
Medha: Microcoded Hardware Accelerator

for computing on Encrypted Data

Cryptographic Hardware and Embedded Systems (CHES), 2023

Ahmet Can Mert1, Aikata1, Sunmin Kwon2, Youngsam Shin2,

Donghoon Yoo2, Yongwoo Lee, Sujoy Sinha Roy1

1 IAIK, Graz University of Technology, Graz, Austria
2 Samsung Advanced Institute of Technology, Suwon, Republic of Korea



Outline

1. Motivation and Background

2. Microcoded Hardware Accelerator

• Architecture of homomorphic processor

• FPGA implementation with placement-friendly layout

3. Evaluation Results

1



Outline

1. Motivation and Background

2. Microcoded Hardware Accelerator

• Architecture of homomorphic processor

• FPGA implementation with placement-friendly layout

3. Evaluation Results

2



Homomorphic Encryption

Homomorphic Encryption (HE) allows computation on the encrypted data.

3



Challenges in accelerating Homomorphic Encryption

1. Computationally intensive:

104 to 105× plain computation

• Large polynomial arithmetic

• Long integer arithmetic

2. Ciphertexts are several MBs

FHE

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

50

100

150

200

250

300

350

400

500

Number of coefficients in polynomial

Si
ze

 o
f c

oe
ffi

ci
en

ts

        PQC

4



Challenges in accelerating Homomorphic Encryption

1. Computationally intensive:

104 to 105× plain computation

• Large polynomial arithmetic

• Long integer arithmetic

2. Ciphertexts are several MBs

FHE

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

50

100

150

200

250

300

350

400

500

Number of coefficients in polynomial

Si
ze

 o
f c

oe
ffi

ci
en

ts

        PQC

4



Challenges in accelerating Homomorphic Encryption

1. Computationally intensive:

104 to 105× plain computation

• Large polynomial arithmetic

• Long integer arithmetic

2. Ciphertexts are several MBs

FHE

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

50

100

150

200

250

300

350

400

500

Number of coefficients in polynomial
Si

ze
 o

f c
oe

ffi
ci

en
ts

        PQC

4



Challenges in accelerating Homomorphic Encryption

1. Computationally intensive:

105 to 104× plain computation

• Large polynomial arithmetic ← NTT

• Long integer arithmetic

2. Ciphertexts are several MBs

O(N2)→ O(N log2N)

5



Challenges in accelerating Homomorphic Encryption

1. Computationally intensive:

105 to 104× plain computation

• Large polynomial arithmetic

• Long integer arithmetic ← RNS

2. Ciphertexts are several MBs

Q →
∏L−1

i=0 qi

6



RNS-CKKS Scheme

• Enables homomorphic computations for real numbers.

• Homomorphic operations:

• Addition: 2L additions

• Multiplication: 4L multiplications, L additions

• Relinearization: L(L+ 1) base conversions, 2L(L+ 1) multiplications

(Base conversion: NTT → qi to qj → INTT)

7



RNS-CKKS Scheme

• Enables homomorphic computations for real numbers.

• Homomorphic operations:

• Addition: 2L additions

• Multiplication: 4L multiplications, L additions

• Relinearization: L(L+ 1) base conversions, 2L(L+ 1) multiplications

(Base conversion: NTT → qi to qj → INTT)

7



RNS-CKKS Scheme

• Enables homomorphic computations for real numbers.

• Homomorphic operations:

• Addition: 2L additions

• Multiplication: 4L multiplications, L additions

• Relinearization: L(L+ 1) base conversions, 2L(L+ 1) multiplications

(Base conversion: NTT → qi to qj → INTT)

7



RNS-CKKS Scheme

• Enables homomorphic computations for real numbers.

• Homomorphic operations:

• Addition: 2L additions

• Multiplication: 4L multiplications, L additions

• Relinearization: L(L+ 1) base conversions, 2L(L+ 1) multiplications

(Base conversion: NTT → qi to qj → INTT)

7



RNS-CKKS Scheme

• Enables homomorphic computations for real numbers.

• Homomorphic operations:

• Addition: 2L additions

• Multiplication: 4L multiplications, L additions

• Relinearization: L(L+ 1) base conversions, 2L(L+ 1) multiplications

(Base conversion: NTT → qi to qj → INTT)

7



RNS-CKKS Scheme

• Enables homomorphic computations for real numbers.

• Homomorphic operations:

• Addition: 2L additions

• Multiplication: 4L multiplications, L additions

• Relinearization: L(L+ 1) base conversions, 2L(L+ 1) multiplications

(Base conversion: NTT → qi to qj → INTT)

7



RNS-CKKS Scheme

• Enables homomorphic computations for real numbers.

• Homomorphic operations:

• Addition: 2L additions

• Multiplication: 4L multiplications, L additions

• Relinearization: L(L+ 1) base conversions, 2L(L+ 1) multiplications

(Base conversion: NTT → qi to qj → INTT)

7



Challenges accelerating Homomorphic Encryption with HW

(Xilinx Alveo U250 FPGA)

1. Computationally intensive

• Scheduling operations

• Target platform constraints

2. Ciphertexts are several MBs

• On-chip memory is limited

• Off-chip transfer is very slow

Our Solution: Medha

8



Challenges accelerating Homomorphic Encryption with HW

(Xilinx Alveo U250 FPGA)

1. Computationally intensive

• Scheduling operations

• Target platform constraints

2. Ciphertexts are several MBs

• On-chip memory is limited

• Off-chip transfer is very slow

Our Solution: Medha

8



Challenges accelerating Homomorphic Encryption with HW

(Xilinx Alveo U250 FPGA)

1. Computationally intensive

• Scheduling operations

• Target platform constraints

2. Ciphertexts are several MBs

• On-chip memory is limited

• Off-chip transfer is very slow

Our Solution: Medha

8



Challenges accelerating Homomorphic Encryption with HW

(Xilinx Alveo U250 FPGA)

1. Computationally intensive

• Scheduling operations

• Target platform constraints

2. Ciphertexts are several MBs

• On-chip memory is limited

• Off-chip transfer is very slow

Our Solution: Medha

8



Outline

1. Motivation and Background

2. Microcoded Hardware Accelerator

• Architecture of homomorphic processor

• FPGA implementation with placement-friendly layout

3. Evaluation Results

9



An Overview of HW-based HE accelerators in the literature

Two main tracks:

1. Accelerator prototypes in FPGA/ASIC

2. Simulation model of accelerator

[TRV20] Furkan Turan et al. HEAWS: an accelerator for homomorphic encryption on the amazon AWS FPGA. IEEE ToC, 2020.

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[NSA+23] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[FSK+21] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[KKK+22] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[SFK+22] Samardzic et al. CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data. ISCA 2022.

10



An Overview of HW-based HE accelerators in the literature

• HEAX[RLPD20] follows a block-pipelined architecture.

• Sub-routine specific for HE

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

11



An Overview of HW-based HE accelerators in the literature

• HEAX[RLPD20] follows a block-pipelined architecture.

• Sub-routine specific for HE

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

11



Design Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

• Low-latency oriented design with flexibility

• Supporting N = 214 and N = 215 with RNS moduli sizes 54/60-bit

2. Verification and benchmarking on real FPGA (Xilinx Alveo U250 card)

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

12



Design Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

• Low-latency oriented design with flexibility

• Supporting N = 214 and N = 215 with RNS moduli sizes 54/60-bit

2. Verification and benchmarking on real FPGA (Xilinx Alveo U250 card)

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

12



Design Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

• Low-latency oriented design with flexibility

• Supporting N = 214 and N = 215 with RNS moduli sizes 54/60-bit

2. Verification and benchmarking on real FPGA (Xilinx Alveo U250 card)

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

12



Design Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

• Low-latency oriented design with flexibility

• Supporting N = 214 and N = 215 with RNS moduli sizes 54/60-bit

2. Verification and benchmarking on real FPGA (Xilinx Alveo U250 card)

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

12



Design Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

• Low-latency oriented design with flexibility

• Supporting N = 214 and N = 215 with RNS moduli sizes 54/60-bit

2. Verification and benchmarking on real FPGA (Xilinx Alveo U250 card)

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

12



Design Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

• Low-latency oriented design with flexibility

• Supporting N = 214 and N = 215 with RNS moduli sizes 54/60-bit

2. Verification and benchmarking on real FPGA (Xilinx Alveo U250 card)

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

12



Outline

1. Motivation and Background

2. Microcoded Hardware Accelerator

• Architecture of homomorphic processor

• FPGA implementation with placement-friendly layout

3. Evaluation Results

13



Architecture of the Homomorphic Processor

We design a flexible instruction-set architecture for each RNS base:

• Each RNS base → One processing element (RPAU)

14



Architecture of the Homomorphic Processor

We design a flexible instruction-set architecture for each RNS base:

• Each RNS base → One processing element (RPAU)

14



Architecture of the Homomorphic Processor

We use two cores, NTT and Dyadic, to speedup relineatization operation.

• NTT core (for base conversion)

• Dyadic core (for multiplying with keys)

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqp

15



Architecture of the Homomorphic Processor

We use two cores, NTT and Dyadic, to speedup relineatization operation.

• NTT core (for base conversion)

• Dyadic core (for multiplying with keys)

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqp

15



Architecture of the Homomorphic Processor

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqp

16



Architecture of the Homomorphic Processor

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqp

M-0

16



Architecture of the Homomorphic Processor

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqp

M-1 D-0

16



Architecture of the Homomorphic Processor

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqpM-2 D-1

16



Architecture of the Homomorphic Processor

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqp

M-3 D-2

16



Architecture of the Homomorphic Processor

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqp

D-l

Parallel execution of NTT & dyadic cores results in significant cycle reduction!

16



Customized on-chip memory design

Utilizing left-over bits in BRAM/URAM

• One URAM address can store 72-bits

• One BRAM address can store 18/36/72-bits

• We use 54-bits RNS bases

We created a virtual memory to utilize left-over bits in BRAM/URAM.

• Example: 54-bit coefficient storage in URAM

17



Customized on-chip memory design

Utilizing left-over bits in BRAM/URAM

• One URAM address can store 72-bits

• One BRAM address can store 18/36/72-bits

• We use 54-bits RNS bases

We created a virtual memory to utilize left-over bits in BRAM/URAM.

• Example: 54-bit coefficient storage in URAM

17



Customized on-chip memory design

Utilizing left-over bits in BRAM/URAM

• One URAM address can store 72-bits

• One BRAM address can store 18/36/72-bits

• We use 54-bits RNS bases

We created a virtual memory to utilize left-over bits in BRAM/URAM.

• Example: 54-bit coefficient storage in URAM

17



Outline

1. Motivation and Background

2. Microcoded Hardware Accelerator

• Architecture of homomorphic processor

• FPGA implementation with placement-friendly layout

3. Evaluation Results

18



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

19



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

19



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

19



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

19



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

20



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

20



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

20



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

20



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

20



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

20



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

20



Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.

20



Placement-friendly Layout

2. Target platform (Xilinx Alveo U250 FPGA) constraints

• Two neighboring SLRs are connected using a limited number of wires.

Image is retrieved from https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology

21

https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology


Placement-friendly Layout

2. Target platform (Xilinx Alveo U250 FPGA) constraints

• Two neighboring SLRs are connected using a limited number of wires.

Image is retrieved from https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology

21

https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology


Placement-friendly Layout

2. Target platform (Xilinx Alveo U250 FPGA) constraints

• Two neighboring SLRs are connected using a limited number of wires.

Image is retrieved from https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology

21

https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology


Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

22



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

22



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

23



Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

We need an efficient method to interconnect and map RPAUs!

24



Placement-friendly Layout

We must consider SLR-to-SLR connection constraints.

• Wiring complexity: O(L2)→ O(L)

• Still many SLR-crossing nets

• Only neighbouring RPAUs connected

• Few SLR-crossing nets

25



Placement-friendly Layout

We must consider SLR-to-SLR connection constraints.

• Wiring complexity: O(L2)→ O(L)

• Still many SLR-crossing nets

• Only neighbouring RPAUs connected

• Few SLR-crossing nets

25



Placement-friendly Layout

We must consider SLR-to-SLR connection constraints.

• Wiring complexity: O(L2)→ O(L)

• Still many SLR-crossing nets

• Only neighbouring RPAUs connected

• Few SLR-crossing nets

25



Placement-friendly Layout

We must consider SLR-to-SLR connection constraints.

• Wiring complexity: O(L2)→ O(L)

• Still many SLR-crossing nets

• Only neighbouring RPAUs connected

• Few SLR-crossing nets

25



Placement-friendly Layout

We must consider SLR-to-SLR connection constraints.

• Wiring complexity: O(L2)→ O(L)

• Still many SLR-crossing nets

• Only neighbouring RPAUs connected

• Few SLR-crossing nets

25



Outline

1. Motivation and Background

2. Microcoded Hardware Accelerator

• Architecture of homomorphic processor

• FPGA implementation with placement-friendly layout

3. Evaluation Results

26



Evaluation Results

As a proof of concept, our implementation employs 10 PEs and two parameter sets.

• Set-1: log2(pQ) = 438, N = 214

• Set-2: log2(pQ) = 546, N = 215

LUTs DSPs BRA
Ms

URA
Ms

55.4

29.3

58.6

72.8

Resource utilization on Xilinx Alveo U250 FPGA (in %)

27



Evaluation Results

Placement of Medha on the Alveo U250 FPGA chip.

28



Evaluation Results

Performance on Alveo U250 board running at 200 MHz.

• Homomorphic operation benchmark

• Hom. Mult. + Relin. for Set-1: 497µ sec

• Hom. Mult. + Relin. for Set-2: 1,374µ sec

• End-to-end application benchmark (logistic regression)

• 64× speedup compared to the implementation in SEAL [SEA20]

• Comparison with HEAX [RLPD20]

• 2.3× better latency

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

29

https://github.com/Microsoft/SEAL


Evaluation Results

Performance on Alveo U250 board running at 200 MHz.

• Homomorphic operation benchmark

• Hom. Mult. + Relin. for Set-1: 497µ sec

• Hom. Mult. + Relin. for Set-2: 1,374µ sec

• End-to-end application benchmark (logistic regression)

• 64× speedup compared to the implementation in SEAL [SEA20]

• Comparison with HEAX [RLPD20]

• 2.3× better latency

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

29

https://github.com/Microsoft/SEAL


Evaluation Results

Performance on Alveo U250 board running at 200 MHz.

• Homomorphic operation benchmark

• Hom. Mult. + Relin. for Set-1: 497µ sec

• Hom. Mult. + Relin. for Set-2: 1,374µ sec

• End-to-end application benchmark (logistic regression)

• 64× speedup compared to the implementation in SEAL [SEA20]

• Comparison with HEAX [RLPD20]

• 2.3× better latency

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

29

https://github.com/Microsoft/SEAL


Evaluation Results

Performance on Alveo U250 board running at 200 MHz.

• Homomorphic operation benchmark

• Hom. Mult. + Relin. for Set-1: 497µ sec

• Hom. Mult. + Relin. for Set-2: 1,374µ sec

• End-to-end application benchmark (logistic regression)

• 64× speedup compared to the implementation in SEAL [SEA20]

• Comparison with HEAX [RLPD20]

• 2.3× better latency

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

29

https://github.com/Microsoft/SEAL


Evaluation Results

30



Medha: Microcoded Hardware Accelerator

for computing on Encrypted Data

Cryptographic Hardware and Embedded Systems (CHES), 2023

Ahmet Can Mert1, Aikata1, Sunmin Kwon2, Youngsam Shin2,

Donghoon Yoo2, Yongwoo Lee, Sujoy Sinha Roy1

1 IAIK, Graz University of Technology, Graz, Austria
2 Samsung Advanced Institute of Technology, Suwon, Republic of Korea


