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Homomorphic Encryption

Homomorphic Encryption (HE) allows computation on the encrypted data.
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Challenges in accelerating Homomorphic Encryption

1. Computationally intensive:

104 to 105× plain computation

• Large polynomial arithmetic

• Long integer arithmetic

2. Ciphertexts are several MBs

FHE
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Challenges in accelerating Homomorphic Encryption

1. Computationally intensive:

105 to 104× plain computation

• Large polynomial arithmetic ← NTT

• Long integer arithmetic

2. Ciphertexts are several MBs

O(N2)→ O(N log2N)
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Challenges in accelerating Homomorphic Encryption

1. Computationally intensive:

105 to 104× plain computation

• Large polynomial arithmetic

• Long integer arithmetic ← RNS

2. Ciphertexts are several MBs

Q →
∏L−1

i=0 qi
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RNS-CKKS Scheme

• Enables homomorphic computations for real numbers.

• Homomorphic operations:

• Addition: 2L additions

• Multiplication: 4L multiplications, L additions

• Relinearization: L(L+ 1) base conversions, 2L(L+ 1) multiplications

(Base conversion: NTT → qi to qj → INTT)
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Challenges accelerating Homomorphic Encryption with HW

(Xilinx Alveo U250 FPGA)

1. Computationally intensive

• Scheduling operations

• Target platform constraints

2. Ciphertexts are several MBs

• On-chip memory is limited

• Off-chip transfer is very slow

Our Solution: Medha
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An Overview of HW-based HE accelerators in the literature

Two main tracks:

1. Accelerator prototypes in FPGA/ASIC

2. Simulation model of accelerator

[TRV20] Furkan Turan et al. HEAWS: an accelerator for homomorphic encryption on the amazon AWS FPGA. IEEE ToC, 2020.

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[NSA+23] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[FSK+21] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[KKK+22] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[SFK+22] Samardzic et al. CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data. ISCA 2022.
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An Overview of HW-based HE accelerators in the literature

• HEAX[RLPD20] follows a block-pipelined architecture.

• Sub-routine specific for HE

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.
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Design Goals

1. A programmable hardware accelerator architecture for RNS-CKKS

• Low-latency oriented design with flexibility

• Supporting N = 214 and N = 215 with RNS moduli sizes 54/60-bit

2. Verification and benchmarking on real FPGA (Xilinx Alveo U250 card)

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data
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Architecture of the Homomorphic Processor

We design a flexible instruction-set architecture for each RNS base:

• Each RNS base → One processing element (RPAU)
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Architecture of the Homomorphic Processor

We use two cores, NTT and Dyadic, to speedup relineatization operation.

• NTT core (for base conversion)

• Dyadic core (for multiplying with keys)

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqp
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Architecture of the Homomorphic Processor

INTTq0 INTTq1 INTTql

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

NTTq0 NTTq1 NTTql NTTqp

INTTq2

NTTq0 NTTq1 NTTql NTTqp

D-l

Parallel execution of NTT & dyadic cores results in significant cycle reduction!
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Customized on-chip memory design

Utilizing left-over bits in BRAM/URAM

• One URAM address can store 72-bits

• One BRAM address can store 18/36/72-bits

• We use 54-bits RNS bases

We created a virtual memory to utilize left-over bits in BRAM/URAM.

• Example: 54-bit coefficient storage in URAM
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Placement-friendly Layout

1. Each RNS base arithmetic is implemented by one processing element.

• Each processing element stores its residue polynomial

• Relinearization operation requires polynomials to be exchanged between RPAUs.
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Placement-friendly Layout

2. Target platform (Xilinx Alveo U250 FPGA) constraints

• Two neighboring SLRs are connected using a limited number of wires.

Image is retrieved from https://docs.xilinx.com/v/u/en-US/wp380_Stacked_Silicon_Interconnect_Technology
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Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!
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Placement-friendly Layout

Placing/Interconnecting RPAUs is a huge engineering challenge!

We need an efficient method to interconnect and map RPAUs!

24



Placement-friendly Layout

We must consider SLR-to-SLR connection constraints.

• Wiring complexity: O(L2)→ O(L)

• Still many SLR-crossing nets

• Only neighbouring RPAUs connected

• Few SLR-crossing nets
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Evaluation Results

As a proof of concept, our implementation employs 10 PEs and two parameter sets.

• Set-1: log2(pQ) = 438, N = 214

• Set-2: log2(pQ) = 546, N = 215

LUTs DSPs BRA
Ms

URA
Ms

55.4

29.3

58.6

72.8

Resource utilization on Xilinx Alveo U250 FPGA (in %)
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Evaluation Results

Placement of Medha on the Alveo U250 FPGA chip.
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Evaluation Results

Performance on Alveo U250 board running at 200 MHz.

• Homomorphic operation benchmark

• Hom. Mult. + Relin. for Set-1: 497µ sec

• Hom. Mult. + Relin. for Set-2: 1,374µ sec

• End-to-end application benchmark (logistic regression)

• 64× speedup compared to the implementation in SEAL [SEA20]

• Comparison with HEAX [RLPD20]

• 2.3× better latency

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Redmond, WA.

[RLPD20] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.
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Evaluation Results
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