Medha: Microcoded Hardware Accelerator
for computing on Encrypted Data

Cryptographic Hardware and Embedded Systems (CHES), 2023

Ahmet Can Mert!, Aikata', Sunmin Kwon?, Youngsam Shin?,
Donghoon Yoo?, Yongwoo Lee, Sujoy Sinha Roy!

1 AIK, Graz University of Technology, Graz, Austria
2 Samsung Advanced Institute of Technology, Suwon, Republic of Korea

utline

1. Motivation and Background
2. Microcoded Hardware Accelerator
e Architecture of homomorphic processor

e FPGA implementation with placement-friendly layout

3. Evaluation Results

utline

1. Motivation and Background
2. Microcoded Hardware Accelerator
e Architecture of homomorphic processor

e FPGA implementation with placement-friendly layout

3. Evaluation Results

omomorphic Encryption

Homomorphic Encryption (HE) allows computation on the encrypted data.

Enc(data)

Enc(foo(data))

Dec() gives foo(data) Cloud homomorphically

evaluates foo()

hallenges in accelerating Homomorphic Encryption

1. Computationally intensive:
10* to 10°x plain computation

e lLarge polynomial arithmetic

e Long integer arithmetic

hallenges in accelerating Homomorphic Encryption

1. Computationally intensive:
10* to 10°x plain computation

e lLarge polynomial arithmetic
e Long integer arithmetic

2. Ciphertexts are several MBs

hallenges in accelerating Homomorphic Encryption

1. Computationally intensive:
10* to 10°x plain computation

e lLarge polynomial arithmetic
e Long integer arithmetic

2. Ciphertexts are several MBs

Size of coefficients

NN evaluations

500
400 |
350 ryeryry 3
300
250
200 Function approximations
150 ” 1
50 =
100" PQC
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Number of coefficients in polynomial

hallenges in accelerating Homomorphic Encryption

1. Computationally intensive:
10° to 10%x plain computation

e large polynomial arithmetic <— NTT
e Long integer arithmetic

2. Ciphertexts are several MBs

O(N?) — O(N log, N)

hallenges in accelerating Homomorphic Encryption

1. Computationally intensive: Q— H,.L;()l qi

10° to 10%x plain computation
e Large polynomial arithmetic
e Long integer arithmetic « RNS

2. Ciphertexts are several MBs

NS-CKKS Scheme

NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

C = 60,01

|60z (11

NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

C = 60,01

|60z (11

e Homomorphic operations:
e Addition: 2L additions

NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

c= COacl

-[€0p1 €l

e Homomorphic operations:

e Addition: 2L additions
e Multiplication: 4L multiplications, L additions

NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

c= COacl

-[€0p1 €l

e Homomorphic operations:

e Addition: 2L additions
e Multiplication: 4L multiplications, L additions

o Relinearization: L(L + 1) base conversions, 2L(L + 1) multiplications

NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

C = 60,01

|60z (11

e Homomorphic operations:

e Addition: 2L additions
e Multiplication: 4L multiplications, L additions

o Relinearization: L(L + 1) base conversions, 2L(L + 1) multiplications
(Base conversion: NTT — g; to g; — INTT)

hallenges accelerating Homomorphic Encryption with HW

E XN,

ALVEQ,

(Xilinx Alveo U250 FPGA)

hallenges accelerating Homomorphic Encryption with HW

1. Computationally intensive
e Scheduling operations

e Target platform constraints
E XNy,

ALVEQ,

(Xilinx Alveo U250 FPGA)

hallenges accelerating Homomorphic Encryption with HW

1. Computationally intensive

e Scheduling operations

e Target platform constraints
E XNy,

ALVEQ, = et 2. Ciphertexts are several MBs

e On-chip memory is limited

e Off-chip transfer is very slow

(Xilinx Alveo U250 FPGA)

hallenges accelerating Homomorphic Encryption with HW

1. Computationally intensive

e Scheduling operations

e Target platform constraints
E XNy,

ALVEQ, = et 2. Ciphertexts are several MBs

e On-chip memory is limited

e Off-chip transfer is very slow

(Xilinx Alveo U250 FPGA)

Our Solution: Medha

utline

1. Motivation and Background
2. Microcoded Hardware Accelerator
e Architecture of homomorphic processor

e FPGA implementation with placement-friendly layout

3. Evaluation Results

n Overview of HW-based HE accelerators in the literature

Two main tracks:

1. Accelerator prototypes in FPGA/ASIC

2. Simulation model of accelerator

Accelerator prototypes in FPGA/ASIC Simulation model of accelerator
HEAWSrFRVZO]' HEAX[RLPDZOI, COFHEE[NSA+23] Fl[FSK+21], BTS[KKK+22], CraterLake[SFK+22]

[TRV20] Furkan Turan et al. HEAWS: an accelerator for homomorphic encryption on the amazon AWS FPGA. IEEE ToC, 2020.
[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[NSA-+23] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[FSK+21] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[KKK+-22] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[SFK+22] Samardzic et al. CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data. ISCA 2022.

n Overview of HW-based HE accelerators in the literature

o HEAXIRLPD20] fo|lows a block-pipelined architecture.

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

n Overview of HW-based HE accelerators in the literature

o HEAXIRLPD20] fo|lows a block-pipelined architecture.

e Sub-routine specific for HE
M BRAM (Read-Only) gggg Dyadmult
fho [EEEE e
"
t

¥

Ms

Output Mem
z>2m

¥

Output Poly 0
(T form)

Twiddle Twiddle
Factors

P—
EEEm Dyadmult
mEEEE
Input Pol
(N tom) EnEE B—
N mEEE
a

NTT
TTI] Dyadwuie nputPoly
EEEE
Twiddle T
Factors EEEE
TIT] DyadMult
EEER
EEER
KeySwitch Module LLLLJ

zZ>2m

Output Poly 1
(nNTT form)

W \

| (mmmm Ms .
H . mmEm B
H " mmmm A
H |mmmm P

)

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

esign Goals

esign Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

esign Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

e Low-latency oriented design with flexibility

esign Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

e Low-latency oriented design with flexibility
e Supporting N = 2* and N = 2% with RNS moduli sizes 54 /60-bit

esign Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

e Low-latency oriented design with flexibility
e Supporting N = 2* and N = 2% with RNS moduli sizes 54 /60-bit

2. Verification and benchmarking on real FPGA (Xilinx Alveo U250 card)

esign Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

e Low-latency oriented design with flexibility
e Supporting N = 2* and N = 2% with RNS moduli sizes 54 /60-bit

2. Verification and benchmarking on real FPGA (Xilinx Alveo U250 card)

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

utline

1. Motivation and Background
2. Microcoded Hardware Accelerator
e Architecture of homomorphic processor

e FPGA implementation with placement-friendly layout

3. Evaluation Results

rchitecture of the Homomorphic Processor

We design a flexible instruction-set architecture for each RNS base:

e Each RNS base — One processing element (RPAU)

rchitecture of the Homomorphic Processor

We design a flexible instruction-set architecture for each RNS base:

e Each RNS base — One processing element (RPAU)

Program
PRNG Controller
¢ &
@ @ <& NTT Core

Memory Dyadic Core
Banks (4 units)

E (16 units)

rchitecture of the Homomorphic Processor

We use two cores, NTT and Dyadic, to speedup relineatization operation.

e NTT core (for base conversion)
e Dyadic core (for multiplying with keys)

rchitecture of the Homomorphic Processor

We use two cores, NTT and Dyadic, to speedup relineatization operation.

e NTT core (for base conversion)
e Dyadic core (for multiplying with keys)

\
LELL [T-T] [T~ k ________

NTTqo NTTqq NTTg NTTgp
NTTqp NTTqq NTTq NTTgp
— £

X

NTTqo NTTqy NTTq NTTgp

(s

rchitecture of the Homomorphic Processor

-

NTTgo NTTgq NTTq

ﬂn

Yo |

|

ﬂ NTqu NTTq1 NTTq| NTqu

J ﬂ n ﬂ NTTqo NTTq1 NTTq| NTqu

NTTqo NTTgqq NTTg NTTgp

Code i

rchitecture of the Homomorphic Processor

rchitecture of the Homomorphic Processor

dQU dfl d22 dfl
INTTqo INTTqy INTTg, INTT,

rchitecture of the Homomorphic Processor

dQU d21 d22 dzl
! |
INTTgo INTTy INTT, INTTg
i e s A s O B B
e o S M I I

rchitecture of the Homomorphic Processor

dQU d21 d22 dzl
' |
INTTqo INTTqy INTTg, INTT,

maez || — G 3 0 O O SO A

rchitecture of the Homomorphic Processor

djo dfl df2 dfl
INTTgo INTTgy INTT, INTT,

Parallel execution of NTT & dyadic cores results in significant cycle reduction!

ustomized on-chip memory design

ustomized on-chip memory design

Utilizing left-over bits in BRAM/URAM

e One URAM address can store 72-bits
e One BRAM address can store 18/36/72-bits
o We use 54-bits RNS bases

ustomized on-chip memory design

Utilizing left-over bits in BRAM/URAM

e One URAM address can store 72-bits
e One BRAM address can store 18/36/72-bits
o We use 54-bits RNS bases

We created a virtual memory to utilize left-over bits in BRAM/URAM.

e Example: 54-bit coefficient storage in URAM

54 18 54 18 54 18 54 18 72 72 72
> —> > >

) c4 cg 12 co 14 e, | 12

c] c5 €9 13 =) c] c5 ct | c3

2) C6 €10 C14 2 iCg i | 14

3 [1 €15 3 °7 an [cs

MEM1 MEM2 MEM3 MEM4 MEM1 MEM2 MEM3

utline

1. Motivation and Background
2. Microcoded Hardware Accelerator
e Architecture of homomorphic processor

e FPGA implementation with placement-friendly layout

3. Evaluation Results

lacement-friendly Layout

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUSs.

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUSs.

RPAU-0
(o)

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUSs.

RPAU-0
(90)

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUs.

RPAU-0
(90)

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUs.

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUs.

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUs.

RPAU-0
(90)

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUs.

RPAU-0
(90)

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUs.

lacement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

e Each processing element stores its residue polynomial

e Relinearization operation requires polynomials to be exchanged between RPAUs.

lacement-friendly Layout

2. Target platform (Xilinx Alveo U250 FPGA) constraints

Image is retrieved from https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology

https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology

lacement-friendly Layout

2. Target platform (Xilinx Alveo U250 FPGA) constraints

High-Bandwidth,
Low-Latency Connections

Microbumps
Through-Silicon Vias (TSV)

C4 Bumps

«——— 28 nm FPGA Die (SLR)
~aiiie— 65 nm Silicon Interposer

Package Substrate

“—— BGA Solder Balls
W

Image is retrieved from https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology

https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology

lacement-friendly Layout

2. Target platform (Xilinx Alveo U250 FPGA) constraints

High-Bandwidth,
Low-Latency Connections

Microbumps
Through-Silicon Vias (TSV)

C4 Bumps

SLR0 +—— 28 nm FPGA Die (SLR)
&—— 65 nm Silicon Interposer

Package Substrate

“—— BGA Solder Balls
W

e Two neighboring SLRs are connected using a limited number of wires.

Image is retrieved from https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology

https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLRL SLR2 SLR3
C | R ’
'RPAU#T7 ||: RPAU#6 | RPAU#4 ey
'RPAU#S || RPAUHO || RPAU#S WRPAUH2

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 ~ SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

DDAU*{R DDAI lﬂ/l DD/\'|#3E

lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3

' i
' |
'RPALIHA I' RPAI 1#4

We need an efficient method to interconnect and map RPAUs!

lacement-friendly Layout

We must consider SLR-to-SLR connection constraints.

lacement-friendly Layout

We must consider SLR-to-SLR connection constraints.

SLRO SLR1 SLR2 SLR3

lacement-friendly Layout

We must consider SLR-to-SLR connection constraints.

SLRO SLR1 SLR2 SLR3

'RPAN#T7 ||| RPAU#6 |

| RPAW8 NRPAU#9

e Wiring complexity: O(L2) — O(L)
e Still many SLR-crossing nets

lacement-friendly Layout

We must consider SLR-to-SLR connection constraints.

SLRO SLR1 SLR2 SLR3

SLRO SLR1 SLR2 SLR3

PA

| REBAUHS |

Simple
:Communication

e Wiring complexity: O(L2) — O(L)
e Still many SLR-crossing nets

lacement-friendly Layout

We must consider SLR-to-SLR connection constraints.

SLRO SLR1 SLR2 SLR3 SLRO SLR1 SLR2 SLR3

" 1
E RPAg#

HRPAURG |

| RPAUM--RPAUHE |

| RRAUZSRpAULY | REAUHS [RPAU#Z !

. Simple L RbAusof-RRAUM |
‘Communication: | 1]

o Wiring complexity: O(L2) — O(L) e Only neighbouring RPAUs connected

e Still many SLR-crossing nets o Few SLR-crossing nets

utline

1. Motivation and Background
2. Microcoded Hardware Accelerator
e Architecture of homomorphic processor

e FPGA implementation with placement-friendly layout

3. Evaluation Results

valuation Results

As a proof of concept, our implementation employs 10 PEs and two parameter sets.

o Set-1: log,(pQ) = 438, N =214
e Set-2: log,(pQ) = 546, N = 215

Resource utilization on Xilinx Alveo U250 FPGA (in %)

72.8

55.4 —

29.3

1
WTe PSP graMS jrAMS

valuation Results

Placement of Medha on the Alveo U250 FPGA chip.

valuation Results

Performance on Alveo U250 board running at 200 MHz.

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.
[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

https://github.com/Microsoft/SEAL

valuation Results

Performance on Alveo U250 board running at 200 MHz.

e Homomorphic operation benchmark

e Hom. Mult. 4 Relin. for Set-1: 497 sec
e Hom. Mult. 4 Relin. for Set-2: 1,374 sec

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.
[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

https://github.com/Microsoft/SEAL

valuation Results

Performance on Alveo U250 board running at 200 MHz.

e Homomorphic operation benchmark
e Hom. Mult. 4 Relin. for Set-1: 497 sec
e Hom. Mult. 4 Relin. for Set-2: 1,374 sec
e End-to-end application benchmark (logistic regression)

e 64x speedup compared to the implementation in SEAL [SEA20]

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.
[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

https://github.com/Microsoft/SEAL

valuation Results

Performance on Alveo U250 board running at 200 MHz.

e Homomorphic operation benchmark

e Hom. Mult. 4 Relin. for Set-1: 497 sec
e Hom. Mult. 4 Relin. for Set-2: 1,374 sec

e End-to-end application benchmark (logistic regression)
e 04 x speedup compared to the implementation in SEAL
e Comparison with HEAX [RLPD20]

e 2.3x better latency

[SEA20]

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.
[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

https://github.com/Microsoft/SEAL

()]
=
=
[2]
(]
o
c
.2
)
(1}
=
[}
>

— —_—— =
12&33321]0
NN NN NN YT oA
+ £ + + t N> Q S
X0 vy <>E>aF
NXYX>LJ0NSxexixdg
LXO0nxzZhorXs
EEBLEBOOOGCS

T T T ST T ey e

T L I e e

| |

| i

i i

L [et

R

o

o

I

i

o

o

I

o

o

I

o

I

I

I

T

o

o

o

o

I

I

I

I

I

o

T

I

I

I

A

I

I

I

I

P

T

T

I

R

< m ~ o °

o o o o o

~ ~ ~ ~ ~

(MS "¥I'M) dN@33dS

10° 106 107
COST (in US $)

104

103

Medha: Microcoded Hardware Accelerator
for computing on Encrypted Data

Cryptographic Hardware and Embedded Systems (CHES), 2023

Ahmet Can Mert!, Aikata', Sunmin Kwon?, Youngsam Shin?,
Donghoon Yoo?, Yongwoo Lee, Sujoy Sinha Roy!

1 AIK, Graz University of Technology, Graz, Austria
2 Samsung Advanced Institute of Technology, Suwon, Republic of Korea

