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Abstract—Discovering frequent and rare spatio-temporal pat-
terns in large amounts of streaming visual data is of great
practical interest since it allows for automated applications of
activity and surveillance analysis. In this paper we present
a computationally efficient and memory preserving clustering
scheme which uses streaming input from a stationary-mounted
neuromorphic camera and performs density-based clustering in a
high-dimensional feature space. The clustering scheme can treat
arbitrarily shaped complex distributions and employs an intuitive
density-based criterion to assign previously unseen samples to
categories of frequently observed and rare. The spatio-temporal
structure of neuromorphic video is encoded into sparse binary
features, which allow for fast Hamming distance based neigh-
borhood analysis in the feature space. Moreover, data sparsity
brings advantages with respect to memory-efficient transmission
and storage of the learned statistical model when used within
a camera network. We present rare event detection results in a
multiple-day neuromorphic data sequence and discuss strengths,
failure modes and possible extensions of the proposed method.

I. INTRODUCTION

Analyzing and recognizing spatio-temporal patterns in
streaming visual data is of great practical interest given the
recent explosive growth in the quantities of networked digital
video. Many applied domains such as visual surveillance,
ambient assisted living and activity-oriented video analysis
seek to learn levels of normality and distinguish between
frequently and rarely observed spatio-temporal patterns. How-
ever, the analysis task encompasses several challenges. Video
streams exhibit a vast richness of information due to the
inherent variability in the data thus large data amounts are
required to obtain meaningful statistical models. Large data
quantities are associated with a substantial computational cost
and large memory footprint. Furthermore, structuring and
modelling the data distribution easily become nontrivial since
data typically reside in high-dimensional feature spaces. The
temporal characteristics of streaming data represents another
challenge calling for computational techniques capable to build
statistical models in an incremental and adaptive manner.

According to a data-oriented view the goal of rare or
unusual event detection is to discover the principal modes in
the distribution of video data and label incoming data samples
falling into the categories of (i) learned modes (inliers) or
(ii) not explained by any existing model (unusual event).
Core scientific questions involve how to represent the complex

Fig. 1. Schematic illustration of our proposed approach: Frequently observed
(green) and rare (red) events are discovered within a moving temporal window
of Δt length in neuromorphic data streams (best viewed in color). The top part
shows selected spatio-temporal patterns generated by moving object gradients
for a top-view camera geometry. The individual motion patterns are shown
as color-coded motion history [1] images for easy interpretation. The bottom
illustration shows a density-based clustering scheme delineating clusters of
normality (empty scene, walking pedestrians) and an unusual event (car in a
pedestrian zone).

spatio-temporal structure of videos, how to build informative
models of the multi-modal, multi-scale distributon of aggre-
gated features and how to unambigiously assign labels to
previously unseen data samples, while meeting computational
and memory requirements.

There is a large body of work focusing on unusual event
detection and touching on the above core topics. When con-
sidering the employed representations, strategies range from
representing objects, entire frames to describing local spatio-
temporal volumes. Explicit object tracking often forms the
basis for representing events, such as in [2] and [3] where static
models of normality are learned. Time-aggregated histogram-
of-oriented-gradient (HOG) descriptors representing individual
frames are demonstrated in [4], [5] to detect previously unseen
static states (e.g. an object at an unusual location) in low-frame
rate videos. Single frame representations are aggregated while
preserving temporal ordering in [6]. Dynamic event encoding
local features of Haar wavelets [7], oriented gradients [8],
optical flow histograms [8] and local binary patterns [9] are
popular choices of representation. Salient dynamic patterns are



Fig. 2. Computation scheme of the employed sparse spatio-temporal features
v = (v0, . . . ,vN). Convolution of the input space-time data with a set of
simple Haar wavelet features yields a local structural representation which is
used in an aggregated form to represent a temporal slice.

learned by convolutional learning in [10]. Video segmentation
resulting in space-time segments is used in [11] in a graph
structure learning framework to represent single and multiple
associated events from video. Clustering in high-dimensional
feature spaces also represents a challenge. Parametric schemes
such as k-means clustering and Gaussian Mixture Models
generate spherical and ellipsoidal cluster shapes and they
require the number of clusters a priori, thus typically resulting
in under- or oversegmented partitioning of the feature space.
Iterative schemes such as k-means and mean shift [12] are
computationally intensive or an incremental computation is
not straightforward.

We see two primary challenges in the context of rare
dynamic event detection in a camera network. The vast amount
of data of the spatio-temporal image space imposes a challenge
since its transmission and computational analysis call for high
network bandwith and substantial computational power. An-
other challenge is represented by the computationally efficient
incremental clustering task in high-dimensional feature spaces.
Existing methods [4], [5] capturing the global structure of
image content employ agglomerative schemes for the incre-
mental clustering task. The stopping criterion used by such
hierarchical techniques is a very sensitive parameter governing
the granularity of the resulting solution.

To address these challenges we propose two contributions.
We present the use of neuromorphic dynamic vision sensors
(DVS) [13] to efficiently capture scene dynamics in a net-
worked setting, since compared to image-based sensors, they
involve a substantial reduction of the data volume having
an on-chip background subtraction. DVS chips [14], [15]
feature massive parallel pre-processing of the visual infor-
mation in on-chip analog circuits and stand out for their
excellent temporal resolution, high dynamic range and low
power consumption. Our second contribution is a weakly para-
metric density-based clustering method following the adaptive
DBSCAN scheme [16] and using a hash-table representation
for performing batch and incremental clustering steps in a

computationally efficient manner. Clustering is performed on
the DVS data which is a spatio-temporal sequence of digital
pulses (events) generated by pixels independently responding
to contrast variations.

The paper is organized as follows: Section 2 describes the
overall concept of the proposed rare event detection method
and provides details on the individual algorithmic components.
Section 3 presents and discusses experimental results. Finally
the paper is concluded in Section 4.

II. METHOD

A. Outline of the method

The proposed approach extracts large quantities of binary
space-time descriptors in form of local Haar filter responses
from data slices of time-aggregated neuromorphic data. Each
descriptor vector is mapped to a point in a high-dimensional
Hamming space and in this manner feature densities are esti-
mated on a discrete grid. We adopt a density-based clustering
scheme based on the adaptive DBSCAN algorithm [16], which
allows for computationally efficient batch and incremental
clustering and outlining densely and sparsely populated re-
gions in the feature space. All employed parameters of the
individual algorithmic stages are listed in Table I.

B. Algorithmic details

Input data: The neuromorphic data input consists of sparse
binary data where pixels are set at image locations where
a change is detected. First, these sparsely populated frames
are aggregated in time (see Figure 2, left). A spatio-temporal
volume with temporal thickness Nt is sampled at discrete
Nx ×Ny locations along the x− y plane by non-overlapping
rectangular analysis cuboids (a single cuboid is shown in red
in Figure 2).

Spatio-temporal features: Data within the individual anal-
ysis cuboids is convolved with a set of simple space-time Haar-
wavelet filters (shown in Figure 2). The local set of Haar filter
responses Dz(xi, yj , tk) at a given location {xi, yj , tk} for
z = 1, . . . , Nf different filters is used to compute a 3-valued
feature vector entry v:

vzi,j,k =

⎧⎪⎨
⎪⎩

1, if Dz(xi, yj , tk) ≥ θ

0, if |Dz(xi, yj , tk)| < θ

−1, if Dz(xi, yj , tk) ≤ −θ

(1)

The raw data contains much noise therefore to render the
features more resistant with respect to noise, we applied a

TABLE I
PARAMETERS OF OUR APPROACH

Parameters Value Description

Nx, Ny 5 # of sampled locations
Nt 20 # of frames in a time slice
Nf 6 # of Haar filters
θ 102 noise threshold
γ 50% temporal slice overlap rate



Fig. 3. Illustration explaining the clustering step. Top: all feature vectors
are mapped onto the Hamming space in a batch manner and densities of
individual Hamming space entries (cells) are updated. By performing density-
driven clustering each cell with a non-zero density is assigned to a cluster
or becomes an outlier (gray rectangles). Bottom: Given an existing cluster
structure in the feature space incremental updates by single incoming features
can generate four assignment cases.

threshold θ. The sensor noise level was estimated using a set
of frames equivalent to several hours containing no objects and
the threshold was set accordingly (see Table I). The overlap
rate between two neighboring temporal slice is γ.

We apply max-pooling [17] to transform the joint feature
representation into a new one which preserves important
information while discarding irrelevant detail. Max pooling
is particularly well suited to the discrimination of features
that are very sparse [17] and achieves better robustness with
respect to noise and clutter. Accordingly, we encode a local
feature on two bits by setting the first bit if any of the local
features

{
vzi,j,k

}
z=1..Nf

is set to 1, and the second bit if

any of the local features is set to -1. The resulting binary
feature vector v aggregated for the entire time slice has a
dimensionality of Nx×Ny×2 = 50 (see Figure 2). Structured
indexing techniques, such as Locality Sensitive Hashing [18]
and compression-based indexing [19] allow for efficient ap-
proximate neighborhood queries within the Hamming space.

Density-driven clustering: We seek to cluster an evolving
data stream, therefore, the clustering algorithm must meet
following requirements: (i) no assumption on the number of
clusters, since in a continuously changing data distribution the
number of cluster will likely to vary; (ii) ability to discover
clusters with arbitrary shapes and (iii) ability to model and
discover outliers not meeting constraints of a given cluster. The
adaptive variant of the DBSCAN algorithm [16] and its hash
table based variant (D-Stream [20]) describe simple clustering
schemes meeting these constraints. At the same time they
are also computationally efficient since they need to examine
each input feature entry only once. Both techniques perform a
density-based region growing in arbitrary dimensions resulting
in ”connected components” where connectedness is given by

Algorithm 1 Streaming data clustering
ti = 0;
initialize an empty hash table cell list;
while data from stream is available do

read incoming feature v = (v1, v2, . . . , vN );
determine hash key from v addressing a given cell c;
if (c is not in cell list) insert c into cell list;
update values stored in c;
if ti == Δt then

call offline clustering(cell list);
else

if ti mod Δt == 0 then
call online clustering(cell list);

end if
end if
ti = ti + 1;

end while

the underlying density.
By adopting the main ideas from these density-based clus-

tering schemes we perform the following steps. We introduce
two parameters, ε and Nmin. When performing off-line (batch)
clustering for each data point vi the neighborhood of a given
radius ε is examined and the number of data points, i.e.
the cardinality of the neighborhood is determined. If the
cardinality (local density) exceeds Nmin then a new cluster is
generated and all density-connected data points are assigned to
this cluster label. If the cardinality does not exceed the density
threshold Nmin, the examined data point is labeled as an
outlier. The on-line clustering scheme proceeds analogously,
as illustrated in Figure 3. When a new feature is inserted,
four possible assignment cases can be distinguished: (i) The
entry is close to an existing cluster, thus obtains its label. (ii)
The entry is between two or more clusters. In such cases,
label collision is treated by noting label equivalences using
the Union-Find algorithm and performing cluster relabeling.
(iii) The data insertion is within the ε-neighborhood of one
or more outliers (but no valid clusters are present), and the
critical local density Nmin is reached to create a new cluster.
(iv) The data entry is inserted at a location where no or few
previous entries exist, the local density is less than Nmin, and
the data point is labeled as an outlier.

After describing the off-line and on-line clustering steps, we
provide details on our clustering scheme combining the off-
line and on-line components. The overall algorithmic steps are
described in Algorithm 1. Each feature vector v is inserted into
a hash table, and upon insertion the following set of values
is inserted or updated: (Npts, dloc, f lagp, ClustLabel, tins).
Npts denotes the number of insertions up to the current time
instance, dloc is the cardinality of the local ε-radius neigh-
borhood and flagp is a flag indicating a binary processing
status. ClustLabel is the cluster index, which in case of an
outlier takes the value −1. tins denotes the time (frame index)
of insertion. The information given by t ins can be used to
retrieve the given feature or image frame representing the



Fig. 4. Left: Sample view (RGB-image) of the observed scene. Right:
Corresponding motion history image computed from neuromorphic data.

entry. Furthermore, by checking t ins at each data insertion
a removal (forgetting) mechanism can be easily implemented,
for example by lowering the significance of old entries. In our
implementation there is no removal mechanism.

The two clustering parameters ε and Nmin are easy
to interpret since they relate to the scale and minimum
occurrence frequency. Furthermore, for sparse binary features
the measurement of cardinality can be performed very
efficiently. We employ Locality Sensitive Hashing from the
FLANN library [21] and use its RadiusSearch function to
retrieve the data entries within ε.

III. RESULTS AND DISCUSSION

The presented unusual event detection framework was
evaluated on a 7-day sequence of neuromorphic vision data
recorded in a pedestrian zone using a top-view setup. The
sequence exhibits a 128×128 pixel spatial resolution and a
temporal sampling equivalent to 24 fps, resulting in nearly 15
million frames in total. Figure 4 left shows a sample RGB-
image of the scene with a corresponding motion-history [1]
image displaying the evolution of motion gradients in the
neuromorphic data over a short time span.

Generating ground-truth for rare events in the dataset is dif-
ficult, since the frequency of events typically follows a heavy-
tailed power-law or Zipf’s law distribution [22]. Nevertheless,
we annotated 17 instances of highly unusual events where a
vehicle enters the pedestrian zone from an arbitrary direction.
We used these annotations to examine whether these events
are truly detected among the rarest events.

In order to verify that our representation and discrete
hash table based indexing concept can cope with the curse
of dimensionality, we performed a simple experiment. All
computed dynamic features for the entire dataset were inserted
into a hash table and the hash occupancy ratio was computed.
Figure 5 shows how the number of hash table entries changes
with increasing number of inserted features. The dashed line
shows the linear increase limit, which would be caused by
completely decorrelated, random feature input. As it can be
seen from the figure the hash table occupancy is sublinearly
converging and yields an approximately 17% occupancy ratio
after the 7-days input. Indexing and searching the resulting

Fig. 5. The hash occupancy ratio measured on the entire 7-day dataset.
Dashed line shows the linear increase limit for random data, and the dark
continuous curve shows the strongly sub-linear and converging behavior for
our computed features. Note that the small plateaus in the latter curve are
caused by observations at night due to the slighter variability in the data.

232000 hash table entries in a Hamming space still remains
computationally lightweight and memory efficient due to the
efficient indexability by Locality Sensitive Hashing, fast Ham-
ming distance computations and vector sparsity.

We performed three experiments to evaluate the clustering
quality and rare event detection capability of the proposed
framework. As shown in Table II we partitioned the input data
using three partitioning schemes: batch-only, 50% offline -
50% online, and 50% offline with three (daily) online updates.
All experiments used the identical parameter set of neighbor-
hood radius and minimum required density (ε=5, Nmin=5).
All the three experiments yield very similar results, where all
annotated unusual events are detected as they appear at the
end of event list sorted according to observation frequency. In
addition in Figure 6 we show the seven most usual and most
unusual event classes discovered in our one-week dataset, as
obtained in Experiment 1. As it can be seen the proposed
method detects objects with unusual spatial (shape, size) and
motion (velocity magnitude and direction) characteristics.

TABLE II
RARE EVENT DETECTION EXPERIMENTS

Nr. Offline/Online Detected rare events

1 fully batch 17 out of 17
2 50% / 50% 17 out of 17
3 50% / (3 updates) 17 out of 17

In order to further investigate the implicit structure of
recovered usual and unusual features within the Hamming
space we employ the recent t-SNE [23] dimensionality re-
duction technique on the selected frequent and rare features.
Figure 7 shows the two-dimensional projection of the most
relevant usual event clusters and unusual events along with
some image examples characterizing individual data points.



Fig. 6. The seven most usual (top row) and most unusual (bottom) row event classes discovered in our one-week neuromorphic dataset.

As it can be seen the rare event data exhibits strongly drift-
ing characteristics with high variance, leading to a different
scaling than for the distribution of the usual events. Since the
employed clustering scheme uses a single constant scale and
it does not consider cluster scale variations, it leads to an
increased granularity for rare events. In addition, the recovered
distribution of detected rare events shows that due to the
employed high-dimensional representation (i.e. variability in
the data) an even larger amount of observations is necessary
to build a meaningful statistics. The method is, however,
capable to collect and analyse an order-of-magnitude more
data when performing batch clustering and significantly more
with regular online updates.

Implementation details: the clustering method was imple-
mented in Matlab with functions of hash table generation,
indexing and nearest neighbor search coded in C++. The
full batch processing (see Table II: Experiment 1) step takes
approximately 10 minutes on a modern PC using the combined
Matlab - C++ code. Embedded implementation and networked
operation appear to be viable options, such as sparse feature
computation performed in a smart camera, while indexing and
clustering performed on a remote server.

The large amount of noise in the input data calls for
possible improvements: principal component analysis or sparse
random projections could be applied to further reduce the
dimensionality of the input and to smooth the data at the same
time.

IV. CONCLUSIONS AND OUTLOOK

In this paper we presented a density-driven computational
framework capable to perform clustering in case of streaming
data resulting in clusters well approximating the implicit

structure of the underlying high-dimensional distribution. The
employed sparse binary representation of the extracted spatio-
temporal patterns well preserves the most significant spatial
and dynamic attributes such as the location, dimensions and
motion path of multiple moving objects, and despite the
employed joint representation resulting in a great variability, it
can succesfully capture observed usual and rare events without
suffering the curse of dimensionality. Furthermore, given the
compact representation of the visual input, the learned statisti-
cal representation and the efficient computation, the proposed
scheme appears to be well applicable in practically relevant
settings.
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