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a b s t r a c t

In recent years, the navigation capabilities of mobile robots in off-road environments have increased
significantly, opening up new potential applications in a variety of settings. By accurately identifying
different types of terrain in unstructured environments, safe automated navigation can be supported.
However, to enable safe path planning and execution, the traversability costs of the terrain types need
to be accurately estimated. Such estimations are often performed manually by experts who possess
information about the environment and are familiar with the capabilities of the robotic system or using
simplified experiments. In this paper, we present an automated pipeline for generating traversability
costs that use recorded locomotion data from a realistic experiment and descriptive information on
the terrain obtained from earth observation data. The main contribution is that the cost estimation
for different terrain types is based on locomotion data obtained in realistic standardized experiments.
Moreover, by repeating the experiments with different robot systems we are easily able to reflect the
actual capabilities of the systems. Experiments were conducted in an alpine off-road environment to
record locomotion data of four different robot systems and to investigate the performance and validity
of the proposed pipeline. The recorded locomotion data for the different robots are publicly available
at https://robonav.ist.tugraz.at/data/

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Navigation for mobile robots is a highly active research field
here several disciplines meet, ranging from path and motion
lanning over robot localization and perception to environment
apping. While these problems are tackled for robotic systems in
arious settings, the representation and perception of the robot’s
nvironment are particularly important for off-road navigation [1,
]. Therefore, it is necessary to know the terrain in which the
obot operates and to analyze its traversability [3]. For terrain
lassification, information about the environment is collected and
egmented into different terrain types. Nowadays, this is typically
one using Deep Learning methods on visual [4,5] or LiDAR
ata [6]. After environment segmentation and classification, the
raversability of the terrain classes needs to be estimated to allow
he planning of a safe route for the robot. To take into account the
raversability of the terrain during navigation, this information is
ypically represented as a cost map [7]. The costs for traversing
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terrain classes are often estimated manually by a human expert
and usually do not fully reflect the capabilities of a specific robot
system and its performance on a particular terrain [8]. Although
methods to help estimate the traversability costs exist (e.g. [9]),
they depend on parameters that need to be tuned manually by a
human expert. While human experts are quite capable of judging
the general traversability, it is much harder to quantify traversal
costs for different terrain classes. For example, it is difficult to
quantify traversability for gravel roads versus mowed grass. This
estimation becomes even more difficult when multidimensional
terrain information such as different slope angles or weather
information (e.g., dry, wet, snow) is provided by the terrain classi-
fication. Considering such information during the navigation can
be very helpful as these parameters heavily affect locomotion per-
formance. In addition, it is hard for human experts to accurately
assess the capabilities of a robotic system, as tracked, wheeled or
legged robots show quite different performances on various ter-
rains. Controlled experiments in a laboratory that evaluate such
capabilities are a first step in estimating traversability, but hardly
represent the actual capabilities of a robot in very diverse off-road
environments [10]. Approaches that make use of Deep Learning
methods typically perform better, but often use highly simplified
experiments that do not fully reflect the actual traversability of a
robotic system [11,12].
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Overview of the proposed processing pipeline. Locomotion data is
rocessed and clustered based on terrain classes to generate locomotion features.
hese features are used to estimate costs for each terrain class (green = low cost,
ed = high cost) which are then interpolated to generate a complete cost map.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

This work aims to overcome these issues and proposes an
xtension of a pipeline for traversability analysis and cost esti-
ation for a robotic system on multidimensional terrain classes

hat utilizes recorded locomotion data from a realistic environ-
ent, as previously presented in [13], by adding a more de-

ailed description of the algorithm, new insights, and new results.
oreover, we define standardized locomotion experiments to
btain informative locomotion data for different robot systems
n these environments. The pipeline uses locomotion data, mul-
idimensional terrain classes, and environment segmentation to
ompute robot-dependent traversability costs. In multidimen-
ional terrain classes, each dimension represents a property of
he terrain (e.g. slope information, weather information, or land
over type). Locomotion data contains raw information about
he performance and quality of a particular motion of a robot.
or example, this information may represent general inertial and
osition data or may represent hardware-specific measurements
uch as power consumption or motor temperatures. A require-
ent for the pipeline to work is that the individual motion

nformation could be linked to the corresponding terrain classes,
hat are represented in the segmented environment. For this,
localization approach (e.g. RTK-GNSS) that delivers sufficient
recise results at a sufficient rate in the environment’s frame is
eeded. Another requirement is that the recording experiments
re conducted in a way that for (all) instances of the multidi-
ensional terrain classes sufficient locomotion data was sampled.
sing the recorded locomotion data, locomotion features are
xtracted (e.g. smoothness or velocity of a motion), clustered by
heir corresponding terrain class, and condensed to a set of ag-
regated locomotion features which represent the traversability
roperties of a given terrain class. In the next step, the aggre-
ated locomotion features are used within a linear weighted cost
unction, to compute the traversability of the terrain. Fig. 1 gives
n overview of the proposed pipeline. The resulting costs for a
errain class are represented in Fig. 1 as a colored grid which
ndicates how well a given terrain class is traversable (green =
ow cost/easy to traverse, red = high cost/not traversable). Since it
annot be expected that every multidimensional terrain class can
e sampled sufficiently when recording the locomotion dataset,
2

the calculated terrain costs are interpolated for unseen classes if
some terrain dimensions show an order relation (e.g. for slope
classes). The main contributions of this paper are (1) a pipeline
to estimate the traversability costs for a specific robot in an off-
road environment holding multidimensional terrain classes, (2)
interpolating the optimized costs to uncovered terrain classes
that have an order relation to computed terrain costs, and (3) the
description and provision of realistic off-road locomotion datasets
from four robots with different locomotion capabilities.

The remainder of this paper is structured as follows. Section 2
discusses related research on the topics of terrain classification
and traversability analysis for robot navigation. In Section 3, the
proposed method is described in detail. Experiments to validate
the pipeline are presented in Section 4 and discussed in Section 5.
Section 6 concludes the paper.

2. Related work

This section discusses related work in the field of traversability
analysis and terrain classification. While both terms are some-
times used interchangeably (e.g. [14,15]), we see two different
concepts. We see terrain classification as a more general term
and define it as the provision of semantic information about
the environment to improve the robot’s understanding of its
environment [16]. Traversability analysis, on the other hand, aims
to provide a measure of how well a robot is able to navigate
on certain terrain [17] and can be seen as a user of terrain
classification. To further distinguish the two terms, this section
discusses related research in the field of terrain classification and
traversability analysis.

2.1. Terrain classification

To provide semantic information about a robot’s environment,
this information needs to be extracted from data about the en-
vironment. This is usually done by using on-board sensors of
the robot such as camera [16,18] or LiDAR [6] but can also
be conducted using external environment information, e.g. de-
rived from satellite imagery [19,20]. Terrain classification over-
laps strongly with the problem of semantic segmentation. Thus,
many approaches use Machine Learning such as Convolutional
Neural Networks (CNN) trained on annotated camera images [4,
5]. Annotations for images are usually generated by manually
annotating image by image (e.g. in [21]) which is time-consuming
and error-prone. To support the manual process, different tools
are available, such as edge detection to track the annotations
over the following video frames [22] or post-processing tech-
niques to densify gained annotations retrieved by the annotation
tools [23]. As such methods heavily depend on a large amount
of training data and to enable the comparability of classification
approaches, open-source datasets are often provided [21,24,25].
Alternatives to camera images for training are annotated 3D
point clouds derived from LiDAR sensors [6,26] or even inertial
measurements [27].

2.2. Traversability analysis for robot navigation

According to [28], the analysis of the traversability can be
based on three types: (1) proprioceptive-based (e.g. [10,17]), (2)
geometry-based (e.g. [29]), and (3) appearance-based (e.g. [18]).
While the latter two types typically use camera and LiDAR in-
formation to estimate the traversability of the robot, the first
type uses only intrinsic information of a robot (e.g. Inertial mea-
surements) to represent a given environment. In this work, we
focus on the traversability analysis using proprioceptive data,
namely locomotion information, which is combined with earth
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bservation data to estimate the traversability of a given terrain
lass.
Traversability analysis can be conducted with the goal of ei-

her providing binary (traversable/non-traversable) [16], contin-
ous [3], or discrete cost estimates [9] following a given objective.
here are multiple objectives for estimating the traversability
f a terrain such as slope, speed, smoothness, or energy con-
umption [30]. While some work focuses on the estimation of
single objective (e.g. [12]), others define the traversability as
combination of multiple objectives (e.g. [29]). However, most
f the approaches have in common that they are designed only
or a given set of objectives and can hardly be applied to other
bjectives. Our proposed pipeline can estimate the traversability
f a terrain given any number of objectives and provides discrete
ost estimates for a given terrain.
The estimation of the traversability of a (segmented) envi-

onment is usually done either manually [8], with the help of
tatistical analysis [9], or using Deep Learning approaches [3,11,
7]. While all these approaches show acceptable performance in
stimating the traversability of a given terrain, the capabilities
f the used robot are neglected, as robot-specific parameters are
ssumed to be provided. Estimating the traversability costs purely
n robot-specific motion characterization was done in [31,32].
n our work, we take the capabilities of a robot into account
nd use environmental information to extract as well as compare
raversability estimates for four different robot systems.

Methods for traversability analysis heavily rely on data from
he robot and/or the environment which is used to provide a cost
stimate. Due to a lack of data for a given robot, transfer learning
pproaches are often applied to improve traversability for a given
obot using recorded data from similar robot types [33]. The data
or evaluating the proposed approaches is typically generated in
controlled environment using simple and unrealistic data sam-
les [10]. For example, the authors of [12] record their data for
enerating a cost map with the objective of energy efficiency us-
ng highly simplified trajectories only, driving only straight lines
ith one fixed velocity. Similar to that, [11] recorded a predefined
attern over an area with constant velocity and linear speed
nly to generate the training data for their proposed approach.
hile both approaches prove their importance in the field of

raversability analysis, the outcome is expected to be limited
nd prone to errors in realistic environments. Our approach is
valuated using pre-recorded locomotion data in a realistic off-
oad environment, reflecting the traversability capabilities of a
obot in a real alpine environment. A general overview of terrain
raversability methods for robotic systems is given in [28,30].

. Method

This section presents the proposed method for computing the
raversability of a classified terrain using locomotion data. There-
ore, locomotion data is pre-recorded for four robotic systems and
rocessed as described within this section. Earth observation data
s used as described in [8] to extract information about the terrain
hat is used to estimate the traversability on different terrain
lasses. The general method is composed of four main steps. In
he first step, the recorded locomotion data is pre-processed to
emove outliers and acquire relevant locomotion features which
re linked to their recorded pose to determine the corresponding
errain class. The features are then clustered into bins according
o their terrain class, such that aggregated data represents the
raversability of a class. A cost function representing a weighted
um of the aggregated locomotion features is used to estimate the
raversability costs of specific terrain classes. By interpolating and
xtrapolating costs for unseen terrain classes, the traversability
nalysis can be extended onto terrain classes that are not rep-
esented in the recorded locomotion data. A general overview of
he proposed method is depicted in Fig. 1.
3

3.1. Data preprocessing

Typically, measurements of various sensors such as Inertial
Measurement units (IMU), Global Navigation Satellite Systems
(GNSS), or odometry represent the movement of a robot through
a given environment. Recorded locomotion data for a given sensor
can be represented as vector dsensor

t ∈ Rk, holding k different mea-
surements at time t ∈ R+. Since the recorded measurements in
dsensor
t in general consist of raw sensor readings (e.g. IMU data), it

is necessary to process them in order to extract relevant locomo-
tion features which can be used to analyze the traversability. Such
features can, for example, contain information on the relative
movement of the robot (e.g. velocity, acceleration), information
on the terrain (e.g. smoothness of the terrain, wheel slippage), or
other robot-specific information (e.g. power consumption).

To extract such locomotion features at time t , a function
extract is used which takes the raw sensor measurements in a
time interval [t − a, t + b] as input and provides a vector of M
locomotion features such that

extract(Dsensor ) : Rk×|Dsensor
|
→ RM (1)

with

Dsensor
= {dsensor

x |t − a ≤ x ≤ t + b} (2)

and a, b ∈ R+ being fixed values for all data points. We denote
the output of this function as fsensort = extract(Dsensor ), which
represents the locomotion features at time t . Examples of feature
extraction within a time interval are acceleration features from
known positions or a moving average over the velocity.

In the next step, the extracted feature dataset is filtered man-
ually to remove invalid sequences in which the robot received
assistance from a human (e.g. lifting or pushing a robot that
got stuck). After that, outlier detection is conducted to remove
invalid measurements. Therefore, various filtering techniques can
be used. The use of a Gaussian Mixture Model (GMM) has been
proven to perform well for univariate as well as multivariate
outlier detection (e.g. [34–36]) and can be used for this step. A
comparative evaluation of other outlier detection algorithms can
be found in [37]. The density of a locomotion feature in a GMM
is given by a convex linear combination of multiple components,
such that

gmm(fsensort ) =

G∑
g=1

πgφ(fsensort |µgΣg ), (3)

where G is the number of components, πg > 0 is the mixing
roportion over the clusters with

∑G
g=1 πg = 1, and

φ(fsensort |µg , Σg ) =
exp

{
−

1
2 (f

sensor
t − µg )TΣ−1

g (fsensort − µg )
}√

(2π )M |Σg |
(4)

is the Gaussian distribution representing the density of the M-
dimensional variable fsensort with mean µg and covariance Σg .
iven a locomotion feature fsensort , the GMM calculates the density
f the feature on each component. Data points with low density
ndicate an anomaly and can be discarded. Thus, we can represent
he filtered data for a sensor as a collection of all feature vectors
hat belong to a component with density λ:

Gsensor
= {fsensort |gmm(fsensort ) > λ}. (5)

As discussed later in Section 4, a value of λ = 0.01 was chosen in
this work to remove outliers. From this, we define gsensor

t ∈ Gsensor

o be the filtered feature vector for a given sensor at time t .
The filtered features are computed based on raw locomotion

data which was recorded in different frequencies. To create a
dataset with a common sampling rate freq, the locomotion fea-
tures in Gsensor need to be sampled every T seconds (with freq =
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/T ), resulting in a sequenced set Ssensor = {gsensor
iT |i ∈ N}, holding

ampled locomotion features for a sensor with frequency freq.
hen, all the sampled features from the sensors are merged into
collective set Ssampled, forming a new feature vector ssampled

i for
equence i, by merging the sensor features that have the least
emporal variation: ssampled

i = ⟨ssensori ⟩, ∀sensor . For sensors with
ampling frequencies that are not integer multiples of each other,
ampling-frequency conversion was applied [38].

.2. Feature clustering

Clustered locomotion features are used to describe the
raversability of the terrain. The sampled features need to be clus-
ered according to the underlying terrain classes at the positions
here they were recorded. This information can be retrieved
sing earth observation data of the recording environment such
s orthoimages, land cover information, and height maps. The
eatures in Ssampled hold information about the robot’s relative
ovement and are linked to an absolute position within the
nvironment. We therefore define pi to be the absolute position of
he sampled feature ssampled

i . pi is presented in the UTM coordinate
rame using patch 33T. Each position pi refers to a terrain class
erived from earth observation data, describing the terrain at this
oint. Terrain classes are defined to be multidimensional and thus
old multiple pieces of information for a specific position in the
nvironment. Terrain may be described by the type of surface
nd its slope, or even consider weather conditions (e.g. dry vs.
et). We define a multidimensional terrain class as a vector of
discrete elements ci: T = c1 × c2 × · · · × cN holding terrain

nformation for a given position. Such a vector ti ∈ T thus
epresents the terrain class for a sampled feature point ssampled

i
t location pi.
Having linked the terrain classes to the sampled features, one

an use data binning to assign every feature to a corresponding
ollection of terrain class bins, such that ∀tj ∈ T : binj =

ssampled
i |tj = ti}. Next, the features which fall into binj, are aggre-
ated to create a condensed representation of that bin describing
he traversability of the terrain. The aggregated locomotion fea-
ures are defined as Ltj ∈ [0, 1]M , meaning for every terrain
lass tj there are M aggregated locomotion features describing
ts traversability. The aggregation of locomotion features can be
btained using statistical parameters derived from the feature set,
uch as mean or median. Examples can be the mean velocity and
moothness of a particular terrain class. To ensure proper scaling
f different feature types we normalize them to the interval [0, 1].
e invert the normalized features where a low value indicates
ifficult traversability (e.g. velocity). For binning, it is necessary to
efine the number of minimum samples within a bin to ensure
eaningful values. Therefore, only bins with at least |binj| ≥ ϵ

amples should be considered for cost calculation. Within our
xperiments, a value of ϵ = 6 was chosen (see Section 4).

.3. Data collection

To collect enough data points for the individual bins of the
errain classes, it is necessary to prepare the data recording well.
hus, we define a recording experiment as a defined path through
n environment in which locomotion data are recorded. Using a
andom path for data recording is possible, but it poses the risk
f not collecting sufficient information for each terrain class and
ay not be efficient.
To successfully plan the data recording, it is necessary to have

map with a classification of the terrain of that area. Here we
se segmented earth observation data which provide information
n the land cover type and the steepness of the terrain. In the
4

irst step, classes that are completely impassable are identified
nd excluded (e.g. buildings, lakes, cliffs...).
The recording path through the remaining areas is then

lanned in a way that it covers all terrain classes sufficiently well.
or practical reasons, paths are planned as lap to return to the
tarting point. To cover the classes well, it might be necessary
o plan more than one path because of problems in the general
ccessibility and connectivity of regions. In particular, we need
o incorporate sections that show the limitations of the robotic
latform. Anyhow, sections that are easy to traverse need to be
ecorded as well to get a baseline for the traversability.

The length of the path of the recording has to be chosen in a
ay, that sufficiently many data points are collected. Moreover,

or efficient execution of the recording experiments, the battery
un-time of the robots needs to be considered in the planning.

In the data recording procedure, it is important to have means
o mark areas that were planned to pass but the robot was not
ble to traverse. Because having no data in a particular area and
or a particular terrain class could either mean that the area was
ot considered or the robot was not able to handle it. The latter
eeds to be considered manually in the cost estimation.

.4. Cost calculation

The aggregated locomotion features from Section 3.2 are used
o calculate the integrated cost to traverse a specific terrain. A
ost function C can be represented as a function C(tj) : T → [0, 1]
hich maps the discrete N-dimensional terrain vector tj ∈ T ,
epresenting a multidimensional terrain class, into a cost value

∈ [0, 1] where a value of 0 represents terrains traversable
ith minimal costs while a value of 1 represents a terrain is not
raversable with a certain robot. The cost to traverse a terrain of
ype tj is the weighted sum of the aggregated locomotion features
uch that

(tj) =

⎧⎪⎨⎪⎩
1, if ∃l ∈ M : L

tj
l ≥ ρl

F (tj), if F (tj) < 1
1, otherwise

(6)

with

F (tj) =

M∑
l

wl · L
tj
l (7)

where wl ∈ R is the weight factor for the lth aggregated locomo-
tion feature Ll ∈ [0, 1]. The first condition in Eq. (6) states that
terrain classes are not traversable if one of the aggregated loco-
motion features exceeds its safety limit ρl ∈ [0, 1]. The second
condition sums the weighted aggregated locomotion features and
the third condition cuts the total cost to a maximum of 1 if the
weighted sum exceeds this value.

3.5. Cost interpolation

Since the recorded locomotion data typically cannot cover all
possible multidimensional terrain classes, the resulting cost table
will be sparse. Missing locomotion features can be extended by
either manually defining costs for missing terrain classes with
expert knowledge or by interpolating existing costs derived using
the methods presented in Section 3.4.

Costs can be interpolated (extrapolated) along one or more
dimensions of the terrain class if the dimensions are of ordinal
nature and there are at least two cost estimates within the terrain
dimensions. An example of an ordinal dimension is the slope
profile of the environment, which is divided into ordered discrete
classes. To interpolate terrain costs for a given terrain class ti
according to a set of ordinal dimensions N , we represent the data



M. Eder, R. Prinz, F. Schöggl et al. Robotics and Autonomous Systems 168 (2023) 104494

a

d

a
d
F
t
t
t
m
t
f
b
t
n

(

−

2
t
d
o

p
e
(
2
a
o

s a relation R [39]. First, we perform a selection based on the
values in the dimensions of ti disjoint from that in N and the cost
imension, R′

= σπ{RS \{N ,cost}}(R)=ti (R). To allow interpolation of the
terrain selection, at least two disjoint values are needed for each
dimension in N after the selection. Using linear interpolation, for
each terrain vector ti with unknown costs which lies between two
cost estimates C(tR′

j ), and C(tR′

k ) from R′, j < k representing the
order along N , the cost can be estimated as

C(tR
′

i ) = C(tR
′

j ) +
C(tR′

k ) − C(tR′

j )

k − j
(i − j). (8)

The same equation can be used for extrapolating the costs outside
of terrain classes if no other cost estimates exist. When extrapo-
lating, however, it must be ensured that terrain classes without a
cost estimation are basically traversable. Otherwise, terrain may
be extrapolated which does not contain any measurements due
to its inaccessibility.

Additionally, an expert can use the basis of the interpolated
costs to further fill in missing information for all the other ter-
rain classes which could not be interpolated on the aggregated
locomotion features. Another option is also to improve the cost
interpolation for unknown terrain classes using machine learning
approaches, such as ordinal regression [40].

4. Experiments & evaluation

To evaluate the proposed pipeline for traversability analysis,
experiments were conducted in an off-road alpine environment
to collect locomotion data from four different robot types. This
data was later processed with the pipeline and the results were
investigated. First, this section presents the setup and terrain for
the data recording. Second, the process of the pipeline to extract
traversability costs is presented in detail and evaluated in relation
to the experimental environment.

4.1. Experimental setup

One of the objectives of the work is to show that the
traversability in off-road terrain differs for different types of
platforms, and thus an individual assessment of traversability
is necessary. For this purpose, robots were selected that differ
from each other as much as possible in order to highlight the
differences in traversability. Therefore, the traversability analysis
was conducted using four different mobile robots which differ in
various ways, such as locomotion type, size, or weight, and thus
have completely different capabilities for off-road navigation.
The used robots were a tracked robot (Rovo3) from Mattro,1
a wheeled robot with skid-steer drive (Husky) from Clearpath
Robotics,2 a legged robot (Spot) from Boston Dynamics,3 and

wheeled robot with double Ackermann steering (Mercator),
eveloped by the Graz University of Technology (TU Graz) [41].
ig. 2 depicts the used robots. Table 1 provides an overview of
he robots’ specifications. The experiments were conducted on
he Seetaler Alps, an alpine off-road environment and military
raining ground in Austria. Data recording was conducted in two
ain areas, as shown in Fig. 3a. To establish comparability among

he robot systems when recording data, a universal mounting
rame was developed that contains the sensor setup and can
e mounted on each robot (see Fig. 4). The frame holds various
ime-synchronized sensors to record the locomotion of the robot,
amely a GNSS Sensor with RTK from geo-konzept to allow

1 www.hawe.com/products/robot-platform/ (accessed on 07.11.2022)
2 www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

accessed on 07.11.2022)
3 www.bostondynamics.com/products/spot (accessed on 07.11.2022)
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Fig. 2. The four robots used for data recording. From left to right: Mattro Rovo3,
Clearpath Robotics Husky, Boston Dynamics Spot, TU Graz Mercator.

Table 1
Specifications of the four robots used for data recording.

Rovo3 Husky Spot Mercator

Dimensions
(L×W×H in m)

1.2 × 1.2 × 0.5 1.0 × 0.7 × 0.4 1.1 × 0.5 × 0.7 1.8 × 1.2 × 1.2

Weight (kg) 295 50 32 550
Ground clearance (m) 0.15 0.13 0.3 0.12
Max speed (m/s) 4.15 1.0 1.6 3.0
Locomotion Type Skid Steering

(Tracked)
Skid Steering
(Wheeled)

Legged Double Ackerman
(Wheeled)

precise position measurements, an Xsens MTi-G-710 IMU, and a
Stereolabs ZED2 stereo camera. The frame is mounted centered
on each robot with the stereo camera pointing forward. The
frame is also connected to the robot to record internal status
information, such as wheel odometry. As some robots have only
a small battery to use, an external power supply for the frame is
mounted to extend the robot’s battery life.

4.2. Dataset

To conduct the traversability analysis and extract costs for
various off-road terrains, an appropriate dataset needs to be
provided. This section presents the used environment and data
recording process. In order to allow the replication of our exper-
iments and to foster further research on off-road terrain analysis
the recorded dataset is publicly available.4

The raw locomotion data is recorded with the universal frame
mounted on the four robots as described in Section 4.1. The
robots were controlled manually by an operator who followed
the robot. The maximum speed of all four robots was limited
to 2 m/s to allow the operator to keep up while controlling the
robot. Position data and robot internal data was recorded with a
frequency of 20 Hz while IMU measurements were recorded at
100 Hz.

The environment was segmented using two terrain dimen-
sions. One dimension represents the height profile of the envi-
ronment while the other dimension represents the land cover
class (see Figs. 3b and 3c). The height profile is segmented into
seven discrete classes [−3, 3] representing a range of slopes. The
class intervals are given in ◦ and defined as −3 ∼ [−45, −15),
2 ∼ [−15, −10), −1 ∼ [−10, −3), 0 ∼ [−3, 3), 1 ∼ [3, 10),
∼ [10, 15) and 3 ∼ [15, 45]. Depending on the motion of

he robot (up or down), the positive or negative slope is used to
etermine the corresponding class. For land cover classes, a set
f 17 classes were identified and labeled as shown in Fig. 3c.
The paths for the data recording were derived following the

rocess from Section 3.3, coming up with two routes within the
nvironment, as visualized in Fig. 3. Route 1 traverses an area
Testarea 1) containing forests, open vegetation, and roads. Route
(Testarea 2) is a highly alpine environment above the tree line
nd provides information on the alpine meadows and various
ther vegetation types. The two routes, which were traversed

4 https://robonav.ist.tugraz.at/data/

http://www.hawe.com/products/robot-platform/
http://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
http://www.bostondynamics.com/products/spot
https://robonav.ist.tugraz.at/data/
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Fig. 3. Overview of the test environment. (a) orthophotographic overview of the experimental environment. The data was recorded on the Seetaler Alps, an alpine
environment in Austria. (b) environment segmented into multidimensional terrain classes containing slope information, and (c) segmented environment into 17 land
cover classes. Red lines indicate the planned routes for the two test runs, which were recorded for every robot. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 4. The sensor setup for data recording. While every robot provided its
kinematic information, the sensor setup on the mounting frame was the same
for all robot types.

Table 2
Terrain class distribution of Route 1.

% Land cover

NF SL DR P RO AM DV LV MV HV

−3 [−45, −15) 6.85 0.39 1.24 0.40 2.28 0.66 0.00 1.21 0.00 2.56
−2 [−15, −10) 2.87 0.17 1.28 0.19 1.42 0.43 0,04 2.02 0.00 2.09
−1 [−10, −3) 1.25 0.28 4.43 0.31 6.19 0.31 0,02 2.34 0.00 1.03
0 [−3, 3) 0.22 0.13 1.89 0.11 15.93 0.07 0.00 0.49 0.00 0.10
1 [3, 10) 2.60 0.11 3.21 0.22 3.54 0.22 0.00 2.67 0.00 0.98
2 [10, 15) 3.42 0.19 1.16 0.17 0.55 0.25 0.00 2.12 0.00 1.49Sl

op
e

Cl
as
s

3 [15, 45] 9.38 0.32 0.68 0.24 1.30 0.35 0.00 1.30 0.00 2.25

with every robot, were planned according to land cover and slope
variety as well as their accessibility. The land cover types have
been determined using remote sensing with aerial images. For
planning, the distribution of land cover types within the test areas
was used to determine the most prominent classes; natural forest
(21%) and high vegetation (18%) made up the majority of the ter-
rain, followed by alpine meadows (13%) and low vegetation (13%).
Routes were primarily designed to incorporate these classes. The
mean slope of the full test area is 20.32◦, with 50% being slopes
arger than 15◦.

The route in Testarea 1 was intended to contain natural forests
with high slopes (> 15◦) to test the limits of the robotic plat-
forms. It features also a section along a paved road to have a
baseline comparison of where traversing should be possible for
every robot. Part of the route also goes through low vegetation
that was used as a pasture at the time of data collection. The sec-
ond route in Testarea 2 was primarily chosen because it contains
up to 37% high vegetation and 20% alpine meadows with high
slopes; 20% downhill and 19% uphill slopes (> 15◦). A general
overview of the slope and land cover distribution of the planned
routes is given in Table 2 and Table 3. The abbreviations for the
land cover classes are taken from Fig. 3c.
6

Table 3
Terrain class distribution of Route 2.

% Land cover

NF SL DR P RO AM DV LV MV HV

−3 [−45, −15) 0.00 1.49 0.00 0.82 0.14 5.62 2.94 0.14 1.68 6.24
−2 [−15, −10) 0.00 1.14 0.00 2.18 0.33 5.38 3.45 0.55 1.84 6.17
−1 [−10, −3) 0.00 0.46 0.03 1.19 1.83 1.27 2.58 1.18 0.88 2.62
0 [−3, 3) 0.00 0.00 0.00 0.06 0.09 0.10 0.96 0.08 0.11 0.08
1 [3, 10) 0.00 0.33 0.03 0.10 2.73 1.58 1.48 0.65 1.67 1.79
2 [10, 15) 0.00 0.91 0.03 0.19 1.00 2.55 0.60 0.17 3.16 6.02Sl

op
e

Cl
as
s

3 [15, 45] 0.00 2.15 0.00 0.11 0.06 2.06 0.65 0.11 2.87 13.35

As the robots are not able to follow the given path exactly
or not able to access parts of the route, the number of recorded
samples and the distribution of the land cover and slope classes
slightly differ. Table 4 provides a statistical overview of the differ-
ent recorded datasets for all four robots. This also shows several
differences in the recorded lengths, especially for Spot and Mer-
cator. In Route 1, Spot was only able to traverse a small part
of the planned route due to overly difficult terrain, resulting in
a shortened data recording. For Mercator, part of Route 1 was
blocked by a fence that could not be bypassed. Thus, part of the
route had to be backtracked and is therefore covered twice. Also,
the terrain in Route 2 was only passable for Mercator to a limited
extent, which resulted in a shorter route being recorded here.

4.3. Traversability cost analysis

The processing of the raw locomotion data from the recorded
dataset was done by extracting the raw sensor readings from a
recorded ROS bagfile from the GNSS (timestamp, latitude, longi-
tude, height above sea level, orientation) and IMU (timestamp,
linear accelerations, angular velocities). This data was then used
two extract two features which were then resampled with a fre-
quency of 1 Hz and time-synchronized as described in Section 3.
First, the velocity using the GNSS profile of the robot on a given
terrain, and secondly, the recording of the general smoothness of
the terrain which was derived using IMU measurements. To de-
rive the smoothness, a movement characterization method called
spectral arc length (SAL) was used on the angular velocity mea-
surements of the IMU [42]. Therefore, the arc length of the Fourier
magnitude spectrum was measured for each angular velocity
(roll, pitch, yaw) within a fixed frequency range of 20–35 Hz, as
determined in [43], and averaged over all three velocities.

To improve results, outlier removal was conducted using GMM
shown in Eq. (3) on one component (G = 1) with a density
threshold of λ = 0.01. Additionally, sequences in which operators
had to intervene were filtered out manually using the recordings
of the stereo camera.
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Table 4
Statistics of the recorded data on all four robots.

Rovo3 Husky Spot Mercator

Route 1 Route 2 Route 1 Route 2 Route 1 Route 2 Route 1 Route 2

Distance (m) 2 334 2 045 2 792 1 493 1 370 2 462 3 666 1 025
# IMU
Measurements

279 929 276 296 455 880 276 106 219 076 351 806 434 483 138 798

# GNSS
Measurements

55 778 53 804 91 073 55 220 43 675 70 360 86 895 27 760

# Camera Images 2329 2307 3 566 2 185 1 872 2 946 3 422 1 065

Slope (%) Route 1 Route 2 Route 1 Route 2 Route 1 Route 2 Route 1 Route 2

−3 [−45, −15) 6.24 13.73 12.78 10.43 1.92 0.90 7.81 7.11
−2 [−15, −10) 8.04 19.55 8.18 20.39 11.04 11.80 8.81 24.98
−1 [−10, −3) 35.49 9.09 26.80 12.96 36.19 36.51 35.15 18.07
0 [−3, 3) 10.92 2.04 10.56 4.13 17.39 3.66 12.89 4.24
1 [3, 10) 12.73 11.69 14.71 15.36 25.25 15.06 23.75 16.09
2 [10, 15) 8.58 14.91 10.97 16.82 6.12 20.96 6.98 23.20
3 [15, 45] 17.99 28.99 15.99 19.92 2.09 11.12 4.61 6.31

Land Cover (%) Route 1 Route 2 Route 1 Route 2 Route 1 Route 2 Route 1 Route 2

Natural Forest (NF) 23.55 0.00 28.62 0.00 8.79 0.00 7.17 0.00
Shrubland (SL) 0.00 10.42 0.00 3.24 4.06 5.77 1.26 6.61
Dirt Road (DR) 3.95 0.00 12.14 0.00 10.68 0.00 30.88 0.00
Paths (P) 0.00 8.52 0.00 21.23 0.00 5.44 0.00 17.37
Roads (RO) 37.59 8.58 27.84 5.40 69.52 62.81 39.53 13.82
Alpine Meadow (AM) 10.53 14.80 0.00 2.54 0.00 12.96 0.00 15.10
Dry Vegetation (DV) 0.00 3.57 0.00 9.35 0.00 3.97 0.00 7.60
Low Vegetation (LV) 15.26 0.00 18.16 3.43 6.95 0.00 11.51 4.24
Medium Vegetation (MV) 0.00 11.23 0.00 1.74 0.00 6.37 0.00 30.70
High Vegetation (HV) 9.12 42.88 13.24 53.08 0.00 2.68 9.65 4.54
(
c
i
s
0
o
c
a
c

Fig. 5. Example of the mapping of processed data (velocity profile) on GNSS
coordinates traversed by Husky on route 1.

The resulting features were geo-located using the GNSS data
and assigned to the corresponding terrain classes, as exemplarily
shown for the velocity profile of Husky in Fig. 5. In the visual-
ization, it can already be seen, that the environment impacts the
velocity driven significantly.

Before clustering all extracted features into their terrain
classes, up to nine path segments of a given terrain structure with
a length of up to 40 meters were randomly excluded from the
next steps and used for validation in Section 4.4. The remaining
features were clustered into their corresponding terrain bins and
aggregated into two values: the average driven velocity and the
average smoothness of the terrain. To represent these values in
[0, 1], the two aggregated features were normalized using feature
scaling [44] based on the maximum feature value of each robot.
For aggregating the locomotion features, only bins were selected
which at least contain 6 data samples (|binj| ≥ 6).

An overview of aggregated locomotion features for different
errain classes on Husky which were extracted from the recorded
7

dataset is shown in Table 5. The first row in each cell of the
table represents the aggregated feature value and the standard
deviation (σ ) for velocity, the second row represents the smooth-
ness of the terrain. The horizontal axis defines the land cover
classes as defined in Fig. 3c, the vertical axis shows the slope
classes as defined in Section 4.3. While terrain classes that are not
traversable, such as lakes (L) or buildings (B), are not represented
in the table, we see for instance that not sufficient data for a flat
alpine meadow (AM) was recorded and is thus left blank. The data
shows that the traversability of Husky in terrain classes such as
natural forests (NF) or shrubland (SL) has high velocity values in
all slope classes resulting in an overall high cost estimate. The
aggregated features on paved ways (DR, P, RO) on the other hand
show overall low values for velocity, indicating good traversabil-
ity in terms of speed. The results of the other robots can be found
in the supplementary material.

Using the cost function from Eq. (7), the traversability of a spe-
cific terrain can be computed. The weights for our cost function
can be set to either favor fast routes (velocity) or smooth routes
(smoothness). The selection of the weights usually depends on
the demands on the robot and its application. For example, a
robot may be required to get to the destination as quickly as
possible without putting any importance on the smoothness of
the surface. In other scenarios (e.g. transport of sensitive goods),
it may be more important to reach the destination as smoothly
as possible, in which case speed plays only a minor role. For our
experiments, a combined weighting approach was selected which
slightly favors a faster route: w0 = 1.0 (velocity), w1 = 0.5
smoothness). To make the four robot systems comparable, the
osts have been calculated for all of them using the same weight-
ng factors. To allow safer navigation, terrain classes that have a
ingle feature greater than 0.95 are set to be non-traversable (ρ =

.95 from Eq. (6)). After interpolating the cost values over the
rdinal slope information as described in Section 3.5, additional
ost values could be identified. Blocked land cover classes such
s buildings, lakes, or fences were manually set at the highest
ost to avoid planning through such environments. Table 6 shows
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Table 5
Table showing the two aggregated locomotion features (velocity and smoothness) and their standard deviation (σ ) for each terrain class on the Husky data.

Land cover class

Feature NF SL DR P RO AM DV LV MV HV Overall

L
tj
i σ L

tj
i σ L

tj
i σ L

tj
i σ L

tj
i σ L

tj
i σ L

tj
i σ L

tj
i σ L

tj
i σ L

tj
i σ L

tj
i σ

vel. 0.74 (0.17) 0.39 (0.18) 0.17 (0.15) 0.08 (0.11) 0.27 (0.05) – - 0.35 (0.23) – - 0.55 (0.21) – - 0.37 (0.16)
−3 smth. 0.19 (0.13) 0.29 (0.10) 0.38 (0.14) 0.65 (0.15) 0.58 (0.13) – - 0.41 (0.14) – - 0.28 (0.13) – - 0.40 (0.13)

vel. 0.68 (0.18) 0.71 (0.21) 0.16 (0.14) 0.05 (0.08) 0.21 (0.09) 0.35 (0.24) 0.28 (0.26) – - 0.57 (0.22) 0.51 (0.19) 0.39 (0.18)
−2 smth. 0.22 (0.12) 0.17 (0.09) 0.33 (0.10) 0.61 (0.14) 0.54 (0.12) 0.72 (0.16) 0.50 (0.16) – - 0.30 (0.13) 0.48 (0.13) 0.43 (0.13)

vel. 0.70 (0.17) – - 0.14 (0.09) 0.04 (0.06) 0.18 (0.10) – - 0.32 (0.16) 0.05 (0.16) 0.37 (0.18) 0.23 (0.18) 0.25 (0.14)
−1 smth. 0.21 (0.13) – - 0.37 (0.12) 0.57 (0.13) 0.47 (0.12) – - 0.45 (0.12) 0.47 (0.14) 0.39 (0.12) 0.39 (0.15) 0.42 (0.13)

vel. 0.38 (0.14) – - 0.18 (0.11) – - 0.23 (0.11) – - 0.30 (0.24) – - 0.44 (0.14) 0.12 (0.15) 0.27 (0.15)0 smth. 0.37 (0.12) – - 0.34 (0.10) – - 0.44 (0.11) – - 0.38 (0.13) – - 0.34 (0.09) 0.40 (0.12) 0.38 (0.11)

vel. 0.74 (0.16) 0.50 (0.18) 0.22 (0.12) – - 0.20 (0.08) 0.22 (0.16) 0.36 (0.19) 0.18 (0.14) 0.41 (0.19) 0.18 (0.16) 0.34 (0.15)1 smth. 0.20 (0.13) 0.33 (0.12) 0.41 (0.13) – - 0.42 (0.10) 0.52 (0.14) 0.41 (0.11) 0.47 (0.12) 0.35 (0.13) 0.40 (0.14) 0.39 (0.13)

vel. 0.62 (0.16) 0.55 (0.17) 0.30 (0.17) 0.28 (0.16) 0.22 (0.07) 0.26 (0.19) 0.34 (0.28) 0.25 (0.10) 0.45 (0.18) 0.57 (0.15) 0.38 (0.16)2 smth. 0.27 (0.12) 0.32 (0.11) 0.46 (0.13) 0.58 (0.15) 0.45 (0.10) 0.55 (0.11) 0.45 (0.15) 0.41 (0.11) 0.33 (0.13) 0.35 (0.12) 0.42 (0.12)

vel. 0.72 (0.15) 0.56 (0.19) – - – - 0.22 (0.06) 0.36 (0.27) 0.26 (0.26) – - 0.50 (0.22) – - 0.44 (0.19)

Sl
op

e
Cl
as
s

3 smth. 0.22 (0.13) 0.26 (0.08) – - – - 0.47 (0.08) 0.43 (0.13) 0.48 (0.14) – - 0.28 (0.11) – - 0.36 (0.11)

vel. 0.65 (0.16) 0.55 (0.19) 0.19 (0.14) 0.11 (0.10) 0.22 (0.08) 0.30 (0.22) 0.32 (0.23) 0.16 (0.13) 0.47 (0.19) 0.32 (0.16) 0.33 (0.16)Overall smth. 0.24 (0.13) 0.27 (0.10) 0.38 (0.12) 0.60 (0.14) 0.48 (0.11) 0.55 (0.14) 0.44 (0.14) 0.45 (0.12) 0.32 (0.12) 0.40 (0.13) 0.41 (0.12)
Table 6
Cost table after interpolation from Husky data.

Land cover class
NF SL DR P RO AM DV LV MV HV RI L B WR S C F

-3 1.00 0.61 0.37 0.48 0.70 1.00 0.66 0.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-2 0.96 0.96 0.30 0.40 0.57 1.00 0.64 0.13 0.87 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-1 0.98 0.87 0.32 0.36 0.46 0.74 0.65 0.28 0.66 0.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 0.66 0.73 0.34 0.32 0.50 0.47 0.55 0.42 0.71 0.31 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 0.80 0.48 0.52 0.44 0.57 0.67 0.47 0.69 0.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.92 0.86 0.63 0.71 0.50 0.66 0.67 0.51 0.72 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00Sl

op
e
Cl
as

s

3 1.00 0.82 0.78 0.91 0.53 0.69 0.59 0.56 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Costs 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F
s
R
b

the final traversability costs of the terrain classes for the data
recorded on Husky. The costs for the terrains computed for Husky
are represented by the colors in Table 6. Green indicates low costs
(0), while red color indicates high costs (1). Here we also see that
we recover a reasonable cost value for the flat alpine meadow
because the robot is able to traverse a positively and negatively
inclined meadow.

Finally, the cost table can be used for creating a cost map
and to plan routes through the environment. Fig. 6 shows the
resulting cost maps of the four robot types which were used in
the experiment. Since the cost is directional due to the elevation
profile, not all costs can be represented as a graphic. Therefore,
the slope costs in that graphic are depicted by the maximum
positive slope to give a representative visualization. For path
planning, the gradient on a certain terrain depends on the move-
ment of the robot and has to be considered accordingly. In the
visualization, it can be seen that Rovo3 (Fig. 6a) has little trouble
in the alpine meadow and a rather uniform color, indicating only
minor differences for the terrain in terms of navigation. Husky
(Fig. 6b) performs well in the alpine meadow as well, and also
does seemingly better on roads than on harsher terrains. Spot
(Fig. 6c) showed the most issues in rough terrain and prefers to
stay on paved roads. Mercator (Fig. 6d) too prefers roads and is
unable to drive in natural forests (due to its size). However, it
performs better than Spot in areas with high vegetation.

4.4. Cost validation

To validate the cost estimates which were derived from the
proposed pipeline, several path segments which were excluded
from the cost estimation in Section 4.3 were used. Path segments
were randomly extracted from the data as consecutive poses prior
to cost estimation, with the requirement that they correspond
to the required terrain classes, as described in Table 7. Thus,
path segments were selected to represent different terrain class
 e

8

variations that occurred during the training process in different
complexity. A path segment holds a set of consecutive locations
P = {pi} which can be used to determine the corresponding
terrain class ti at time i as described in Section 3.2. The resulting
path segments resemble a variety of segments ranging from a
single class with no slope, over single/multiple classes with a
positive or negative slope, to a representative set for vegetation
and paved ways in general with various slopes for which con-
secutive recordings that traverse at least two land cover classes
of paved ways (RO, DR, P) or vegetation (LV, MV, HV) was used
to represent the driving capabilities in the representative classes.
The definition of a representative set for vegetation and paved
ways was chosen, as a consecutive recording of all the set classes
does not exist for all robot types.

Table 7 gives an overview of the cost predictions on the path
segments. The table shows how long an extracted path segment
is for a given terrain configuration and presents the predicted
and actual costs. The actual and predicted costs Cx for a path
segment P is the sum of the actual/predicted cost Cx(ti) at point
pi, multiplied by the intermediate distance di =

√
(pi−1 − pi)2

Cx =

|P|∑
i=1

Cx(ti) · di, (9)

where x ∈ {a, p} can either be the actual cost (a) or the prediction
(p). The relative error e is given in % and is calculated as

e =
|Ca − Cp|

Ca
· 100. (10)

or some robot types, a specific (continuous) recording of a de-
ired path does not exist and is therefore denoted with ‘‘-’’.
esults show a prediction error of 20–25% on all samples com-
ined for each robot system, resulting in an overall validation
rror of 21.75%. When evaluating each data sample on all robot
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Table 7
Validation results on continuous path segments which were excluded from the cost estimation process.

Data sample
description

Rovo3 Husky Spot Mercator Overall error
(e)

Length
(m)

Actual
(Ca )

Prediction
(Cp )

Error
(e)

Length
(m)

Actual
(Ca )

Prediction
(Cp )

Error
(e)

Length
(m)

Actual
(Ca )

Prediction
(Cp )

Error
(e)

Length
(m)

Actual
(Ca )

Prediction
(Cp )

Error
(e)

NF, no slope 5.08 3.23 5.08 36.42 5.08 3.65 3.34 9.28 – – – – – – – – 22.85
DR, negative slope 6.87 5.01 4.28 17.06 5.56 4.09 1.76 132.39 5.16 3.42 5.16 33.72 7.45 3.28 6.31 48.02 55.31
RO, positive slope 6.94 5.96 5.31 12.24 5.43 2.86 2.66 7.52 5.61 3.93 4.00 1.75 5.53 5.31 4.86 9.26 7.94
LV, various slopes 18.31 9.72 13.41 27.52 5.46 2.04 1.80 13.33 6.93 3.04 3.16 3.80 6.21 4.10 5.47 25.05 20.55
AM, RO, positive slope 10.74 8.84 8.86 0.23 19.65 15.08 12.52 20.45 10.78 7.96 5.46 45.79 10.29 7.69 8.02 4.11 18.27
AM, RO, negative slope 13.57 9.61 11.21 14.27 12.25 9.20 6.45 42.64 – – – – 9.76 6.71 8.47 20.78 25.82
RO,SL,LV, various slopes – – – – 27.62 15.41 13.73 12.24 20.47 9.84 17.03 42.22 15.57 11.51 13.65 15.68 22.72
Ways, various slopes 20.63 15.70 17.57 10.64 11.63 8.31 6.89 20.61 19.71 15.49 12.14 27.59 13.80 9.06 10.68 15.17 18.43
Vegetations, various slopes 35.25 19.12 27.45 30.35 39.17 29.79 24.59 21.15 15.05 10.99 10.35 6.18 18.16 14.04 10.53 33.33 24.12

All Samples Combined 117.39 77.19 93.17 20.24 131.85 90.43 73.74 24.47 83.71 57.9 62.38 19.46 86.77 61.7 67.99 21.90 21.75
Fig. 6. Representative cost maps of the four different robot types holding the maximum cost value from terrain classes with positive slope. (a) Rovo3 (b) Husky (c)
Spot (d) Mercator.
Fig. 7. Plotted costs for the validation of ‘‘AM, RO, positive slope’’ on Rovo3.
Due to the relatively small error of 0.23%, the predicted costs overlap nicely
with the actual costs indicating a good cost estimate for the given classes.

systems (last column), the error also lies around 20%, with the ex-
ception of ‘‘DR, negative slope’’ (55.31%) and ‘‘RO, positive slope’’
(7.94%). Figs. 7 and 8 additionally plot the actual and predicted
costs of two exemplary path segments over the distance.

Fig. 7 shows the path segment with the smallest error,
ecorded with Rovo3 on AM,RO land covers with positive slopes.
ere, it can be seen, that the cost estimate fully reflects the
obot’s capabilities on the given terrain.
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In contrast, Fig. 8 shows the cost prediction of Husky on
the path ‘‘DR, negative slope’’ which has the biggest error of
132.39%. Based on the plot, one can see that the actual costs vary
a lot within the terrain class, indicating that it is not possible
to represent negative ‘‘DR’’ classes with a single cost estimate.
Also, the cost estimate for the class seems to be too low for the
extracted validation sample, indicating that a path segment was
(randomly) selected which does not fully reflect the estimated
costs from the dataset.

4.5. Path planning

To investigate the usefulness and impact of the generated cost
maps concerning path planning, routes through the environment
were planned using the maps and later analyzed. For this, the
widely applied A* search algorithm [45] was used to plan routes
with pre-defined start and goal positions using the computed
cost maps. To consider the direction of slopes in path planning,
layered cost maps can be used [46] in which each layer represents
the costs for a specific slope direction. Based on the planner’s
direction of expansion, the corresponding layer can be selected.
An example route for all four robot types can be seen in Fig. 9.
From this visualization it can be seen, that Rovo3 (Fig. 9a) is
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Fig. 8. Plotted costs for the validation of ‘‘DR, negative slope’’ on Husky. One
can see, that the error of 132.39% arises due to a high variance in the actual
costs in the given terrain class, which cannot be reflected by the computed cost
estimates. Also, the cost estimate for the class seems to be too low for the
extracted validation sample.

Fig. 9. Path planning results using A* for (a) Rovo3, (b) Husky, (c) Spot, (d) and
Mercator. The paths indicate the planned route through the terrain using the
computed cost estimates.

capable of going through the natural forest on a dirt road and
thus is able to follow a straight shorter path. Husky (Fig. 9b) has
little trouble within all different types of terrain and is also able
to traverse steep slopes, letting it plan rather directly through
the environment. Spot (Fig. 9c) and Mercator (Fig. 9d) have more
trouble navigating in harsh environments and prefer to stay on
dirt roads. However, while Spot does not allow any deviation
from the road, Mercator is able to take some shortcuts.

To validate the resulting paths, a qualitative evaluation was
conducted with three experts each who were either involved
in the development of the robot or have used the platform in-
tensively in the field. During the evaluation, the experts were
asked about the robot’s capabilities in off-road terrain and how
they would rate its navigation capability. They were then shown
an orthographic satellite image, a height image, as well as the
land cover information of the same area as shown in Fig. 9 and
asked to draw the optimal route which they think the robot could
traverse, given the same start and end positions. The resulting
paths from the experts are visualized in Fig. 10. One can see,
that for Husky (Fig. 10b) and Spot (Fig. 10c), the experts had a
similar opinion on the optimal path of the robot. For Mercator
(Fig. 10d), Expert 1 had a similar route in mind as computed,
while Expert 2 would have sent the robot a completely different
way. Also, for Rovo3 (Fig. 10a), all three experts expected a
different route to be optimal. When asked why, they stated that
they thought that the open area would be easier to traverse for
the robot. Furthermore, the experts often did not see details that
would have led to a preferred route. Following on the example of
Mercator, the experts had difficulty recognizing the path through
the forest as such and therefore rated it as worse than the open
area. To compare the similarity of the computed and expert
paths, Path Similarity Analysis (PSA) [47] was conducted using the
discrete Frèchet distance [48] as metric. The metric indicates an
identical path if the distance is zero, while large distances indicate
dissimilarity. Table 8 shows the results of the path similarity
10
Table 8
Path similarity analysis on the expert evaluation results.
Robot Computed Path Expert 1 Expert 2 Expert 3

Length
(m)

Length
(m)

Fréchet
(m)

Length
(m)

Fréchet
(m)

Length
(m)

Fréchet
(m)

Rovo3 765.03 624.01 213.67 636.18 235.84 750.68 204.63
Husky 612.94 642.80 31.54 767.00 89.21 623.79 52.06
Spot 1152.80 1185.90 9.73 1184.04 12.49 1164.56 12.19
Mercator 955.01 1179.43 106.64 962.74 194.59 1170.49 184.19

Table 9
Costs for the experts’ and computed paths, based on the derived cost maps of
each robot.
Robot Computed Path Expert 1 Expert 2 Expert 3

Costs
(C)

Costs
(C)

APE
(%)

Costs
(C)

APE
(%)

Costs
(C)

APE
(%)

Rovo3 516.76 545.08 5.48 554.19 7.24 561.83 8.72
Husky 331.76 347.93 4.87 365.64 10.21 349.74 5.42
Spot 571.63 574.44 0.49 581.39 1.71 575.02 0.59
Mercator 689.01 716.81 4.03 761.61 10.54 741.24 7.58

analysis. From there, it can be seen that the experts had other
expectations for the planned path from Rovo3. On the other hand,
the traversability estimates of Spot and the other robots seem to
closely match the expectations of the experts. Furthermore, the
costs of the predicted and experts’ path were computed based
on the derived cost table and environment information. Table 9
shows the computed costs values for the given paths and also
provides an absolute percentage error (APE) to show how far the
cost of the experts’ paths deviate from the prediction. The used
cost maps reflect the traversability estimates from the recorded
locomotion data. Investigating the APE between an expert’s path
and the prediction is a good indicator on how well the derived
cost maps fit to the experts’ estimations. It can be seen that while
the paths from the experts often diverged from the computed
path, the costs of their paths were still similar to the computed
path.

5. Discussion

In this section, we discuss the results obtained from the con-
ducted experiments in more detail. The proposed pipeline was
applied to recorded data of four different robot systems to eval-
uate its ability to generate robot-dependent off-road cost maps
(semi)automatically. The resulting cost maps in Fig. 6 show, that
the traversability of the terrain highly depends on the locomo-
tion capabilities of the used robot. While Husky and Rovo3 are
able to traverse most of the environments, Mercator and Spot
struggle, especially with steep terrain and high vegetation. This
also reflects the authors’ observations while recording the data on
the testing ground. In the resulting cost tables (e.g. see Table 6),
noise and imprecisions could be observed for some classes. For
example, the cost of land cover ‘‘MV’’ and slope ‘‘0’’ does not fully
reflect the actual capability of the system as it seems that costs
get worse for easier terrain. Similarly to that, land cover class
‘‘SL’’ and slope class ‘‘−3’’ has lower cost, although the terrain is
steeper. Although going downwards seems to reduce the costs in
some classes, this seems to be an outlier, as the lower class (SL,
−2) is marked to be completely non-traversable.

For a quantitative evaluation of the cost estimation, path
segments from the recorded locomotion data were excluded
from the cost estimation process and used to compare the es-
timated costs to the actual costs. The overall prediction accuracy
of 20–25% (see Table 7) on all four robots shows that a statistical
extraction of a cost estimate is useful for a rough estimate of
the traversability for given terrain classes. However, there is a
higher variance within the robots that were evaluated. While
some perform badly (e.g. Husky on DR, negative slope with an
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Fig. 10. Path planning on the computed cost map using A* for (a) Rovo3, (b) Husky, (c) Spot, (d) and Mercator. Costs are shown in grayscale. The red path indicates
the planned path through the terrain using the computed cost estimates. Green, turquoise, and yellow show the expectations of the experts. For Spot (c), all paths
overlap strongly due to their similarity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
error of 132.29%), others show only a slight difference in the
results (e.g. Rovo3 on AM, RO, positive slope with an error of
0.23%). When comparing the path segments with the same terrain
classes on all four robots (Table 7 right), two classes seem to fall
out of the average error. ‘‘DR, negative slope’’ is with 55.31% way
above the average error. Possible reasons for this could be the
lack of recorded data points for certain terrain classes or the high
variance of the extracted features in a terrain class that cannot be
represented by a single aggregated feature value. To overcome
this, the proposed pipeline could be adapted to estimate the
traversability of a given terrain by also taking information about
the robot’s immediate surroundings into account. On the other
hand, ‘‘RO, positive slope’’ has a much lower error of 7.94%, which
could be explained by a low variance within the terrain class, as
roads tend to provide a smooth and uniform driving behavior.

Since robots often differ greatly in various aspects (e.g. di-
mensions, weight, locomotion...), it is difficult to draw general
conclusions for the traversability of a robot type on given terrain.
For example, it is not clear which capability or specification of
the robot influences the calculation and in which way. To derive
general conclusions, the experiments would have to be repeated
with several platforms that differ only slightly from each other.

Path planning on the computed cost maps results in different
routes suggested for all four robots. A direct comparison from
the expert interviews shows, that the paths reflect the actual
capabilities of the robotic systems quite well. However, it has to
be noted that the subjective assessment of the optimal routes
for a given robot system by an expert is dependent on his/her
subjective awareness of risk. No qualitative evaluations of the
paths are performed so far and thus need to be conducted in the
future.

A downside of the proposed method is, that the recorded
dataset depends on the operator’s handling of the robot. As the
11
robot is manually controlled by the operator, the dataset can be
biased by the operator’s control skills, even though the operator
is instructed to follow a uniform diving behavior. Therefore, if the
method is used to compare the capabilities of different robots
within a specific environment, it is recommended to have the
same operator handling all robotic systems. Alternatively, assis-
tance modules or shared autonomy components could be used to
mitigate this problem during data recording (e.g. [49,50]).

6. Conclusion

This paper presented a new pipeline for traversability analysis
using locomotion data recorded in standardized experiments and
segmented earth observation data. By aggregating locomotion
features obtained from the recorded data which represents the
robot’s performance over certain terrain, the traversability of a
given terrain can be estimated using a weighted cost function.
Costs for terrain classes that were not sufficiently represented
in the recorded data can be interpolated, if enough costs from
ordinal neighbor classes exist. Experiments on the Seetaler Alps,
an alpine terrain in Austria, were conducted using four robot
systems with different locomotion systems (tracked, legged, dif-
ferential drive, double Ackermann drive). While the experiments
show that the results depend on the quality and amount of
recorded data, the computed traversability costs well reflect the
capabilities of the robotic systems. It is also shown, that assigning
a general cost estimate for a given terrain class is representative
if the locomotion behavior in the terrain class itself is stable
and does not show a high variance. For terrain classes with high
variance, additional information (e.g. on the immediate surround-
ing of the robot) should be integrated to achieve a more fine-

grained traversability estimate. The recorded datasets are publicly
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vailable and can be used for further research on traversability
nalysis or similar topics. Future work focuses on the optimiza-
ion of the proposed pipeline with the help of machine learning
pproaches to improve the traversability estimation on terrain
hich is known to vary even within its class. Another research
irection is how the results of the existing cost estimation can
e transferred to other robot systems without the need to repeat
he full set of experiments. Here, general descriptive parameters
f robot properties and capabilities in combination with transfer
earning could be investigated.
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