techniques
and present a novel and cost-effective chiplet-based FHE
implementation approach, which is inherently scalable.
REED with 2.5D packaging surpasses state-of-the-art
work SHARP64 [32] with 2× better energy efficiency and
2× less development cost. To the extent of our knowl-
edge, this is the first chiplet architecture for accelerating
FHE. We further explore the potential of extending this
work by leveraging the promising 3D Integrated Circuit
(IC) technology [7].

• High-performance computation: We present innovative
design techniques for the number-theoretic transform
(NTT) and automorphism. Our approach introduces a Hy-
brid NTT unit that eliminates the need for the expensive
transpose operation or scratchpad memory and an easily
configurable automorphism unit. These building blocks
leverage parallelism and pipelining for high throughput.

• Communication-computation parallelism: Chiplet-
based architectures may suffer from slow inter-
chiplet communication bottleneck. We address this by
proposing the first non-blocking ring-based inter-chiplet

communication strategy in the context of FHE, ensuring
computation-communication parallelism. This is made
feasible due to our proposed interleaved data distribution
technique, which reduces memory consumption. These
optimizations further enhance the overall performance of
the hardware acceleration design.

• Application Benchmark: We choose parameters to offer
high precision and, at the same time, good performance.
REED is the first work to benchmark an encrypted deep
neural network (DNN) training, showcasing practical
viability and real-world impact. While CPU (24-core,
2×Intel Xeon CPU X5690 @ 3.47GHz) requires 29 days
to finish it, REED 2.5D takes only 7.7 minutes, a realistic
time for an NN training. We also use DNN training
to run accuracy/precision experiments and validate our
parameter choice.

II. BACKGROUND

Let ZQ represent the ring of integers in the range [0, Q−1].
RQ,N = ZQ[x]/(x

N +1) refers to polynomial ring containing
polynomials of degree at most N − 1 and coefficients in
ZQ. A polynomial is denoted as a ∈ RQ,N . In Residue
Number System (RNS) [20] representation, Q is a composite
modulus comprising co-prime moduli, Q =

∏L−1
i=0 qi. Let a

be a vector of residue polynomials, and ai be the i-th residue
polynomial in the vector. We use the ‘mathtt’ font, e.g., c

or sk, to represent ciphertexts or keys. Operators · and ⟨, ⟩
denote the multiplication and dot-product between two ring
elements. Noise is represented as e and is refreshed for every
computation.

A. FHE schemes and HEAAN routines

Multiple FHE schemes exist in literature, including
BGV [6], TFHE [13], HEAAN [11], [12], among others.
These schemes differ primarily in the types of data they can
encode and the supported operations. For instance, BGV can
handle integers, while HEAAN can work with fixed-point
numbers and is widely adopted for benchmarking machine
learning applications [25], [31]. Hence, our accelerator design
is in the context of HEAAN [11]. Notably, most schemes
also require polynomial computations similar to those in
HEAAN. Consequently, our proposed design methodology can
be extended to other schemes, like BGV.

We present the HEAAN [11] routines for ciphertexts at level
l (multiplicative depth is l − 1.) where l < L, Ql =

∏l−1
i=0 qi,

and L is the maximum level. Please refer to [11] for a
detailed description. The first three procedures are computed
by the client, and the remaining procedures are evaluated on
ciphertexts by the cloud.

1) HEAAN.KeyGen( ): This routine generates secret key sk =
(1, s), public key pk = (−a · s+ e, a) ∈ R2

QL,N , and several
key-switching keys kski = (−a ·s+ e+P ·s′, a) ∈ R2

PQL,N

for i ∈ [0, L), where a is uniformly random and s′ is a secret.
For relinearization, s′ = s2.

2) HEAAN.Enc(m, pk): It encrypts a message m using public
key, and returns ciphertext c = v · pk+ (m+ e, e) ∈ R2

QL,N .



TABLE I
HEAAN PARAMETERS

Parameter Definition Value
N,n Polynomial size, Packing slot 216, 215

Q, qi Coefficient modulus and its RNS base -
L Number of RNS bases for Q =

∏L−1
i=0 qi 31

P , pi Special modulus and its RNS base -
K Number of RNS bases for P =

∏K−1
i=0 pi 1

w Word size (log pi, log qi) 54-bit
Lboot, Leff Multiplicative depth of/after bootstrapping 15,15

3) HEAAN.Dec(c, sk): The ciphertext c is decrypted using
the secret key sk to return message m′ = ⟨c, sk⟩.

4) HEAAN.Add(c, c′): It takes two input ciphertexts c =
(c0, c1) ∈ R2

Ql,N
and c′ = (c′0, c

′
1) ∈ R2

Ql,N
and computes

cadd = (d0,d1) where d0 = c0 + c′0 ∈ RQl,N and
d1 = c1 + c′1 ∈ RQl,N .

5) HEAAN.Mult(c, c′): It multiplies two input ciphertexts
c = (c0, c1) ∈ R2

Ql,N
and c′ = (c′0, c

′
1) ∈ R2

Ql,N
, and com-

putes d0 = c0 · c′0 ∈ RQl,N , d1 = c0 · c′1 + c1 · c′0 ∈ RQl,N ,
and d2 = c1 · c′1 ∈ RQl,N . The output is the non-linear
ciphertext d = (d0,d1,d2) ∈ R3

Ql,N
, which is then linearized

using a ‘key-switch’ procedure, as described below.
6) HEAAN.Automorphism(c, rot): The input ciphertext c =

(c0, c1) ∈ R2
Ql,N

is homomorphically rotated by rot using
galoi element (gle = 5rot mod 2N ) to return ciphertext d =
(ρrot(c0), ρrot(c1)) ∈ R2

Ql,N
after key-switch. A conjugation

is a special form of automorphism when (gle = 2N − 1).
7) HEAAN.KeySwitch(d, ksk): It performs key-switch, us-

ing a relevant key ksk, after HEAAN.Mult/Automorphism so
the resultant ciphertext is encrypted under the same secret key
as the input ciphertext. It computes c′′ = (c′′0 , c

′′
1) where

c′′0 =
∑l−1

i=0 d
i
0 · kski0 ∈ RPQl,N and c′′1 =

∑l−1
i=0 d

i
0 ·

kski1 ∈ RPQl,N . This is followed by c =
(
(d1, d2) +

(HEAAN.ModDown(c′′)
)

∈ R2
Ql,N

. HEAAN.ModDown() scales
down the modulus from PQl to Ql.

8) HEAAN.Bootstrap: This routine is designed to refresh
the multiplicative depth of ciphertexts. It involves evaluating
the decryption operation homomorphically [5], [9], [10]. This
is the most computationally expensive routine, and it is not
a standalone procedure but rather a combination of the above
routines. A certain amount of multiplicative depth (Lboot) is
consumed during bootstrapping. As a result, the depth of
the ciphertext after bootstrapping (Leff) is always lower than
the original multiplicative depth L. We closely adhere to the
implementation in OpenFHE [2] for benchmarking.

This works uses hardware acceleration to speed up the
cloud-side homomorphic procedures. Table I lists the HEAAN
parameters with the notation and values we use for our design
targeting the 128-bit classical security (N = 216, logPQ =
1728) [3], [5]. The choice of word-size (w = 54-bit) offers the
best balance between performance and precision, as discussed
in Section V-A.

B. Number Theoretic Transform (NTT)

NTT is a discrete Fourier transform defined over the ring
Zq as âi =

∑N−1
j=0 aiω

ij for i ∈ [0, N), where ω is N -th

primitive root of unity. It reduces the complexity of polynomial
multiplication from O(N2) to O(N logN) and is excessively
utilized in FHE schemes. In a polynomial ring, negative
wrapper convolution enables reduction-free polynomial multi-
plication. It requires polynomials to be multiplied with powers
of 2N -th root of unity, ψ (pre-processing and post-processing).
For more details, readers may refer to [58], [62].

C. Monolithic vs Chiplet, and Chiplet packaging techniques

In the context of large Integrated Circuits, authors in [23],
[39], [72] discuss the advantages of chiplet-based designs
over monolithic designs. The problem with monolithic designs
stems from the fact that to keep up with the increasing
demand for high performance and functionality, chips need
to be scaled up, and advanced technology nodes must be
utilized. Manufacturing such big chips reduces the wafer yield
as more surface area is exposed to defects per chip and
increases the developments cost. Such huge designs take a
very long time-to-market, and it is impossible to test and
verify them before manufacturing using FPGAs. More factors,
such as size limitation and sub-optimal die performance due to
overload, contribute to Moore’s law’s slowdown. Hence, there
is a shift from these SoC (System on Chip) to SiP (System in
Package) [23], as SiP directly addresses these challenges.

Migrating chiplets to advanced technology is easier than
an entire monolithic design. In SiP, multiple heterogeneous
smaller chiplets can be manufactured separately and later
integrated together using various packaging techniques as long
as they adhere to common interface standards. This promotes
chiplet-reuse, further lowering the development costs, expedit-
ing the process, and resulting in a substantial profit margin.
The chiplet-packaging techniques can be broadly classified
into three main categories: 2D, 2.5D, and 3D [23], [39].
In 2D packaging, different dies are mounted on a substrate,
commonly known as a multi-chip module (MCM). It has
limitations due to the substrate, resulting in slow die-to-die
communication and high power consumption.

To address these limitations, the most reliable technology
for integrating chiplets is the silicon interposer, known as 2.5D
integration. In this approach, an interposer is placed between
the die and the substrate, enabling die-to-die connections on
the interposer itself. The use of an interposer significantly
enhances interconnectivity, leading to improved performance.
Several studies in the literature, such as [49], [73], demon-
strate the practicality of this approach. Taking the integration
capabilities a step further, 3D packaging involves stacking
different dies on top of each other, akin to a skyscraper. In 3D
packaging, the dies are interconnected using through-silicon
vias (TSVs). 3DIC is gaining significant popularity and serves
as the foundation for advancements [8], [48], [65], [66]. A
well-known example of 3D packaging is the High Bandwidth
Memory (HBM/HBM2/HBM3), where multiple DRAM dies
are stacked. This approach significantly reduces the critical
path and area, resulting in higher performance, lower power
consumption, and increased bandwidth. The slowdown of
Moore’s law finds hope in 2.5D and 3D IC.



Fig. 1. Design hierarchy for chiplet-based HE accelerator.

III. THE SCALABLE ARCHITECTURE DESIGN
METHODOLOGY FOR REED

Our primary objective is to propose a scalable design
methodology that can be utilized by chiplet-based acceler-
ators to offer superior acceleration. A hardware accelerator
design for FHE schemes has three fundamental computation
units: Number Theoretic Transform (NTT/INTT), Multiply-
and-Accumulate (MAC), and Automorphism. All homomor-
phic operations can be computed by utilising these units. The
computational building blocks are integrated with memory
components to create a complete Processing Unit (PU). To
achieve a transition from a single PU to multiple PUs and
multiple chiplets, we also need to address PU-PU communi-
cation and data distribution. This overall design flow for our
accelerator design- REED, is illustrated in Fig. 1.

We will present our design methodology starting with the
top of the hierarchy- Multi-Chiplet Design. To comprehend
the decision-making process behind the middle modules,
it is crucial to grasp the design principles employed for
the bottom-most modules: NTT, MAC, and Automorphism.
Hence, next, we will thoroughly discuss the scalable design
of these modules. Subsequently, we will demonstrate how
these modules are integrated to form a complete PU, ensuring
optimal performance and efficiency. Lastly, we will showcase
our efficient data distribution and PU-PU/C2C (chiplet-to-
chiplet) communication strategies. They enable seamless data
exchange, leading to better scalability and acceleration.

A. Multi-Chiplet Design

We presented the advantages of disintegrated systems over
monolithic designs in Section II-C. The transition from 2D
monolithic packaging to 2.5D or 3D disintegrated chiplet
systems represents both the present and future of architectural
designs, as emphasized in [23], [24], [28], [39], [66], [72],
[73]. In this context, we present REED 2.5D and RE3D.

1) REED 2.5D: We first present a sample two-chiplet
design, depicted in Fig. 2 (a). Here we connect two REED
chiplets and establish connections between PU and HBMs
via the interposer. Due to the proposed ring-based commu-
nication (Section III-E), scaling this design only increases the
interconnects linearly. Hence, we can scale it to four chiplets,
as shown in Fig. 2 (b). We ensure through our FHE design
that no HBM-HBM communication is required. Hence, they
are positioned on the outer side. Moreover, we avoid sharing
a single HBM among multiple chiplets, ensuring that each
HBM is located only in proximity to the one chiplet it serves.

Fig. 2. (a) Side view of two chiplet-based REED 2.5D, and (b) top view of
four chiplet-based REED 2.5D.

Fig. 3. The side and top view of proposed RE3D. It has four REED 3D IC
chiplets interconnected using the die-to-die link via silicon interposer.

Given that die-to-die communication requires a simple ring-
like communication pattern (discussed in Section III-E), the
chiplets are placed in a relatively straightforward manner, as
not all dies need to communicate with every other die. In [49],
[73], authors propose general-purpose chiplet-based processors
with an actual tapeout. Our placements strategies align with
these, demonstrating practical viability. We acknowledge the
potential latency issues arising from slow chiplet-to-chiplet
communication, and this will be addressed in Section III-E.

2) RE3D: REED’s journey from 2.5D to 3D: After dis-
cussing the design for REED 2.5D, we present its extension
to a complete 3D IC structure, which holds immense potential
for future computing. To achieve this transition, we have
two options: connecting the PU with the HBM controller
via TSV (as shown in Fig. 3) or merging the PU unit with
the lower HBM controller die. By adopting either of these
approaches, we can significantly reduce the reliance on the
Network-on-Chip (NoC), leading to a compact chip design
with lower power consumption. Each chiplet is a full 3D
IC package (PU and Memory) and needs a die-to-die link
via interposer for connecting to other chiplets. The reduction
in the area primarily comes from fewer HBM stacks on the
lateral area and the integration of the REED-PU unit with
the HBM controller. Additionally, the decrease in critical
paths due to the reduced interconnects would enhance the
design’s performance. Thus, RE3D would further bridge the
gap between speedup and privacy.

3) Disintegration Granularity: It is crucial to note that
disintegrated systems face a trade-off between development
cost and performance degradation, depending on the disinte-
gration granularity. Existing works, such as [24], [39], [65],
[66], [72], [73], show that disintegration improves yield, but
it introduces challenges such as floorplanning and post-silicon
testing overhead. Since this design is used for accelerating
FHE, its full utilization in the long run also weighs in. Hence,
we need to address the question: How much disintegration
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Fig. 4. The proposed novel Hybrid NTT/INTT design flow for N = N1×N2.

is best for our design? Considering a complete die area of
800mm2, dividing it into four chiplets offers an ≈ 80% yield,
while eight chiplets provide a yield of ≈ 90%. Although the
eight-chiplet option seems promising, it comes at the cost of
additional complexities in floorplanning/routing, testing, and
power consumption. In the context of FHE, as the multi-
plicative depth decreases, we need fewer PUs (discussed in
Section III-D). Hence, employing four larger chiplets offers
longer utilization compared to eight smaller chiplets, assuming
an equal number of PUs per chiplet.

In conclusion, instantiating four chiplets strikes the perfect
balance between manufacturing cost and utilization. Next, we
will discuss the design of building blocks for REED-PU and
see how they help us achieve our acceleration goals.

B. The ingredients of REED Processing Unit

The need for scalability and high throughput drives our de-
sign methodology. Before delving into the details of the build-
ing blocks, we introduce the REED-configuration (N1, N2)
for polynomial degree N , where N1 × N2 = N , and both
N1 and N2 are powers of two. This configuration provides a
throughput of f

N1
operations per second and can process N2

coefficients simultaneously, where f is the design’s operating
frequency. Hence, requiring a memory read/write bandwidth
of N2. The proposed standard configuration brings forth ad-
vantages, such as improved throughput and efficient resource
utilization. Mapping all the building blocks to this configu-
ration enhances scalability, enabling easy scale-up or scale-
down. Now, let us explore how we design the building blocks
to match this configuration and fully exploit its potential.

1) The Hybrid NTT/INTT (Frankenstein’s approach): This
unit plays a vital role in converting polynomials from slot to
coefficient representation and vice versa. It is computationally
extensive and occupies over 50% architectural area. Therefore,
designing an efficient NTT/INTT unit is crucial as it directly
impacts the overall throughput and area-consumption.

There are various approaches in the literature to implement
NTT for large-degree polynomials, such as iterative [1], [40],
[58], pipelined [71], [74] and hierarchical [19]. While these
approaches can offer efficient designs for specific configura-
tions or target platforms, they all suffer from implementation
complexity and lack of scalability for large polynomial sizes.
Additionally, these approaches rely on scratchpad-like mem-

Algorithm 1 Hybrid NTT with NWC
In: a (a matrix of size N1 ×N2 in row-major order)
In: ω (N -th root of unity), ψ (2N -th root of unity)
Out: a = NTT(a) (a matrix of size N1 ×N2 in column-major order)
1: for (i = 0; i < N1; i = i+ 1) do
2: for (j = 0; j < N2; j = j + 1) do
3: a[i][j]← a[i][j] · ψi·N2+j (mod q) ▷ Pre-processing (PP)
4: end for
5: end for
6: Apply N1-pt NTT to the columns of a ▷ using SDF-NTT
7: for (i = 0; i < N1; i = i+ 1) do
8: for (j = 0; j < N2; j = j + 1) do
9: a[i][j]← a[i][j] · ωi·j (mod q) ▷ Hadamard product (HP)

10: end for
11: end for
12: Apply N2-pt NTT to the rows of a ▷ using Unrolled-NTT (U-NTT)
13: return a

ories, which can serve as prefetch units for other building
blocks. The iterative approach enables using multiple process-
ing elements to improve the performance of NTT; however,
its implementation complexity increases significantly with the
number of processing elements. The pipelined approach (also
referred to as single-path delay feedback (SDF)) provides a
bandwidth-efficient solution but a diminished performance.

The hierarchical approach (also referred to as four-step
NTT), utilized in [19], treats a polynomial of size N as
an N = N1 × N2 matrix and divides a large NTT into
smaller parts. It involves performing N1-point NTTs on the
N2 columns of the matrix, then multiplying each coefficient
by ωi·j (where i and j are matrix row and column indices),
transposing the matrix, and finally performing N2-point NTTs
on the N1 columns. Transposing a matrix of size N1 × N2

requires N1 separate memories and large data re-ordering
units. For example, in [19], the transpose unit consumes 14%
of the area per compute cluster. Moreover, in terms of time
inefficiency, it will require additional N2 cycles for writing
data to the transpose memory and N1 cycles for reading it.

Although the hierarchical approach simplifies the NTT
implementation, it has the following limitations: (i) it requires
a costly transpose operation, (ii) N1 and N2 are fixed to
N1 = N2 [19], [21], hence offering limited flexibility, and
(iii) the reliance on scratchpad leads to large memory fan-
in and fan-out, causing routing inefficiencies. We address
these challenges by introducing a novel Hybrid NTT using
Frankenstein’s approach, which utilizes parts of hierarchical,
iterative, pipelined, and plain unrolled NTTs.

The proposed NTT/INTT unit is fully pipelined, and its flow
is shown in Algorithm 1 and Fig. 4. During the NTT operation,
we first perform pre-processing (Step 3 Algorithm 1) using N2

modular multipliers (PP). The resulting coefficients are sent to
N2 pipelined NTT units (N1-pt SDF-NTT) to perform Step 6.
The output coefficients of SDF-NTT units are processed via
the Hadamard Product unit (HP) that multiplies the coefficients
with powers of ω (Step 9) using N2 modular multipliers.
Finally, we employ a N2-pt unrolled NTT (U-NTT) unit.
Transpose elimination: The Hybrid NTT eliminates transpose
by using two orthogonal NTT approaches, pipelined (SDF)
approach for N1-sized NTTs and unrolled (U-NTT) approach



Fig. 5. The proposed novel Hybrid NTT/INTT design flow with Memory access for (a) NTT and (b) INTT with N1 = 4, N2 = 4, and N = 16. The
butterflies represent the Gentleman-Sande butterfly [58] operation employed in our design.

Algorithm 2 Word-level Montgomery Modular Reduction
In: d = a · b, q = 2w−1 + qH · 2m + 1
In: m (Mont. red. size), L = ⌈ log2q

m
⌉ (number of reduction steps)

Out: c = a · b ·R−1 (mod q), R = 2mL

1: T ← d
2: for (i = 0; i < L; i = i+ 1) do
3: TH , TL ← T ≫ m,T (mod 2m)
4: T2← −TL (mod 2m), cin← T2[m− 1] ∨ TL[m− 1]
5: T ← (qH · T2) + TH + cin+ (T2≪ (w − 1−m))
6: end for
7: return c← (T ≥ q) ? T − q : T

for N2-sized NTTs. The input polynomials for the NTT/INTT
operation are stored in N2 memories of depth N1. As shown in
Figure 5 (a), the output coefficients of SDF-NTT are processed
directly by U-NTT, providing a seamless, natural transpose
operation. It also helps make our NTT unit bi-directional, as
illustrated in Figure 5 (b).
Low-level optimizations: For modular multiplication and
reduction unit, we adopted the word-level Montgomery [41],
[42] modular reduction algorithm and optimized it (Algo-
rithm 2) for our special prime form, 2w−1+qH ·2m+1, where
m is Montgomery reduction size, and ⌈log2 qH⌉ is small. For
our design, we use w = 54, m = 18 and ⌈log2 qH⌉ = 10.
To reduce the on-chip twiddle factor memory requirement, we
employ on-the-fly twiddle factor generation using a small con-
stant memory that stores a few initial constants. By utilizing
this, we reduce the on-chip constant storage by up to 98.3%.

In summary, the proposed Hybrid NTT/INTT design offers
a throughput of f

N1
operations per second and can be scaled

for various area/performance trade-offs by adjusting the values
of N1 and N2. It eliminates the expensive transpose operation,
simplifies routing, and enhances pipelining.

2) Multiply-and-Accumulate (MAC): MAC is a linear unit,
and by instantiating N2 MACs for configuration (N1, N2),
we achieve the desired throughput f

N1
. Our triadic units are

capable of performing multiplication and addition/subtraction
simultaneously, which is advantageous for the key-switch
operation (discussed in Section III-C). It employs the same
modular multiplication unit utilized by the NTT/INTT unit.

3) Automorphism/Conjugation: This unit permutes cipher-
texts using the Galois element (gle) to achieve rotation or con-
jugation. We note three important properties in automorphism-
(i) all N2 coefficients come and go to N2 distinct memories,
(ii) they are read and written to the same address, and (iii)

Algorithm 3 Automorphism
In: a[N1][N2], gle
Out: â = ρ(a)

1: index← gle
2: for (l0 = 0; l0 < N1; l0 = l0 + 1) do
3: l1 ← index (mod log(N1))
4: start← index≫ log(N1)
5: addr[j]← (start+ j · gle) (mod log(N2)) ∀ j ∈ [0, N2)
6: â[l1]← shuffle_tree_N2 ×N2(addr, a[l0])
7: index← index+ gle
8: end for
9: return â[N1][N2]

Fig. 6. An example of a shuffle_tree_N2×N2 workflow. Every stage
here has sufficient registers to hold the N2 coefficients.

the coefficients move in pairs. To understand this, let us take
a brief look at how automorphism works.

A polynomial is stored as a matrix N1×N2 in N2 memories.
When we load N2 coefficients from memory address l0 across
all N2 memories, they are shuffled using ρrot and then written
to address l1 across all N2 memories. Hence, even though the
coefficient order is shuffled, they all go to the same address
of N2 distinct memories. We utilize this property to permute
all N2 coefficients in parallel. This out-of-place automorphism
is presented in Algorithm 3. The in-place permutation tech-
niques proposed in previous works [19], [57] increase routing
complexity due to memory transposition requirements.

At the end of this, we are still left with a quadratically
complex and expensive shuffle among N2 × N2 coefficients.
As mentioned above, we observed that all the shuffles could
be performed pairwise on the coefficient batches, as shown in
Fig. 6. After each stage, two batches of coefficients are merged
to form a new batch. This helps us replace the naive and
expensive operation with a simplified and pipelined binary-



Fig. 7. The REED-PU design. Every data communication (memory to
building blocks and off-chip to on-chip) here has a bandwidth of N2w.

tree-like shuffle. Note that the number of pipeline stages
adjusts with N2, making the unit scalable and efficient for
higher configurations. Moreover, the unit can handle any
arbitrary rotation and provide a throughput of f

N1
.

We now use these building block designs to design a
complete processing unit.

C. Packed REED Processing Unit (PU)

We initiate the PU design (as shown in Fig. 7) by placing the
NTT/INTT unit first and providing separate memories for both
ends. This ensures straightforward routing and efficient PU-
PU communication (Section III-C1). Although the NTT/INTT
unit operates on one polynomial at a time, the result is
multiplied with two polynomials (key-switching keys) and ac-
cumulated. Hence, we instantiate a pair of MAC units capable
of simultaneously processing both key components. Similarly,
we include two automorphism units as well. A PRNG is
deployed to generate the public key component on-the-fly,
following the approach in [40]. The design operates based on
instructions, wherein a relatively small instruction controller
manages the multiplexers and collects ‘done’ signals from
these units. Our design choices ensure that the NTT/INTT and
MAC/automorphism units can run concurrently in the pipeline.

Among all the routines, the key-switch is the most expensive
operation. In this, we transform all L residue polynomials
from slot to coefficient representation (INTT), and then each
of these is transformed to L + 1 NTTs, multiplied with two
key components, and accumulated. This requires L INTTs,
L(L+1) NTTs, and 2L(L+1) MACs, making the throughput
of this operation: f

L(1+3(L+1))·N1
. We utilize REED’s parallel

processing capability to perform all MAC operations con-
current to the NTT operations (shown in Fig. 8). We can
also perform multiplication and accumulation simultaneously.
Hence, we save 2L(L + 1) clock cycles and increase the
throughput to f

L(L+3)·N1
, resulting in a 66.7% improvement.

1) Prefetch-Memory: Previous works [19], [33], [34] refer
to their on-chip memory as scratchpads due to the need
for intermediate storage and prefetch functionality during
NTT/INTT and automorphism operations [19]. This approach
increases routing complexity as multiple modules access these
scratchpads, requiring them to be in very close proximity.

Our proposed low-level building blocks mitigate the need
for intermediate storage, allowing us to use memory units

Fig. 8. Timeline demonstrating parallel and pipelined operation flow.

solely as prefetch units. Each memory unit exhibits balanced
fan-in and fan-out, and among the five memory units depicted,
only four are fed by off-chip memory. The small memory
in Figure 7 is responsible for storing and communicating the
INTT result to the other PUs (elaborated in Section III-E).
Only two of the four memories communicating with off-
chip memory need to write back the results, as illustrated
by bi-directional arrows in Fig. 7. In total, three memories
perform off-chip read/write communication. These memories
are physically divided into two parts. When one is utilized
for on-chip computation, the other performs off-chip prefetch.
This results in a highly streamlined design.

After finalizing REED-PU, we next discuss the optimal data
distribution and communication for a multi-PU setting, which
lays the foundation for multi-chiplet design.

D. Data distribution and parallel processing for multiple PUs

In a multi-PU setting, data distribution strategies include
duplicating data across multiple PUs or utilizing shared mem-
ory. These approaches have severe drawbacks, as data dupli-
cation requires more storage, and shared memory introduces
the risk of deadlocks and needs distributed communication
protocols. In our multi-PU design, we focus on ensuring that
each PU operates on independent data. Most of the previous
works [32]–[34] propose a single monolithic PU and therefore
do not require a dedicated study on data distribution. In a
multi-PU work- Medha [40], the authors extensively discuss
this and propose distributing computation across the RNS
bases by employing one PU per RNS base. However, with this
approach, as the multiplicative depth decreases, a significant
number of PUs become idle, causing underutilization.

Nevertheless, distributing computation across RNS bases
enables highly parallel computations. Therefore, we leverage
this approach in an r-PU setting, where r is smaller than
the number of RNS bases (r < L + 1). For data distribution
across r-PUs, we utilize an interleaved approach, where
the RNS bases of the ciphertexts and keys are distributed
among the PUs in an interleaved manner (where, PUi stores
c
rj+i ∀ 0≤i<r,0≤j<

(L+1)
r

), instead of grouping them in a se-
quential manner (where, PUi stores cri+j). This ensures that
all PUs are fully utilized in the long run, maximizing the
benefits of parallel processing.

It is worth noting that the need for PU-PU communication
is inevitable. Distributing data across RNS bases reduces this
communication but does not eliminate it. In the following
subsection, we will discuss how to handle this.



Fig. 9. Non-blocking ring-based communication for four REED chiplets
when L = 7. The blocks between chiplets represent the long communication
window to make up for slow inter-chiplet (C2C) communication.

E. Efficient non-blocking REED-REED communication

Before delving into the solution, let us discuss the need for
data exchange across PUs. This is required during the key-
switch routine for linearizing, non-linear ciphertext polynomial
(d2) after multiplication. Here an O(L2) base conversion is
done to switch the modulus of each L residue polynomial of
d2 (INTT(d2qi)qi ∀ 0 ≤ i < L) to (L+1) residues polynomials
(NTT(d2qi)qj , ∀ 0 ≤ j ≤ L)) (discussed in Section III-C).
The data volume is substantial, and broadcasting each INTT
result to all PUs will require a fully-connected communication
network among PUs. As the number of PUs (r) increases,
this becomes quadratically complex and expensive. When
multiple PUs are instantiated in a disintegrated SiP, slow C2C
communication becomes a bottleneck.

Instead, we propose an alternative approach illustrated in
Fig. 9. Here, we communicate the INTT results to the PUs
in parallel with the NTT computations. This approach offers a
long communication window for data send/receive, as depicted
by the large rectangles between the REED PUs in the figure,
which is only made possible due to the proposed interleaved
data distribution. Therefore, in cases where C2C communica-
tion is slower than computation, this extended communication
window prevents PUs/chiplets from experiencing data starva-
tion. Consequently, non-blocking communication is achieved
as data computation can proceed concurrently with relatively
slower communication. Additionally, note that the communi-
cation shown in the figure is only uni-directional. For example,
the REED0 only needs to send data to REED3 and receive data
from the previous REED1. This enables a simple ring-based
communication among REED chiplets.

In conclusion, our ring-based communication strategy re-
quires only one read/write port per chiplet, as opposed to
(r− 1) ports in a star-like communication network. Further-
more, we address the practical possibility of slower C2C com-
munication by providing a prolonged communication window.
Lastly, with our approach, there is no possibility of deadlocks.

Next, we present the area and performance results for 4-
chiplet REED 2.5D with one PU per chiplet.

TABLE II
TOTAL AREA CONSUMPTION OF 4-CHIPLET REED 2.5D FOR DIFFERENT

CONFIGURATIONS ON 28NM AND 7NM.

Building blocks ↓ 28nm (mm2) 7nm (mm2)
Configuration → 1024×64 512×128 1024×64 512×128
REED 74.9 115 24 43.9
⌊ REED-PU 58.0 81.0 7.01 9.9
⌊ NTT/INTT 38.2 56.8 5.61 7.9
⌊ 2×MAC 3.1 6.6 0.42 0.76
⌊ PRNG 0.15 0.28 0.02 0.04
⌊ 2×Automorphism 0.14 0.32 0.02 0.04
⌊ On-chip memory 16.1 16.1 1.2 1.2
⌊ HBM3 PHY+NoC 16.9 33.8 16.9 33.8

4×REED 299.6 460 96 175.6
C2C (REED-REED) 12.32 14.64 0.8 1.6
Total Area 311.9 484.6 96.7 177

IV. REED’S IMPLEMENTATION RESULTS

We synthesize our chiplet-based design, REED 2.5D, for
configurations 1024×64 and 512×128. For synthesis, we
employ TSMC 28nm and ASAP7 [14] 7nm ASIC libraries,
with Cadence Genus 2019.11, and use SRAMs for on-chip
memories. Our primary objective is to achieve high perfor-
mance while optimizing area and power consumption. To this
end, we set our clock frequency target to 1.5 GHz, use High-vt
cells (hvt) configuration for low leakage power, enable clock-
gating, and set the optimization efforts to high. We set the
input/output delays to 20% of the target clock period and
leverage incremental synthesis optimization features.

As off-chip storage, we leverage the state-of-the-art HBM3
[27], [36], [48] memory. Owing to its improved performance
and reduced power, it is already deployed in various GPUs
and CPUs [15]. It is a 3D IC memory with the memory
controller as the bottom layer, and DRAM dies stacked on
top of it. HBM3 with 8/12 stacks of 32Gb DRAMs has 32/48
GB storage capacity [27], [44], which is sufficient to store all
the key-switching keys. The ciphertexts provided by the client
can be transferred to REED using 32 lanes PCIe5 offering a
bandwidth of 128 GB/s [63]. The slow communication over-
head can be easily masked with computations. In our work,
we present results for HBM3 PHY and HBM3 NoC, based
on [8], [48] and consider the minimum reported bandwidth of
896GB/s [48]. Some recent studies [15], [48] have reported
significantly higher bandwidths of 1.15/3 TB/s. By leveraging
these higher bandwidths, our area and power consumption will
reduce due to fewer memory requirements.

Table II presents the area results for the REED 2.5D
architecture, featuring a 4-chiplet configuration as illustrated
in Fig. 10. Configuration 512×128 requires twice the amount
of HBM3 compared to the 1024×64 configuration due to
the doubled bandwidth requirement. We implement the inner
REED-PU, NoC, and HBM3 (shown in Fig. 10) as one chiplet
(similar to [49], [73]). In Table III, we present the performance
of FHE routines for both configurations with the achieved
target clock frequency of 1.5 GHz.

Moreover, we take a step further by prototyping the essential
building blocks on Xilinx Alveo U250 to verify functional
correctness. It is worth noting that the monolithic designs



Fig. 10. The complete architecture diagram of 4-chiplet REED 2.5D for
512×128 configuration.

TABLE III
PERFORMANCE MICRO-BENCHMARKS FOR 28NM AND 7NM.

Micro-benchmarks ↓ Level 28nm/7nm (ms)
Configuration → l 1024×64 512×128

ADD/MULT (pt-ct) 31 0.005 0.003
MULT (ct-ct) 31 0.01 0.005
MAC 31 0.01 0.005
Automorphism 31 0.005 0.003
KeySwitch 31→32 0.19 0.08
MULT & Relin. 31→32→31→30 0.22 0.11
Bootstrapping 1→31→16 14.2 7.1

proposed in the literature have excessive size [19], [32]–[34],
[57], rendering them unsuitable for pre-silicon verification on
FPGA for functionality testing. However, we have successfully
overcome this limitation by adopting a chiplet-based imple-
mentation strategy and fully leveraging its capabilities. The
run-time and power consumption estimates are obtained using
a cycle-accurate simulated model.

When we extend REED 2.5D to a 3D IC, one might wonder
how to stack the second HBM3 on top of the REED die.
In Fig. 10, we include two stacks to achieve the required
bandwidth (1.8TB/s), constrained by the interposer and sub-
strate technology. However, 3D IC technology enables direct
TSV connections from the chip’s surface to HBM3, enabling
the construction of wider buses for higher bandwidth [66].
As per the results on 7nm technology for REED 2.5D (with
one HBM3 stack), the REED-PU and NoC account for less
than 50% of the area. Hence, by implementing the HBM3
controller on top of it, the lateral surface area would be
reduced by ≈50%. Although this would not directly impact
the chiplet manufacturing cost, as the monolithic 3D IC testing
and integration costs tend to be higher, it would significantly
reduce the cost of the underlying layers, such as the silicon
interposer and substrate/package required for using this in a
chiplet setting. Thus, the 3D IC integration of REED promises
a huge reduction in overall chip area and power consumption.
These findings validate our approach’s efficacy, and we believe
it will inspire further research in this direction.
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Fig. 11. Demonstration of increase in area with REED configurations, put in
the order of increasing throughput [24].

A. What to expect from higher-throughput configurations?

Until now, we have examined two configurations (1024×64
and 512×128) that only partially demonstrate the advantages
of our proposed scalable design methodology. As we double
the throughput (by doubling the value of N2), the area
of PU only increases by approximately 1.5×. This trade-
off arises from the chip area comprising two components—
(i) the computation logic area, which scales linearly with
throughput, and (ii) on-chip storage that remains fixed to a
number of polynomials. As we opt for a higher configuration,
the polynomial-size remains the same while the number of
coefficients to be processed increases.

However, an important question remains: what configuration
strikes the best balance between throughput and manufactur-
ing cost? To address this, we turn to [24], where the authors
discuss that for 7nm technology, the optimal manufacturing
size ranges from 40 to 80 mm2, while for 40nm, it ranges
from 50 to 150 mm2. In Fig. 11, we present two sets of
area consumption results for 28nm and 7nm technologies. The
first set corresponds to four REED cores produced as a single
monolithic chip, while the second set represents one REED
chiplet. The optimal area ranges are highlighted in blue and
pink. As we can see, for both 7nm and 28nm, the configuration
512×128 falls within the most optimal development area range
and offers high throughput. Monolithic designs, within the
optimal range, offer 4 to 8 × less throughput.

B. Comparison with related work

The realization of privacy-preserving computation through
FHE holds great potential for the entire community, leading
to various research efforts in the literature. These endeavours
span from efficient software implementation libraries [2], [16],
[60] to ASIC chip proposals [19], [21], [32]–[34], [57]. Among
these, the ASIC designs [19], [32]–[34], [57] have achieved the
most promising acceleration results. However, their primary
drawback lies in the high manufacturing costs associated with



TABLE IV
COMPARISON OF REED 2.5D WITH STATE-OF-THE-ART.

Work Area TA.S.
‡ PAvg EDAPw EDAPw,w2

(mm2) (ns) (W) (/M) (/M)
F132 71.02† 470 28.5† 754.5 847
BTS64 373.6 45.4 163.2 106.0 87.8
ARK64 418.3 14.3 135 9.74 9.6
CLake28 222.7† 17.6 124† 16.5 17.7
SH36 178.8 12.8 94.7 4.1 5.2
SH64 325.4 11.7 187 7.0 6.2
REED54 177 14.4 83.5 3.1 3.1

† Area and power are normalized (14nm/12nm to 7nm) to draw fair
comparisons [32], [47]. The word size is given as subscript with the works.
‡ Amortized time for bootstrapping.

the large monolithic chips, resulting in low yield and further
exacerbating the cost. Therefore, our work focuses on reducing
manufacturing costs while pursuing accelerated performance.

Table IV and Fig. 12 showcase the successful achievement
of our goals. The table compares our design’s area consump-
tion, performance, and power consumption for the packed
bootstrapping operation (OpenFHE [2]) with existing works-
F1 [19], BTS [34], ARK [33], CraterLake (CLake) [57], and
SHARP (SH) [32]. Note that all these works propose mono-
lithic chips and suffer the drawback pertaining to monolithic
designs. We utilize the results obtained for 4-chiplet REED
2.5D on 7nm technology as these works also provide results
for this specific technology. Several normalizing metrics exist
in the literature for comparison, such as the amortized time
TA.S. [1], [33], [34] that calculates the bootstrapping time
divided by Leff and packing n. However, this metric overlooks
factors such as area, power, and precision. Hence, we use
EDAP (Energy-Delay-Area product) metric [38] and modify
it to accommodate the trade-off of high precision necessary
for large applications (discussed in Section V-A).

Higher precision necessitates a larger word size, w. This
has a linear impact on some components and a quadratic on
others. Our first proposed metric, EDAPw (Eq. 1), incorporates
a linear increase due to word size. It is important to note that
the area of the REED-PU increases quadratically with w due
to the presence of multipliers. This is addressed in the second
metric, EDAPw,w2 (Eq. 2), with w = 54 as the baseline. Under
this metric, we achieve 2×, 1.7× better results compared to
the state-of-the-art work SHARP64, SHARP36 [32].

EDAPw =
E · D · Area · 54

w
(1)

EDAPw,w2 =
E · D · AreaPU · 542

w2
+

E · D · AreaMem · 54
w

(2)

We also assess the yield and manufacturing cost, as depicted
in Fig. 12. For this, we use the original area and not the word-
size scaled area. We plot the relative yield [39] and manu-
facturing cost [24], [45], using our work on 7nm technology
as the baseline. As observed, we achieve the highest yield
and lowest manufacturing cost for 7nm, resulting in the least
overall cost (manufacturing cost/yield), 50% less than state-

F1 BTS CLake ARK SH36 SH64 RD
7nm

RD
28nm

1

2

3

RD
7nm

RD
28nm

1 0
.9
5

0
.7
4

0
.8
5

0
.6
9 0
.8
7

0
.7
6 1 0
.9
8

1
.1

1
.6

1
.3

1
.7

1
.3

1
.5

1

0
.3

1
.2

2
.2

1
.5

2
.5

1
.5

2

1

0
.3

R
el

at
iv

e
va

lu
e

Relative Yield Relative Cost Relative Cost/yield

Fig. 12. Relative a) yield of existing monolithic designs versus the proposed
7nm chiplet-based architecture [39], b) development cost (including Interposer
cost) [24], [40], [45], and c) cost of SiP development (cost/yield). RD refers
to our work REED 2.5D.

TABLE V
A BRIEF OVERVIEW OF THE APPLICATIONS AND THE SPEEDUP ACHIEVED

BY OUR PROPOSED REED 2.5D. THE CPU SPEED IS REPORTED BY
RUNNING THE APPLICATIONS USING OPENFHE [2] ON A 24-CORE,

2×INTEL XEON CPU X5690 @ 3.47GHZ WITH 192GB DDR3 RAM.

Appl. Accuracy Op CPU-time HW-time Speedup

Lin.Reg. 78.12% Inf. 0.86 s 0.15 ms 5,673×
Trn. 13.82 s 2.3 ms 5,982×

Log.Reg. 61.8% Inf. 1.27 s 0.23 ms 5,570×
Trn. 11.18 s 1.9 ms 5,730×

DNN 95.2% Inf. 128.7 s 24.3 ms 5,292×
Trn. 29 days 460 s 5,450×

of-the-art monolithic design SHARP64. On 28nm technology,
we achieve 85% cheaper design compared to SHARP64.

In the next section, we will report the application bench-
marks and discuss the importance of precision.

V. APPLICATION BENCHMARKS

We benchmark three machine learning applications: linear
regression, logistic regression, and a Deep Neural Network
(DNN). The speedup results are presented in Table V. Each
application is evaluated for encrypted training and inference.
In this setting, the server provides computational support
without knowledge of the data or model parameters, ensuring
complete blind computation. Most applications benchmarked
in the previous works [19] are partially blind; the server does
not see the data but knows the model parameters to evaluate
it. To our knowledge, none of the previous works benchmark
an encrypted neural network training.

1) Linear Regression: We employ the Kaggle Insurance
dataset [59] to benchmark linear regression. The model uses
a batch size of 1204 and 1338 input feature vectors (each
containing six features) for training and inference and achieves
an accuracy of 78.1% (same as plain model [59]), as it does
not require any approximation and completes training in just
two iterations (forward-backward×2-forward).
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Fig. 14. A DNN for MNIST [35] with two hidden and one output layers.

2) Logistic Regression: It is a supervised machine learning
model that reports the probability of an event using the
logistic function, evaluated using function approximations in a
homomorphic context. Their accuracy depends on the degree
of approximation function expansion and precision. Existing
works, such as [32], [57], utilize the HELR [25] application
to benchmark encrypted training on MNIST [35] data, with
varying batch sizes (256, 1024). In Fig. 13, we illustrate the
superior performance of REED 2.5D compared to these works.

We also evaluate logistic regression on the iDASH2017
cancer dataset (similar to [31]) employed to predict cancer
probability. Utilizing the same expansion as [25], we achieve
a training accuracy of 62% in just a single iteration. The
competition winner [31] reports a slightly higher accuracy of
62.36%. This dataset comprises 18 features per input, with
batch sizes of 1422 and 1579 used for training and inference.

3) Deep Neural Network : The DNN serves as a pow-
erful tool for Deep Learning, leveraging multiple network
layers. In our study, we employ a DNN for the MNIST
dataset [35], as illustrated in Fig. 14. We pack four pre-
processed images per batch to prevent overflow during the
128×64 (215) matrix multiplication. DNN training requires
12,500 batches. Thus, all the existing works [32]–[34], [57] not
providing computation-communication parallelism will suffer
as their on-chip memory is insufficient. The DNN is trained
for ≈7000 (≈5.8 Bootstrappings per iteration) iterations and
achieves 95.2% accuracy in 29 days using OpenFHE [2].
REED 2.5D could finish this in only 7.7 minutes. This is where
our computation-communication parallelism shines, as a huge
amount of ciphertexts are required for such an application.
None of the works in literature offers this and are bound to
suffer for any memory-intensive application.
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Fig. 15. Accuracy plot of different word sizes for the DNN. The lines are
smoothened and the red dotted zig-zag line resembles the original form.

A. Precision-loss experimental study

Another facet of privacy-preserving computation is preci-
sion loss. Since the server cannot see the intermediate or final
results, the best it can do is to ensure that the parameters it
operates on support higher precision. To validate our parameter
sets, we ran experiments for the DNN training. In Fig. 15, we
can see how quickly the training accuracy drops as the word
size is reduced. Thus, precision plays a vital role in providing
privacy-preserving computation on the cloud. Our choice of
54-bit word size strikes the perfect balance between precision
and performance. Works offering a smaller word-size [19],
[32], [57] require in-depth study to mitigate the accuracy
loss due to low-precision. Although we cannot prove that our
parameters are the best, we ensure they can support most
applications with a high precision guarantee. Our analysis will
encourage readers to seek straightforward privacy-preserving
solutions with maximal application coverage.

VI. CONCLUSION

FHE has garnered considerable interest due to its privacy-
preserving computation capability. However, the major obsta-
cle preventing its widespread deployment lies in its substantial
computational overhead. Consequently, numerous efforts have
been dedicated to accelerating fully homomorphic encryption
in hardware; however, many of these attempts tend to focus
excessively on acceleration at the expense of practicality. In
this regard, our proposed accelerator design, REED, effectively
addresses this limitation and achieves remarkable acceleration.
Our approach utilizes a scalable design methodology that can
be easily extended to larger configurations while also adapting
to constrained environments.

We implement this methodology using a chiplet-based
technique, which enables scalability. The experimental results
highlight both the acceleration achieved and the practical
implementation aspects of REED. Notably, our design is
modular, paving the way for intriguing future prospects such
as formal verification. Additionally, we plan to extend bench-
marking to encompass larger network training scenarios to
further demonstrate the utility of our parameters. Overall, the
advancements presented in this work hold the promise of
advancing privacy-preserving computations and promoting the
wider adoption of fully homomorphic encryption.
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