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omomorphic Encryption

Homomorphic Encryption (HE) allows computation on the encrypted data.

Enc(data)

Enc( foo(data) )

Dec() gives foo(data) Cloud homomorphically

evaluates foo()



hallenges in accelerating Homomorphic Encryption

1. Computationally intensive:
10* to 10°x plain computation

e lLarge polynomial arithmetic

e Long integer arithmetic



hallenges in accelerating Homomorphic Encryption

1. Computationally intensive:
10* to 10°x plain computation

e lLarge polynomial arithmetic
e Long integer arithmetic

2. Ciphertexts are several MBs



hallenges in accelerating Homomorphic Encryption

1. Computationally intensive:
10* to 10°x plain computation

e lLarge polynomial arithmetic
e Long integer arithmetic

2. Ciphertexts are several MBs

Size of coefficients

NN evaluations

500
400 |
350 ryeryry 3
300
250
200 Function approximations
150 ” 1
50 =
100" PQC
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Number of coefficients in polynomial



hallenges in accelerating Homomorphic Encryption

1. Computationally intensive:
10° to 10%x plain computation

e large polynomial arithmetic <— NTT
e Long integer arithmetic

2. Ciphertexts are several MBs

O(N?) — O(N log, N)




hallenges in accelerating Homomorphic Encryption

1. Computationally intensive: Q— H,.L;()l qi

10° to 10%x plain computation
e Large polynomial arithmetic
e Long integer arithmetic « RNS

2. Ciphertexts are several MBs



NS-CKKS Scheme



NS-CKKS Scheme

e Enables homomorphic computations for real numbers.



NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

C = 60,01

|60z (11




NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

C = 60,01

|60z (11

e Homomorphic operations:
e Addition: 2L additions




NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

c= COacl

-[€0p1 €l

e Homomorphic operations:

e Addition: 2L additions
e Multiplication: 4L multiplications, L additions




NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

c= COacl

-[€0p1 €l

e Homomorphic operations:

e Addition: 2L additions
e Multiplication: 4L multiplications, L additions

o Relinearization: L(L + 1) base conversions, 2L(L + 1) multiplications



NS-CKKS Scheme

e Enables homomorphic computations for real numbers.

C = 60,01

|60z (11

e Homomorphic operations:

e Addition: 2L additions
e Multiplication: 4L multiplications, L additions

o Relinearization: L(L + 1) base conversions, 2L(L + 1) multiplications
(Base conversion: NTT — g; to g; — INTT)
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hallenges accelerating Homomorphic Encryption with HW

1. Computationally intensive

e Scheduling operations

e Target platform constraints
E XNy,

ALVEQ, = et 2. Ciphertexts are several MBs

e On-chip memory is limited

e Off-chip transfer is very slow

(Xilinx Alveo U250 FPGA)

Our Solution: Medha
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n Overview of HW-based HE accelerators in the literature

Two main tracks:

1. Accelerator prototypes in FPGA/ASIC

2. Simulation model of accelerator

Accelerator prototypes in FPGA/ASIC Simulation model of accelerator
HEAWSrFRVZO]' HEAX[RLPDZOI, COFHEE[NSA+23] Fl[FSK+21], BTS[KKK+22], CraterLake[SFK+22]

[TRV20] Furkan Turan et al. HEAWS: an accelerator for homomorphic encryption on the amazon AWS FPGA. IEEE ToC, 2020.
[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[NSA-+23] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[FSK+21] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[KKK+-22] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[SFK+22] Samardzic et al. CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data. ISCA 2022.



n Overview of HW-based HE accelerators in the literature

o HEAXIRLPD20] fo|lows a block-pipelined architecture.

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.



n Overview of HW-based HE accelerators in the literature

o HEAXIRLPD20] fo|lows a block-pipelined architecture.

e Sub-routine specific for HE
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[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.
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rchitecture of the Homomorphic Processor
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rchitecture of the Homomorphic Processor
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Parallel execution of NTT & dyadic cores results in significant cycle reduction!
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Utilizing left-over bits in BRAM/URAM

e One URAM address can store 72-bits
e One BRAM address can store 18/36/72-bits
o We use 54-bits RNS bases

We created a virtual memory to utilize left-over bits in BRAM/URAM.

e Example: 54-bit coefficient storage in URAM
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lacement-friendly Layout

2. Target platform (Xilinx Alveo U250 FPGA) constraints

High-Bandwidth,
Low-Latency Connections

Microbumps
Through-Silicon Vias (TSV)

C4 Bumps

SLR0 +—— 28 nm FPGA Die (SLR)
&—— 65 nm Silicon Interposer

Package Substrate

“—— BGA Solder Balls
W

e Two neighboring SLRs are connected using a limited number of wires.

Image is retrieved from https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology
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lacement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

SLRO SLR1 SLR2 SLR3
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We need an efficient method to interconnect and map RPAUs!
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lacement-friendly Layout

We must consider SLR-to-SLR connection constraints.

SLRO SLR1 SLR2 SLR3 SLRO SLR1 SLR2 SLR3
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o Wiring complexity: O(L2) — O(L) e Only neighbouring RPAUs connected

e Still many SLR-crossing nets o Few SLR-crossing nets
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valuation Results

As a proof of concept, our implementation employs 10 PEs and two parameter sets.

o Set-1: log,(pQ) = 438, N =214
e Set-2: log,(pQ) = 546, N = 215

Resource utilization on Xilinx Alveo U250 FPGA (in %)

72.8

55.4 —

29.3

1
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valuation Results

Placement of Medha on the Alveo U250 FPGA chip.
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e Homomorphic operation benchmark

e Hom. Mult. 4 Relin. for Set-1: 497 sec
e Hom. Mult. 4 Relin. for Set-2: 1,374 sec

e End-to-end application benchmark (logistic regression)
e 04 x speedup compared to the implementation in SEAL
e Comparison with HEAX [RLPD20]

e 2.3x better latency

[SEA20]

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.
[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.
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