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Abstract

A mechanical model and numerical method for structural membranes implied by all isosurfaces of a level-set function in
three-dimensional bulk domain are proposed. The mechanical model covers large displacements in the context of the finite

train theory and is formulated based on the tangential differential calculus. Alongside curved two-dimensional membranes
mbedded in three dimensions, also the simpler case of curved ropes (cables) in two-dimensional bulk domains is covered.
he implicit geometries (shapes) are implied by the level sets and the boundaries of the structures are given by the intersection
f the level sets with the boundary of the bulk domain. For the numerical analysis, the bulk domain is discretized using a
ackground mesh composed by (higher-order) elements with the dimensionality of the embedding space. The elements are by
o means aligned to the level sets, i.e., the geometries of the structures, which resembles a fictitious domain method, most
mportantly the Trace FEM. The proposed numerical method is a hybrid of the classical FEM and fictitious domain methods
hich may be labelled as “Bulk Trace FEM”. Numerical studies confirm higher-order convergence rates and the potential for
ew material models with continuously embedded sub-structures in bulk domains.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Finite strain theory; Ropes and membranes; Fictitious domain method; Embedded domain method; Trace FEM; Level-set method

1. Introduction

One may classify models in structural mechanics based on their dimensionality which is mostly related to their
eometric properties. For example, thin structures with one prominent direction subjected to bending may often
e modelled as one-dimensional beams, and flat structures with small thickness as plates. For straight beams and
lates, one may thereby reduce the dimensionality of the naturally three-dimensional structure to 1 or 2, respectively,
ften resulting in largely simplified boundary value problems (BVPs) compared to the original, three-dimensional
ase. However, for curved structures such as curved beams, membranes and shells [1–5], the situation is often more

complex as they are embedded in some exterior space with higher dimensionality. As the deformation takes place in
this background space, the complexity is still related to the dimensionality of the background space. Furthermore,
due to the curvature of the lower-dimensional structures, differential geometry becomes an inherent part of the
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mechanical models, i.e., the resulting BVPs. In this work, the focus is on structural membranes being curved two-
dimensional structures in three dimensions undergoing large displacements; the simpler reduction of this scenario
are curved one-dimensional ropes (cables) in two dimensions.

Curved lower-dimensional manifolds such as curved lines in 2D and curved surfaces in 3D may be defined
xplicitly through parametrizations [6–9] or implicitly through the level-set method [10–12]. In the latter case, often
he zero-level set of some scalar function implies the domain of interest (e.g., the geometry of one membrane).
owever, it is important to note that a level-set function, in fact, implies infinitely many level sets featuring different

onstant values each. One may then ask for a successive analysis of different curved structures implied by (some)
elected level sets. It turns out that the displacement fields in the vicinity of a selected level set (typically) vary
moothly, suggesting that it is possible to formulate a mechanical model for the displacement field of all structures

implied by all level sets within some bulk domain at once; such a model and the related numerical analysis are in the
ocus of this work. Innovative applications of the proposed mechanical model may be found in new material models
here some (elastic) bulk material is equipped with embedded sub-structures (i.e., continuously distributed fibres

nd membranes), introducing a new concept of anisotropy. The simultaneous analysis of structures also features
dvantages in design and optimization as minimal and maximal values of displacements or stress quantities are
mmediately obtained for a whole family of geometries (i.e., all level sets).

The basic idea is outlined as follows: Let there be some undeformed bulk domain with the dimensionality of the
mbedding space and a level-set function. The level sets inside the bulk domain imply infinitely many bounded,
urved manifolds of codimension 1, which herein represent a set of curved, undeformed membranes in 3D or ropes
n 2D, respectively. We now seek a mechanical model which determines the displacement field of the bulk domain,
uch that the level sets interpreted in this deformed bulk domain are the deformed structures (membranes). Therefore,
finite strain theory is formulated in the frame of the tangential differential calculus (TDC). With TDC, we only

efer to the modern differential geometric point of view of formulating BVPs on curved manifolds based on surface
ifferential operators rather than on local curvilinear coordinate systems and Christoffel symbols. The advantages
f the TDC-framework have already been demonstrated by the authors in [13], with focus on generalizing the
eometrical, mechanical and numerical description and treatment of single membranes, see also [14,15] for shells.
he potential for simultaneous multi-membrane studies on all level sets was not foreseen at that point, yet it may
ow be seen as another important advantage of proposing mechanical models for curved structures in the frame of
he TDC.

For the numerical analysis, the (undeformed) bulk domain is discretized using higher-order elements of the same
imensionality as the embedding space. The elements conform to the boundary of the bulk domain, however, they
re by no means aligned to the level sets which imply the actual shape of the structures. This may be interpreted
s a hybrid between the classical FEM and fictitious or embedding domain methods. Here, classical FEM refers to
single-membrane study employing a surface mesh which conforms to the shape and boundary of the membrane;

his may also be called the Surface FEM. A fictitious domain approach for a single-membrane study would be
o use, e.g., the Cut FEM or Trace FEM as presented in [13] where a background mesh is employed that neither
onforms to the shape nor the boundary of the membrane of interest, see also [16–18] for general references on
he Cut FEM and [19–21] for the Trace FEM. Just as most fictitious domain methods, the Trace FEM comes at
he price of dealing with cut elements in terms of integration and stabilization and increased efforts in considering
oundary conditions. The method presented here does also use a background mesh in the bulk domain, however,
ithout any need for cut elements and boundary conditions are prescribed as usual in the classical FEM. In this

ense, it resembles most features of the classical FEM, yet it is emphasized that d-dimensional background elements
re used to simultaneously analyse a set of curved, (d − 1)-dimensional structures.

It seems natural to label the resulting approach, which herein is applied in the context of structural membranes
nd ropes (in large displacement theory), the “Bulk Trace FEM”. The most important fact that the domains of
nterest are imposed by level sets justifies the use of the term “Trace FEM” and the addition of “bulk” refers to
he fact that rather than solving a BVP on one level set, it is solved simultaneously on all level sets in some bulk
omain.

To the best of the author’s knowledge, we are not aware of similar approaches for the simultaneous modelling
nd analysis of curved, lower-dimensional structures, even less so in the context of large displacements. However,
or flow and transport problems, models for the simultaneous solution on all level sets are found, e.g., in [22–24] and

or some elliptic partial differential equations in [25]. Often, low-order meshes are employed in the bulk domains
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and the transport takes place on closed level sets so that boundary conditions play a minor role. Then, the emphasis
is often on transient problems and possibly moving bulk domains [22,24]. For an overview of finite element methods
for PDEs on surfaces in general and an introduction on the simultaneous analysis on all level sets within a bulk
domain for some elliptic and parabolic PDEs, see [26]. Minimizing the bulk domain to a narrow band around some
selected level set of interest leads to the narrow-band method proposed in [27,28]. Narrow-band methods based
on finite differences on a standard Cartesian grid for transport problems are presented in [29–31]. As mentioned
before, when the solution on a single level set is sought, fictitious domain methods such as the Trace FEM and
Cut FEM may be used as presented, e.g., in [19,32–37]. In structural mechanics, Cut and Trace FEM approaches
are published in [38] for linear membranes, [39] for Reissner–Mindlin shells, [40] for Kirchhoff–Love shells and
in [13] for non-linear ropes and membranes in large displacement theory.

The paper is organized as follows: The general concept of using level sets over bulk domains for the implicit and
simultaneous geometry definition of curved structures is outlined in Section 2, including the definition of tangential
differential operators on the level sets. The mechanical setup in the context of large displacement theory is outlined in
Section 3, where reference and spatial configurations are distinguished and equilibrium is enforced in the latter. The
complete BVP for the simultaneous mechanical modelling on all level sets in the bulk domain is given, including
boundary conditions. When the bulk domain is optionally equipped with mechanical properties (e.g., an elastic
bulk material), the concept of continuously embedded sub-structure models is outlined in Section 3.7. The Bulk
Trace FEM for the numerical approximation of the BVP is defined in Section 4. Numerical results are presented
in Section 5 in two- and three-dimensional bulk domains and demonstrate higher-order convergence rates provided
that the solutions of the BVP are sufficiently smooth. The paper ends in Section 6 with a summary and conclusions.

2. Level sets in bulk domains: Geometric setup and differential operators

Before dealing with the mechanical setup in terms of deformed and undeformed configurations in finite strain
theory, the situation is first outlined generically with focus on geometric quantities as implied by the level sets
within some bulk domain and resulting differential operators.

2.1. Bulk domains and level-set functions

Let there be a d-dimensional bulk domain Ω ⊂ Rd and a level-set function φ (x) : Ω → R. We call the smallest
and largest value of φ in the bulk domain φmin

= infφ (x) and φmax
= supφ (x). Then, the individual level sets Γ c

related to constant level-set values c ∈ R,

Γ c
= {x ∈ Ω : φ(x) = c ∈ R} , φmin < c < φmax, (1)

are bounded, typically curved, (d − 1)-dimensional manifolds (i.e., they have codimension 1), see Fig. 1.
Consequently, the set of all bounded level sets Γ c coincides with Ω . The boundary of the bulk domain Ω is called
∂Ω . The boundary of some level set Γ c is labelled ∂Γ c and is the intersection point or line of the level set with
constant value c and the boundary of the background domain ∂Ω , see again Fig. 1. As such, the set of all ∂Γ c

coincides with ∂Ω .
Instead of defining the bulk domain of interest Ω directly with resulting φmin and φmax, one may also prescribe

Ω indirectly by first defining a superset of the bulk domain, say Ω sup
⊂ Rd , and then limit the bulk domain of

interest Ω using specified values for φmin and φmax,

Ω =
{

x ∈ Ω sup
: φmin

≤ φ(x) ≤ φmax} , (2)

see Fig. 2. In this case, the level sets Γ c and their boundaries ∂Γ c are defined as before, however, we shall restrict
the boundary of the bulk domain ∂Ω to those parts of the boundary where φ (x) ̸= φmin and φ (x) ̸= φmax.

2.2. Normal and conormal vectors

The boundary of the bulk domain ∂Ω features a unit normal vector (field) m (x), x ∈ ∂Ω . Depending on
whether the bulk domain is defined through a parametrization or implicitly, these normal vectors may be obtained

through different definitions. However, because the bulk domain is later discretized by higher-order elements for

3



T.-P. Fries and M.W. Kaiser Computer Methods in Applied Mechanics and Engineering 415 (2023) 116223
Fig. 1. Some bulk domain Ω and level-set function φ (x) in two and three dimensions and the implied level sets Γ c .

Fig. 2. The bulk domains Ω resulting from some larger Ω sup in two and three dimensions and a prescribed level-set interval
[
φmin, φmax].

Some selected level sets Γ c in this interval are also shown.

the numerical analysis, see Section 5, the generation of m on element boundaries is a standard task in the FEM
and not further outlined here.

The unit normal vector (field) n (x) on the level sets Γ c in the whole bulk domain Ω is obtained by the gradient
of the level-set function,

n (x) =
n⋆

∥n⋆∥
with n⋆ = ∇φ (x) , x ∈ Ω . (3)

One may then also construct the projector field p (x) ∈ Rd×d , x ∈ Ω ,

p x = I − n ⊗ n. (4)
( )
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Fig. 3. Vector fields in the domain Ω and on the boundary ∂Ω in two and three dimensions, the right figures show zooms of the left ones.
ormal vectors n with respect to the level sets Γ c in Ω are shown in blue. Normal vectors m with respect to ∂Ω are red, tangential vectors

t are grey and conormal vectors q are green. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

The unit conormal vectors q (x) on ∂Ω are in the tangent plane of the corresponding level sets at ∂Γ c and yet
normal to n (x) from above. In case of two-dimensional bulk domains, d = 2, see Figs. 3(a) and (b), these vectors
are defined without the normal vectors of the bulk domains m and are simply obtained from n = [nx , ny]T as

q (x) =

[
qx

qy

]
=

[
−ny

nx

]
.

For three-dimensional bulk domains, d = 3, see Figs. 3(c) and (d), one needs to first generate tangent vector fields
t (x) on ∂Ω using cross products of the normal vector fields from above, t = m × n, and then

q =
q⋆

∥q⋆∥
with q⋆ = n × t.

These conormal vector fields will later play an important role in the weak formulation of the boundary value problem
and the definition of boundary conditions. It is noted that for the indirect definition of the bulk domain Ω according
to Eq. (2), conormal vectors may only be defined on those parts of the whole boundary of Ω which do not coincide
with level sets, because there m = n and tangential vectors t may not be computed through cross products. This is

hy in Section 2.1, those parts of the boundary of the bulk domain were excluded from ∂Ω . In other words, ∂Ω
s the boundary of the bulk domain Ω where m ̸= n and, hence, conormal vectors q exist, see, e.g., the black line

n Fig. 2(c).
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2.3. Differential operators with respect to level sets

For the definition of BVPs on the level sets, it is important to distinguish (classical) differential operators acting
n the bulk space (such as the gradient ∇ in Eq. (3)) from differential operators acting on the level sets which

may be called tangential or surface operators (although, for two-dimensional bulk domains, the level sets are rather
urved lines). The surface gradient of a scalar function f (x) : Ω → R results as [8,41–43]

∇
Γ f = p · ∇ f, (5)

here ∇ f is the classical gradient in the d-dimensional space. It is noted that ∇
Γφ = 0. The situation is analogous

or each component of a vector function u (x) : Ω → Rd , so that one obtains for the directional surface gradient

∇
Γ ,diru = ∇u · p, (6)

for u =

⎡⎣ u
v

w

⎤⎦∈ R3
:

⎡⎣ ∂Γx u ∂Γy u ∂Γz u
∂Γx v ∂Γy v ∂Γz v

∂Γx w ∂Γy w ∂Γz w

⎤⎦ =

⎡⎣ ∂x u ∂yu ∂zu
∂xv ∂yv ∂zv

∂xw ∂yw ∂zw

⎤⎦·

⎡⎣ p11 p12 p13
p12 p22 p23
p13 p23 p33

⎤⎦ .
he covariant surface gradient of a vector function u (x) is based on the projection of the directional one onto the

angent space,

∇
Γ ,covu = p · ∇

Γ ,diru = p · ∇u · p. (7)

oncerning the surface divergence of vector functions u (x) and tensor functions A(x) : Ω → Rd×d , there holds

divΓ u (x) = tr
(
∇

Γ ,diru
)

= tr
(
∇

Γ ,covu
)

=: ∇
Γ

· u, (8)

divΓ A(x) =

⎡⎣ divΓ (A11, A12, A13)

divΓ (A21, A22, A23)

divΓ (A31, A32, A33)

⎤⎦ =: ∇
Γ

· A. (9)

.4. Integral theorems on level sets

The first important integral theorem is given by the co-area formula [23,44,45],∫ φmax

φmin

∫
Γ c

f (x) dΓ dc =

∫
Ω

f (x) · ∥∇φ∥ dΩ . (10)

hen integrating over the boundary ∂Γ c in the level-set interval
(
φmin, φmax

)
, we find∫ φmax

φmin

∫
∂Γ c

f (x) d∂Γ dc =

∫
∂Ω

f (x) · (q · m) · ∥∇φ∥ d∂Ω , (11)

hich is extended from [23,26]. Note that on the right hand side, the conormal vectors q with respect to Γ c as
ell as the normal vectors m on ∂Ω are involved. The integral over the level-set interval on the left hand side of
q. (10) may also be evaluated numerically, e.g., using Gauss quadrature,∫ φmax

φmin

∫
Γ c

f (x) dΓ dc ≈

∑
i

wi ·

∫
Γ ci

f (x) dΓ , (12)

here wi are integration weights and ci are selected level-set values according to the employed Gauss rule, see
ig. 4 for an illustrative setup. The analogy of the two situations of either integrating over Ω on the right hand side
f Eq. (10) or numerically on selected level sets according to the right hand side of Eq. (12) carries over to either
ormulating BVPs simultaneously for all level sets in a bulk domain or considering individual BVPs on selected
evel sets. In this sense, it is later possible to confirm numerical results (i.e., to compare mechanical quantities)
btained by the proposed Bulk Trace FEM for all level sets in a bulk domain with Surface FEM results obtained
n selected level sets (according to some Gauss rule as in Eq. (12)).

For one selected level set Γ c related to the constant value c, a scalar function w (x) and a vector function u (x),
he following divergence theorem on manifolds is well-known [8,46],∫

w · divΓ u dΓ = −

∫
∇

Γw · u dΓ +

∫
~ · w · (u · n) dΓ +

∫
w · (u · q) d∂Γ , (13)
Γ c Γ c Γ c ∂Γ c

6
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I

Fig. 4. Level sets in the interval
[
φmin, φmax] with respect to Gauss integration points, e.g., to numerically confirm Eq. (12). In (a) and (c),

φmin
= infφ (x) and φmax

= supφ (x) with x ∈ Ω , in (b) and (d) φmin and φmax are user-defined values, see also Section 2.1.

Fig. 5. Valid and invalid combinations of level-set functions φ and bulk domains Ω .

where ~ = divn = divΓ n is the mean curvature. Consequently, when integrating over all level sets and using the
co-area formulas from above,∫

Ω

w · divΓ u · ∥∇φ∥ dΩ = −

∫
Ω

∇
Γw · u · ∥∇φ∥ dΩ +

∫
Ω

~ · w · (u · n) · ∥∇φ∥ dΩ (14)

+

∫
∂Ω

w · (u · q) · (q · m) · ∥∇φ∥ d∂Ω .

t is noted that (u · q) ·(q · m) = (u · (−q)) ·((−q) · m) so that in Eq. (14) the sign of q, hence, the fact whether the
conormal vector points inside or outside of the level sets Γ c, does not matter. Based on this, one may immediately
state the divergence theorem for a tensor function A(x) as∫

Ω

u · divΓA · ∥∇φ∥ dΩ = −

∫
Ω

(
∇

Γ ,diru : A
)
· ∥∇φ∥ dΩ +

∫
Ω

~ · u · (A · n) · ∥∇φ∥ dΩ (15)

+

∫
∂Ω

u · (A · q) · (q · m) · ∥∇φ∥ d∂Ω ,

which is later needed for the weak formulation of the mechanical equilibrium in finite strain theory. Note that
for in-plane tensor functions with A = p · A · p, the term involving the curvature ~ vanishes due to A · n = 0.
Furthermore, one finds for in-plane tensors that ∇

Γ ,diru : A = ∇
Γ ,covu : A.

2.5. Invalid combinations of level sets and bulk domains

The simultaneous mechanical modelling and simulation of curved structures on all level sets over a bulk
domain requires everywhere a smooth transition of the displacement fields between neighbouring level sets. Most
importantly, the topology of neighbouring level sets must not change discontinuously in Ω . Combinations which
do not lead to smooth variations of the implied level-set geometries Γ c in some given bulk domain Ω may be
called invalid. Examples are seen in Fig. 5 where (a) shows a valid situation but (b) to (d) are invalid. In Fig. 5(b),
a situation is seen where some level sets feature two end points, however, others are closed and do not feature
boundaries ∂Γ c. This is the result of a local maximum of the level-set function within the domain Ω which, hence,
must be excluded. Fig. 5(c) shows a situation where some level sets feature two end points, however, others three
or four which results from the opposite curvature of ∂Ω and Γ c on the lower side of the bulk domain. In Fig. 5(d),
7
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Fig. 6. Invalid combinations of φ and Ω may still be considered if the bulk domain is reduced to certain sub-domains (related to certain
intervals of the level-set function) in which the topology does not change, i.e., where the geometries of Γ c vary smoothly (regions with
individual gray scales).

the level-set function is identical to the valid situation in Fig. 5(a), however, there is now a hole inside the bulk
domain Ω , so that the number of end points of the level sets also varies inside Ω being invalid.

Note that in all invalid cases, it is the interplay between the (smooth) geometry of the bulk domain Ω and the
(smooth) level-set function φ which generated these invalid scenarios. Obviously, local extreme values of φ inside
Ω have to be excluded (hence, infφ and supφ must be on the boundary ∂Ω ). Additional requirements are related
o the curvature of φ near the boundary ∂Ω . The validity of level sets with respect to bulk domains has also been
iscussed in [23]. Herein, rather than (re-)formulating mathematically sound requirements for φ and Ω we rather
tate that only combinations of φ and Ω are allowed where all level sets vary smoothly inside Ω , enabling smooth
echanical fields.
It is also noteworthy that in invalid cases, one may still pose mechanically meaningful BVPs over sub-domains

f Ω related to individual intervals of the level-set function φ where the level sets vary smoothly and then assess
ll sub-domains successively. Of course, in this case, one needs to generate individual meshes in each of the sub-
omains to carry out the numerical analyses (according to Section 4). In Fig. 6, such sub-domains (related to certain
ntervals of the level-set function) are highlighted, related to the situations shown in Fig. 5, using different gray
cales. This is related to the alternative definition of bulk domains via prescribed values for φmin and φmax as
escribed in Section 2.1. It is noted that the rather strong assumptions on the validity of level sets in bulk domains
re largely alleviated when the bulk domain itself is equipped with mechanical properties as discussed in Section 3.7,
eading to a new class of anisotropic material models for continuously embedded sub-structures in bulk domains.

. Mechanical setup in finite strain theory

.1. Undeformed and deformed configurations

In finite strain or large displacement theory, we distinguish an undeformed material configuration and a deformed
patial configuration. With configuration we refer to all level sets of a level-set function over some d-dimensional
ulk domain. As usual in finite strain theory, we use upper case letters for quantities in the undeformed configuration
nd lower case letters for the deformed configuration.

Let the undeformed bulk domain be ΩX and the level-set function φ (X) : ΩX → R. Then, the individual
ndeformed domains of interest Γ c

X (being the set of membranes or ropes simultaneously considered) are each
elated to constant level-set values,

Γ c
X = {X ∈ ΩX : φ(X) = c} , c ∈

(
φmin, φmax) , (16)

nalogously to Eq. (1). One may now define an individual boundary value problem for every Γ c
X and determine the

ndividual displacement field u (X) of every level set [13],

Γ c
x =

{
x = X + u (X) , X ∈ Γ c

X
}
.

owever, the displacements between neighbouring level sets (usually) vary smoothly, cf. Section 2.5, so that we
ather seek the displacement field of all level sets at once. This is reflected in a deformation of the whole bulk
omain as

{ }
Ωx = x = X + u (X) , X ∈ ΩX

8
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u
b

3

w
d

Fig. 7. Undeformed material configuration and deformed spatial configuration in two and three dimensions. The bulk domains ΩX and Ωx
are shown in grey. The undeformed level sets Γ c

X are blue and the deformed level sets Γ c
x are red. In (b), the corresponding meshes in the

bulk domains ΩX and Ωx , as used for the approximation of the displacement field u (X), are depicted. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Illustratively, plotting selected level sets of φ in ΩX shows some undeformed structures whereas plotting the same
level sets in Ωx represents the resulting deformed structures, see Fig. 7.

The geometric quantities and differential operators formulated in Section 2 extend straightforwardly to the
mechanical setup outlined here with only small distinctions in the notation to specify whether these quantities
relate to the undeformed or deformed situation. They are shortly summarized in Table 1. The bulk domains ΩX and
Ωx feature boundaries ∂ΩX and ∂Ωx with unit normal vectors M and m, respectively. N and n are the respective

nit normal vectors on the level sets Γ c
X and Γ c

x in the bulk domains, and Q and q the conormal vectors on the
oundaries.

.2. Deformation gradients

With the displacement field u (X) : Rd
→ Rd , and x = X + u (X), the resulting bulk deformation gradient is

FΩ = ∇X x (X) = I + ∇X u (X) , (17)

here I is a (d × d) identity matrix. Note that ∇X is the classical gradient with respect to the undeformed bulk
omain ΩX and ∇x with respect to Ωx . As such, we have for a scalar function f (X), the classical bulk gradients

∇X f and ∇x f = F−T
Ω · ∇X f .

Similarly, also the tangential or surface differential operators relate either to level sets Γ c
X or Γ c

x . For scalar
functions,

Γ Γ −T

∇X f = P · ∇X f, ∇x f = p · ∇x f = p · FΩ · ∇X f,

9
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Table 1
Geometric quantities and differential operators in finite strain theory for level-set geometries in bulk domains.

Undef. material configuration Def. spatial configuration

Bulk domain
ΩX ⊂ Rd

with boundary ∂ΩX

Ωx = {x = X + u (X) , X ∈ ΩX }

with boundary ∂Ωx

Level-set function φ (X) , X ∈ ΩX φ (x) , x ∈ Ωx

Level sets
(=curved structures)

Γ c
X = {X ∈ ΩX : φ(X) = c},

c ∈
(
φmin, φmax) Γ c

x =
{

x = X + u (X) , X ∈ Γ c
X

}
,

c ∈
(
φmin, φmax)

Unit normal vectors
w.r.t. bulk domain

M on ∂ΩX m on ∂Ωx

Bulk def. gradient FΩ = ∇X x (X) = I + ∇X u (X)

Unit normal vectors
w.r.t. level sets

N =
N⋆

∥N⋆∥
, N⋆

= ∇Xφ n =
n⋆

∥n⋆∥ , n⋆ = F−T
Ω · N⋆

Projectors P = I − N ⊗ N p = I − n ⊗ n

Unit conormal
vectors in R2 Q =

[
Qx
Q y

]
=

[
−Ny
Nx

]
q =

[
qx
qy

]
=

[
−ny
nx

]
Unit conormal
vectors in R3 Q =

Q⋆

∥Q⋆∥
, Q⋆

= N × M × N q =
q⋆

∥q⋆∥ , q⋆ = n × m × n

Line/area stretch Λ =
∥n⋆∥
∥N⋆∥

· det FΩ

Surface gradient
of scalar function

∇
Γ
X f = P · ∇X f ∇

Γ
x f = p · ∇x f

Dir. surface gradient
of vector function

∇
Γ ,dir
X u = ∇X u · P ∇

Γ ,dir
x u = ∇x u · p

Cov. surface gradient
of vector function

∇
Γ ,cov
X u = P · ∇X u · P ∇

Γ ,cov
x u = p · ∇x u · p

Relation between
surface gradients

∇
Γ
X f = P · FT

Ω · ∇
Γ
x f ∇

Γ
x f = p · F−T

Ω · ∇
Γ
X f

Surface def. gradient FΓ = I + ∇
Γ ,dir
X u

where P and p are projectors obtained from N and n as in Eq. (4). For directional and covariant surface gradients
f vector functions, ∇

Γ ,dir
X u, ∇

Γ ,cov
X u, ∇

Γ ,dir
x u, and ∇

Γ ,cov
x u, see Table 1.

Based on these definitions, the surface deformation gradient FΓ may now be defined as

FΓ = ∇
Γ ,dir
X x (X) = I + ∇

Γ ,dir
X u (X) , (18)

and is not to be mixed with the bulk deformation gradient in Eq. (17). The stretch of a differential element in the
tangent plane of the level sets upon the deformation is

Λ =
∥∇xφ∥

∥∇Xφ∥
· det FΩ =

∥n⋆∥N⋆
 · det FΩ . (19)

We are now ready to adapt the definition of well-known stress and strain tensors in finite strain theory to the level
ets in the bulk domain. These definitions are closely related to [13] where the authors formulate a mechanical model
n the frame of the tangential differential calculus which applies to one selected level set (in fact, the zero-level

set). Here, the same definitions are repeated as they immediately also apply to all level sets.

3.3. Strain tensors

Based on the surface deformation gradient, the directional and tangential Green–Lagrange strain tensors are
defined as

E = 1/2 ·
(
FT

· F − I
)
, (20)
dir Γ Γ

10
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Fig. 8. Von Mises stress σV in a two and three-dimensional example related to Fig. 7; (a) and (c) show σV on many level sets Γ c
x , (b) and

(d) plot σV for all level sets in the bulk domain at once, resulting in the smooth fields.

Etang = P · Edir · P, (21)

espectively. The Euler–Almansi strain tensors are

edir = 1/2 ·

(
I −

(
FΓ · FT

Γ

)−1
)
, (22)

etang = p · edir · p, (23)

here etang is tangential to the deformed configuration Γx . There holds edir = F−T
Γ · Edir · F−1

Γ which, however, is
not true for the tangential versions of these strain tensors.

3.4. Stress tensors

Conjugated stress tensors are introduced next and only the tangential versions are considered. Generally speaking,
we assume some hyper-elastic material with an elastic energy function Ψ

(
Etang

)
and obtain the second Piola–

Kirchhoff stress tensor as S =
∂Ψ
∂Etang

. For simplicity, only Saint Venant–Kirchhoff solids are considered herein and
there follows

S = λ · trace
(
Etang

)
· P + 2µEtang, (24)

= P · (λ · trace (Edir) · I + 2µEdir) · P,

ith S being tangential to ΓX , λ and µ are the Lamé constants. For given Young’s modulus E and Poisson’s ratio
ν, there holds λ =

E ·ν

1−ν2 , µ =
E

2(1+ν)
for membranes, and λ = 0, µ =

E
2 for cables. The Cauchy stress tensor reads

σ =
1
Λ

· FΓ · S · FT
Γ , (25)

here Λ is a line stretch for cables and an area stretch for membranes when undergoing the displacement, see
q. (19). The Cauchy stress is tangential to the level sets in the deformed configuration Γ c

x since FΓ ·P = p ·FΓ ·P
and P · FT

Γ = P · FT
Γ · p, hence σ = p · σ · p. The first Piola–Kirchhoff stress tensor is given by

K = FΓ · S (26)

and there holds K = K · P = p · K.
The usual formulas may be used to compute the (scalar) von Mises stress σV from σ being of high relevance in

structural design and which is often used in visualizations later on. It is noted that in the context presented here,
one may either plot results on individual level sets, or as smooth fields over the bulk domains, see Fig. 8.

3.5. Governing equations

A crucial aspect of finite strain theory is that equilibrium is to be fulfilled in the deformed configuration which
is expressed in strong form as

div σ x = − f x ∀x ∈ Ω , (27)
Γ ( ) ( ) x

11
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where f are body forces. Recall from (9) that divΓ σ = ∇
Γ ,dir
x · σ = ∇

Γ ,cov
x · σ is the divergence of the Cauchy

tress tensor with respect to Γ c
x . Furthermore, we have the identity

DivΓ K (X) = divΓ σ (x (X)) · Λ (X) (28)

ith DivΓ K = ∇
Γ ,dir
X · K = ∇

Γ ,cov
X · K being the divergence of the first Piola–Kirchhoff stress tensor from Eq. (26)

ith respect to Γ c
X . Due to F(X) = f (x (X)) ·Λ (X), the equilibrium in Γ c

x can be stated equivalently to Eq. (27)
based on quantities in the undeformed configuration as

DivΓ K(X) = −F(X) ∀X ∈ ΩX . (29)

Finally, one may identify the field equations of the BVP modelling the mechanics of membranes (and ropes)
imultaneously on all level sets in some bulk domain through Eq. (21) (kinematics), Eq. (24) (constitutive equation),
nd Eq. (29) (equilibrium). These equations are formulated with respect to the undeformed configuration which is
ften preferred for the numerical treatment (the undeformed domain is discretized by a mesh once which is then
sed in the analysis without any need for mesh updates). One may reformulate these three (vector) field equations
n the usual way to obtain only one (vector) field equation for the sought displacements. Stress and strain tensors

ay then be obtained as a post-processing step. At this stage, the governing equations are given in strong form and
ormulated w.r.t. the undeformed configuration, to be fulfilled at every point X ∈ ΩX . This shall later be converted

to the weak form in the usual way to enable an FEM-based analysis.

3.6. Boundary conditions

Recall that Q and q are the conormal vectors on the boundaries of the bounded level sets ∂Γ c
X and ∂Γ c

x ,
espectively. ∂Γ c

X and ∂Γ c
x each fall into the two non-overlapping Dirichlet and Neumann parts

(
∂Γ c

X,D, ∂Γ
c

X,N
)

nd
(
∂Γ c

x,D, ∂Γ
c

x,N
)
. Then, the boundary conditions in the deformed configuration are

u(x) = ĝ(x) on ∂Γ c
x,D, (30)

σ (x) · q(x) = ĥ(x) on ∂Γ c
x,N, (31)

here ĝ are prescribed displacements and ĥ are tractions. The equivalent boundary conditions formulated in the
ndeformed configuration are

u(X) = Ĝ(X) on ∂Γ c
X,D, (32)

K(X) · Q(X) = Ĥ(X) on ∂Γ c
X,N, (33)

here Ĝ and Ĥ have similar interpretations as before, see [2,13] for further information. We note that because ∂Γ c
X

oincides with the boundary of the bulk domain ∂ΩX , one may also write ∂ΩX,D and ∂ΩX,N instead of ∂Γ c
X,D and

Γ c
X , respectively. With the boundary conditions above, the complete second-order boundary value problem (BVP)

s defined.

.7. Optional coupling with elastic bulk domains

So far, the mechanical model outlined above focuses on the mechanics of (curved) (d − 1)-dimensional structures
ropes and membranes) implied by the level sets in the bulk domain. The bulk domain geometrically defines the
egion of interest, hence, it specifies the considered level-set interval and associates a boundary to the level sets,
hus defining a continuous set of curved, bounded structures. Later, the bulk domain is discretized by finite elements
or the simultaneous numerical analysis of the embedded curved structures, see Section 4.

A particularly interesting application of the proposed framework is to additionally equip the bulk domain with
echanical properties. In the simplest case of a homogenous, isotropic, elastic bulk material, this may, e.g., be

haracterized by a bulk Young’s modulus Eb and Poisson’s number νb. The ropes and membranes may then be
dded to the bulk domain as homogenized, continuously embedded sub-structures. In this case, the bulk domain
oes not only have a geometrical but also a mechanical task. For the mechanical model of the bulk domain in a
nite strain context, we refer to existing text books [47–49]. It is important to note that an elastic bulk domain

lleviates the rather strong assumptions on the validity of level sets in bulk domains as outlined in Section 2.5.

12
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Basically any smooth level-set function may then be employed as the elastic properties of the bulk domain enforces
continuity in normal direction of the level sets. In this case, the level sets are no longer completely independent
structures but cross-coupled through the bulk behaviour.

The focus is now on adding sub-structures to the elastic bulk domain as assumed in this section. First, consider a
nite set of ndiscr discrete sub-structures implied by the level sets Γ ci

X for equally distributed values ci in the level-set
interval

[
φmin, φmax

]
of interest, hence, ci = φmin

+
i−1

ndiscr−1 ·
(
φmax

− φmin
)
, i = 1, . . . , ndiscr. The associated Young’s

odulus Ediscr of each discrete sub-structure shall depend on ndiscr so that the integrated stiffness of the bulk domain
ith embedded discrete sub-structures yields some chosen target value∫

ΩX

Eb dΩ +

ndiscr∑
i=1

∫
Γ

ci
X

Ediscr dΩ = Eint,

hich is easily solved for Ediscr with given Eb and Eint when assuming constant Eb and Ediscr. A unit analysis, in
act, shows that Ediscr is rather the Young’s modulus multiplied by an assumed unit thickness of the membrane, so
s to avoid the explicit introduction of the thickness t in the model. For ndiscr → ∞, the mechanical quantities such
s displacements, stresses, and strains converge to the same values as obtained with the homogenized, continuously
mbedded sub-structures as proposed herein when choosing the Young’s modulus Econt to fulfil∫

ΩX

Eb dΩ +

∫
ΩX

Econt · ∥∇Xφ∥ dΩ = Eint.

his is later confirmed in Section 5.5. It is noted that embedding individual discrete sub-structures in continua is
escribed, e.g., in [50–52]. This often introduces discontinuities in the physical fields, resulting in the need for
esh refinements, which is not the case in the homogenized model proposed here. We believe that this application

f the proposed framework has large potential in defining advanced material models with embedded sub-structures
ith possible applications, e.g., in textile, biomechanical or fibre-reinforced structures and composite laminates.
ne may label related mechanical models as continuously embedded sub-structure models or embedded, layered
anifold models.

. The Bulk Trace FEM

For the numerical analysis of lower-dimensional structures embedded in some exterior space, the classical
pproach is to discretize the (curved) structure using some conforming surface mesh and approximate the BVP
osed with respect to one geometry of interest, see Figs. 9(a) and (d). Then, the BVP is typically defined using
urvilinear coordinates as they immediately result from using the surface elements in the mesh [1–4], implying a
arametrization of the surface. This approach may be called the Surface FEM. An alternative numerical treatment
ould be to define one geometry of interest implicitly through the zero-level set of a scalar function and use

n immersing, non-conforming, background mesh with the dimensionality d of the embedding space. Only the
lements cut by the zero-level set are considered in the analysis, see Figs. 9(b) and (e). The resulting method was
abelled Trace FEM, see, e.g., [19,21,53,54], and is a fictitious domain method where the numerical integration
n the cut elements [55–60], stabilization [19,34,54], and the enforcement of boundary conditions [18,61–64] are
rucial aspects for the success of the approximations.

For the simultaneous analysis of structures implied by all level sets over a bulk domain as proposed herein,
he bulk domain ΩX is discretized by a background mesh which is conforming to the boundary ∂ΩX (and, hence,
lso ∂Γ c

X ), yet typically not conforming to the individual level sets Γ c
X of φ, see Figs. 9(c) and (f). The method

s similar to the Trace FEM in that it uses test and trial functions for the numerical analysis which are implied
y the d-dimensional background mesh. However, no special numerical integration and stabilization is needed (as
here are no cut elements), and boundary conditions are enforced as in the Surface FEM. Therefore, the numerical

ethod employed here, and closely related to [23–26] for transport problems, may be seen as a hybrid between the
urface and Trace FEM. Hence, we label this approach the Bulk Trace FEM.

It is noted that formulating the mechanical models for ropes and membranes based on the tangential differential
alculus using surface operators as in the previous section results in a unified and general description which may be
13
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Fig. 9. Variants of the FEM for BVPs on curved lines ((a) to (c)) and surfaces ((d) to (f)) with focus on the employed meshes; note that the
umber and order of the elements is only examplarily. The classical Surface FEM applies to (a) and (d) where the manifold is discretized by
conforming mesh, (b) and (e) is the Trace FEM where the zero-level set is the domain of interest and the cut elements of a background
esh are used for the discretization, (c) and (f) is the proposed Bulk Trace FEM where the bulk domain is discretized and BVPs on all

evel sets are considered simultaneously.

sed in all the resulting variants of the FEM with only minor adaptions. This was already emphasized in [13–15]
n the context of the Surface and Trace FEM and is herein confirmed for the proposed Bulk Trace FEM.

.1. Governing equations in weak form

For any FEM simulations, it is necessary to state the governing equations in weak form. Therefore, the following
est and trial function spaces are introduced,

Su =

{
v ∈

[
H1(ΩX )

]d
: v = Ĝ on ∂ΩX,D

}
, (34)

Vu =

{
v ∈

[
H1(ΩX )

]d
: v = 0 on ∂ΩX,D

}
, (35)

here H1 is the Sobolev space of functions with square integrable first derivatives. The task is to find u ∈ Su such
hat for all w ∈ Vu, there holds∫

ΩX

∇
Γ ,dir
X w : K (u) · ∥∇Xφ∥ dΩ =

∫
ΩX

w · F · ∥∇Xφ∥ dΩ (36)

+

∫
∂ΩX,N

w · Ĥ · (Q · M) · ∥∇Xφ∥ d∂Ω (37)

This weak form is obtained after the following sequence of steps: Multiply Eq. (29) with test functions w(X) and
ntegrate over the level sets in some interval

∫ φmax

φmin

∫
Γ c

X
□ dΓ dc which, through the co-area formula (10) is converted

nto an integral over the bulk domain
∫
ΩX

□ · ∥∇Xφ∥ dΩ . Then, the divergence theorem for tensors (15) is applied
o obtain (36), noting that the curvature term vanishes due to K · N = 0. A similar weak form could be posed over
he deformed configuration which, however, would be less desirable for the numerical analysis (as it would require
esh updates during the iterative procedure to solve this non-linear problem).

14
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4.2. Discretized weak form

Let there be a discretization of the bulk domain, Ω h
X , in the form of a conforming, d-dimensional mesh, herein

composed by higher-order elements of the Lagrange type with equally spaced nodes in the reference element
(with arbitrary element types such as triangular/quadrilateral in 2D, or tetrahedral/hexahedral in 3D). The nodal
coordinates in the undeformed configuration are labelled X i with i = 1, . . . , nq and nq being the number of nodes
n the mesh, see Figs. 9(c) and (f) for generic examples. The resulting nodal basis functions Bi (X), used as test
nd trial functions, span a C0-continuous finite element space as

Qh
ΩX

:=

{
vh ∈ C0(Ω h

X ) : vh =

nq∑
i=1

Bi (X) · v̂i with v̂i ∈ R

}
⊂ H1(Ω h

X ) . (38)

Bi (X) are obtained from isoparametric mappings from the d-dimensional reference element to the physical elements.
Furthermore, the level-set function φ is replaced by its interpolation φh (X) ∈ Qh

ΩX
with prescribed nodal values

φ̂i = φ (X i ). Based on Eq. (38), the following discrete test and trial function spaces are introduced

Sh
ΩX

=

{
vh ∈

[
Qh

ΩX

]d
: vh = Ĝ on ∂Ω h

X,D

}
, (39)

Vh
ΩX

=

{
vh ∈

[
Qh

ΩX

]d
: vh = 0 on ∂Ω h

X,D

}
. (40)

The discrete weak form of Eq. (36) reads as follows: Given the level-set function φh , Lamé constants (λ,µ) ∈ R+,
body forces F ∈ Rd on Ω h

X , tractions Ĥ ∈ Rd on ∂Ω h
X,N, find the displacement field uh ∈ Sh

ΩX
such that for all

test functions wh ∈ Vh
ΩX

there holds in Ω h
X :∫

Ωh
X

∇
Γ ,dir
X wh : K (uh) · ∥∇Xφh∥ dΩ =

∫
Ωh

X

wh · F · ∥∇Xφh∥ dΩ (41)

+

∫
∂Ωh

X,N

wh · Ĥ ·
(

Qh · Mh
)
· ∥∇Xφh∥ d∂Ω . (42)

For brevity, we avoid adding an h also to the discretized differential operators, e.g., we do not write ∇
h

X . The sought
discrete displacement field uh(X) is obtained solving a non-linear system of equations for the nDOF = d · nq nodal
values (degrees of freedom) as usual in the context of finite strain theory.

4.3. Technical aspects

For the implementation of the Bulk Trace FEM, some useful hints are given next. It is found beneficial to split
the implementation into an application-independent part related to finite element technology and the part which is
related to the concrete BVP of interest, i.e., the application. The first part may be reused in any other Bulk Trace
FEM simulation, e.g., in the context of solving transport problems on all level sets in a bulk domain. Of course,
the situation in the reference elements is completely identical to any other FE application and not further detailed
here. As such, a standard set of integration points and element functions, being related to the type and order of
the reference element, is given as a starting point. Let the reference element feature the nodal coordinates r i and
element functions Bi (r) with i = 1, . . . nnpe and nnpe being the number of nodes per element. A proper Gauss
quadrature rule, related to the order of the reference element, is defined by a set of nint integration points r int

i and
weights wint,ref

i with i = 1, . . . nint.
The mapping from the reference element to any of the physical elements in the undeformed configuration is given

by the isoparametric concept, X(r) =
∑nnpe

i=1 Bi (r) · Xel
i where Xel

i are the respective nodal element coordinates.
In every element, this results in mapped integration points X int

i with modified integration weights wint,phys
i . In a

standard FE context, wint,phys
i = w

int,ref
i · det J

(
r int

i

)
where J = ∂X/∂ r is the Jacobi matrix of the finite element map.

However, because all domain integrals in Eq. (41) involve the term ∥∇Xφh∥, it is useful to also modify the weights
according to this term as well, hence,∫

el
f (X) · ∥∇Xφh (X)∥ dΩ ≈

nint∑
f
(
X int

i

)
· w

int,phys
i ,
ΩX i=1
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with wint,phys
i = w

int,ref
i ·

∇Xφh
(
X int

i

) · det
(
J

(
r int

i

))
,

and ∇Xφh
(
X(r int

i )
)

= J−T(
r int

i

)
· ∇rφh

(
r int

i

)
.

It is also found useful to apply some standard differential operators such as the gradient operator to the test and
trial functions in the FE analysis which may also be recycled in various applications of the Bulk Trace FEM.
For example, when the gradients ∇X Bi are precomputed, it is trivial to specify the gradient of some (scalar)
pproximation as ∇X uh =

∑
i ∇X Bi · ûi . Of course, in the reference element, differential operators with respect

o the coordinates r may easily be applied to the element functions, e.g., to generate ∇r Bi (r). Upon mapping
hese functions to the (undeformed) physical elements and seeking the standard (bulk) gradient with respect to the
oordinates X , we have ∇X Bi (X) = J−T (r) ·∇r Bi (r) as usual. As discussed in Section 2, in the Bulk Trace FEM,
ifferential operators with respect to the level sets of φ play a crucial role. For the surface gradient of the element
unctions Bi , we have

∇
Γ
X Bi (X) = P (X) · ∇X Bi (X) ,

= P (X) · J−T (r) · ∇r Bi (r) ,

with P = I − N ⊗ N, N =
N⋆N⋆

 , N⋆
= ∇Xφh,

cf. Table 1. With these special integration points and differential operators according to the proposed Bulk Trace
FEM, it is noteworthy that for the application-dependent (element-by-element) integration of the weak form (41),
one may employ the same routines as for a classical implementation of finite strain theory in d dimensions. This
largely simplifies the implementation and enables a good software design.

5. Numerical results

Test cases for the simultaneous analysis of ropes and membranes in bulk domains are presented in this section.
In order to confirm the success of the proposed method, different error measures are evaluated in the deformed bulk
domains, namely measuring (i) the integrated length/area of the level sets, (ii) the error in the stored elastic energy,
and (iii) the residual error.

For the error in the integrated level sets εφ , one integrates the length/area of the deformed structures (i.e., of the
level sets in the deformed bulk domain Ωx), directly based on the co-area formula in Eq. (10) and compares it with
the analytical one:

εφ = |D (u)− D (uh)| , with D (u) =

∫
Ωx

∥∇xφ∥ dΩ . (43)

he “stored energy error” εe, see, e.g., [65, p. 229], compares the approximated stored elastic energy of all deformed
tructures in Ωx with the analytical one,

εe = |e (u)− e (uh)| , (44)

ith

e (u) =
1
2

∫
Ωx

etang (u) : σ (u) · ∥∇xφ∥ dΩ , (45)

=
1
2

∫
ΩX

Etang (u) : S (u) · ∥∇Xφ∥ dΩ . (46)

The “stored energy error” used here is not to be mixed with the classical energy error norm, see, e.g., [65, p. 494].
he two error measures (43) and (44) require the knowledge of the analytical displacement field u (X). One common

approach would be to generate manufactured solutions. However, D (u) and e (u) may also be obtained by overkill
approximations based on extremely fine meshes with elements of very high order, which is the path chosen herein.
The respective numbers are given with large accuracy in the respective test cases below, so that they may also serve
as benchmark values. Provided that geometry and boundary conditions allow for sufficiently smooth solutions, the
expected convergence rates in these two error norms are p+1 with p being the order of the elements. Note that this
order does not only depend on the integrand but also on the accuracy of the numerical integration and the ability of

the finite elements to represent arbitrary yet smooth geometries. When using the two error measures (43) and (44)
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Fig. 10. Setup and results for test case 1 in 2D: (a) shows the bulk domain ΩX with selected level sets of φ (X) and an example mesh
used for the analysis, (b) shows the von Mises stress in Ωx and the deformed level sets in red, (c) is an alternative visualization with the
same content where the von Mises stress is shown on the deformed level sets, (d) highlights the deformation of the bulk domain by showing
elements in the undeformed and deformed meshes. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

adapted to a standard two- or three-dimensional finite strain context [47–49], it is actually found that odd element
orders converge with p + 1 and even orders with p + 2. These orders are also confirmed in the present mechanical
context in the numerical test cases below.

The “residual error” εres integrates the error in the equilibrium as stated in Eq. (27), that is,

εres =

√ nel∑
i=1

∫
Ωel, i

x

r (uh) · r (uh) · ∥∇xφ∥ dΩ , (47)

with r (uh) = divΓ σ (uh)+ f (x) . (48)

his error obviously vanishes for the analytical solution. Note that the integrand in (47) involves second-order
erivatives, therefore, the integral must not be carried out over the whole (discretized) domain Ωx but integrated
lement by element as indicated by the summation. That is, element boundaries, where already the first derivatives
f the C0-continuous shape functions feature jumps, are neglected in computing εres. Due to the presence of second-
rder derivatives, the expected convergence rates are p−1 which also indicates that higher-order elements are crucial
or convergence in εres. Similar studies on energy and residual errors have been conducted by the authors in [13–15]
n the context of the Surface and Trace FEM.

It is also noted that reference values for the stored energy and integrated level sets may be computed using the
lassical Surface FEM and numerically integrating in the interval [φmin, φmax] according to the analogy shown in
q. (12). Thereby, one may confirm with high reliability the success of the proposed Bulk Trace FEM.

.1. Test case 1 in 2D: Circular bulk domain

The undeformed bulk domain of interest ΩX is a circle with radius r = 0.28 centred at the origin. The level-set
unction φ (X) implying the undeformed ropes is

φ (X) = ∥X − XC∥ − Rc, (49)

=

√
(X − Xc)

2
+ (Y − Yc)

2
− Rc (50)

ith XC = −0.3 · sin 25
◦

, YC = 0.3 · cos 25
◦

, and RC = 0.3. See Fig. 10(a) for a sketch of the setup and an
xample mesh. Zero displacements are prescribed on the boundary ∂ΩX . Young’s modulus E is set to 10 000

and, as there is no Poisson’s ratio for ropes, λ = 0 and µ = E/2. For the loading, we consider dead load with
F(X) = [0,−100]T. In the equations above, we avoided to explicitly mention the cross section A for ropes (and
thickness t for membranes) and assume that they are 1 in all test cases discussed herein. Otherwise, they could
easily be considered by properly manipulating the material parameters above.

Figs. 10(b) to (d) show different visualizations obtained by a single analysis with the Bulk Trace FEM: (b)
shows selected deformed level sets in red and von Mises stress obtained from the Cauchy stress tensor σ in the
17
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Fig. 11. Convergence results for test case 1 in 2D: (a) and (b) show sub-optimal convergence rates in εe and εres, (c) shows the von Mises
tress in the domain confirming locally steep gradients causing the sub-optimal results.

Fig. 12. Setup and results for test case 1 in 2D in the prescribed interval φ ∈ [−0.15, 0.15].

eformed bulk domain as a colour field, (c) is an alternative visualization where the von Mises stress is plotted
n the deformed level sets themselves; doing this for all level sets would result in the colour field shown in (b).
inally, Fig. 10(d) shows the elements of an example mesh in the undeformed and deformed bulk domain and the
eformed level sets in red.

In the numerical analyses based on the Bulk Trace FEM, we have used sequences of meshes with different
esolution and order (from 1 to 6), enabling systematic convergence studies in the error measures introduced above.
onvergence results are seen in Fig. 11(a) for the stored energy error εe and (b) for the residual error εres. It is seen

hat for this test case, the convergence is sub-optimal because of locally steep gradients in the mechanical fields as
hown for the example of the resulting von Mises stress field in Fig. 11(c).

Therefore, the analysis is now restricted to the level-set interval φ ∈ [−0.15, 0.15] resulting in a subset of the
revious domain as shown in Fig. 12(a) including an example mesh. Some results obtained with this mesh are
isualized in Figs. 12(b) to (d) following the style of Fig. 10; all mechanical fields are smooth in this interval.
he reference values for the integrated level sets are D (u) = 0.1644415441226 and for the stored elastic energy
(u) = 7.792649686407 · 10−3. Convergence results are seen in Fig. 13 in all three error measures defined above.
s can be seen, we obtain at least p +1 in εφ and εe, and p −1 in the residual error εres as expected. In Fig. 13(a),
ne can see that even element orders achieve p+2 in εφ , whereas odd orders achieve p+1, which is also confirmed
n the next test cases. In Fig. 13(b) one can see an even better convergence in the stored energy error εe, however,
his can be traced back to the special case of using circular undeformed ropes as implied by Eq. (49). Using more
eneral definitions rather leads to the expected rates of p +1, which is also confirmed in the next studies. Note that
or the residual error shown in Fig. 13(c), the results obtained with linear meshes are omitted because they cannot
e expected to converge as the expected rate is p − 1 due to the involved second-order derivatives in εres.

Finally, a small experiment is described to confirm that the computed results are mechanically meaningful.
herefore, we select 10 level sets Γ c

X of Eq. (49) with

{ }
c = −0.22,−0.19,−0.13,−0.07,−0.01, 0.06, 0.11, 0.183, 0.23, 0.27 ,

18
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Fig. 13. Convergence results for test case 1 in 2D in the interval φ ∈ [−0.15, 0.15] confirming optimal convergence rates in εφ , εe, and
εres.

Fig. 14. Small-scale experiment to confirm that the Bulk Trace FEM is able to simultaneously capture the expected catenaries in the
eometrical setup of test case 1 in 2D.

ompute the corresponding arc lengths in the undeformed configuration and cut 10 chains with the respective lengths.
he resulting displacement field is computed by means of the Bulk Trace FEM with largely increased E (because

the elastic strains in the chains under dead load are negligible). The computed deformed level sets are printed out
true to scale and fixed to a board, see the green lines in Fig. 14(a). The chains are fixed with small nails at the
corresponding end points of the level sets ∂Γ c

X , see Figs. 14(a) and (b) for the board lying horizontally. Then, the
board is set vertically so that the chains deform under their own weight. The chains hang in the shape of catenaries
as expected and are perfectly on top of the deformed level sets predicted with the Bulk Trace FEM, see Figs. 14(c)
and (d). This is just to confirm that although the overall setup discussed in this work is rather unusual, the results
are just as physically meaningful as any other mechanical model.

5.2. Test case 2 in 2D: Implicit bulk domain

Next, a more general shape of the bulk domain and level sets is suggested. The bulk domain ΩX is defined
implicitly by the zero-level set of

ψ (X) =ψ1 (X)+ ψ2 (X)

with ψ1 (X) =

(
X

RX

)2

+

(
Y
RY

)2

− 1, RX = 10, RY = 6.5,

and ψ2 (X) = fBell (a) .

herein, fBell is a C4-continuous bell-shaped function defined as

fBell (a) =

⎧⎪⎨⎪⎩
−1024 · a10

+ 5120 · a9
− 10240 · a8

+

10240 · a7
− 5120 · a6

+ 1024 · a5 0 ≤ a ≤ 1,
0 else,
19
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Fig. 15. Setup and results for test case 2 in 2D in the prescribed interval φ ∈ [4, 7].

Fig. 16. Convergence results for test case 2 in 2D confirming optimal convergence rates in εφ , εe, and εres.

with a =
r + RB

2 · RB
and r = ∥X − X B∥ .

n this example, XB = [4, 5]T and RB = 12. The resulting boundary of the implied bulk domain ΩX , being the
zero-level set of ψ (X), is the black line in Fig. 15(a). For the level-set function φ (X) implying the geometries of
interest, i.e., the undeformed ropes, we define

φ (X) = 1/2 ∥X − X F∥ − 1/10 · sin (8 · θ (X))− 1/2,

with θ (X) = atan
Y − YF

X − X F
and XF = [−10, 10]T ,

ee the blue lines in Fig. 15(a). Finally, the bulk domain of interest is defined as

ΩX =
{

X ∈ R2
: ψ (X) ≤ 0 and 4 ≤ φ(X) ≤ 7

}
and is shown in Fig. 15(b) with an example mesh and selected level sets of φ (X).

Material parameters are again set to E = 10 000 and the bulk forces are F(X) = [0,−200]T. Zero displacements
are prescribed on ∂ΩX . Benchmark values for the integrated level sets are D (u) = 39.05000466379 and for the
stored energy e (u) = 2317.129363166. The deformed bulk domain Ωx is seen in Fig. 15(c) and (d). Convergence
results are seen in Fig. 16 in all three error measures. The convergence in εφ and εe is p +1 for odd element orders
and p + 2 for even orders. The convergence in εres is p − 1 as expected. The same rates of convergence have been
obtained using triangular and quadrilateral elements in the Bulk Trace FEM analyses, respectively.

5.3. Test case 3 in 3D: Spherical bulk domain

The bulk domain is a subset of a sphere with radius 1 centred at the origin. Let ψ (X) = ∥X∥−1 and φ (X) = Z ,
then { 3 1 2

}

ΩX = X ∈ R : ψ (X) ≤ 0 and − /5 ≤ φ(X) ≤ /5 .
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Fig. 17. Setup and results for test case 3 in 3D in the prescribed interval φ ∈ [−1/5, 2/5].

Fig. 18. Convergence results for test case 1 in 3D confirming optimal convergence rates in εφ , εe, and εres.

he resulting undeformed bulk domain is seen in Fig. 17(a) and an example mesh in (b). It can also be seen that a
et of planar and circular membranes is implied in the undeformed configuration. The thickness of the membranes
s t = 1, Young’s modulus is E = 1 000 and Poisson ratio ν = 0.3, which is easily converted into the Lamé
arameters. The loading is gravity acting on the membrane surfaces with F(X) = [0, 0,−100]T for all X ∈ ΩX .

The whole boundary is treated as a Dirichlet boundary with prescribed zero-displacements.
Results of a single analysis are seen in Figs. 17(c) to (e); (c) and (d) are alternative visualizations of the von Mises

stress based on σ , once shown on the boundary ∂Ωx and once on selected level sets Γ c
x with c ∈ {−1/5, 0, 1/5, 2/5}.

Convergence results are seen in Fig. 18. Therefore, benchmark values of D (u) = 1.981355380281 and e (u) =

6.588725461796 have been used to compute εφ and εe; in three dimensions, εφ is the error in the integrated areas
f the level sets over the deformed bulk domain. As can be seen, optimal results are again achieved in all three

rror measures. For εφ and εe, we again confirm p + 1 for odd element orders and p + 2 for even orders.
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Fig. 19. Setup and results for test case 4 in 3D in the prescribed interval φ ∈ [0, 1/2].

5.4. Test case 4 in 3D: Ellipsoidal bulk domain

We define the two level-set functions

ψ (X) =

(
X − X E

RX

)2

+

(
Y − YE

RY

)2

+

(
Z − Z E

RZ

)2

− 1,

with XE = [−0.2, 0.2, 0.1]T and RX = 0.9, RY = 0.7, RZ = 0.8 and

φ (X) = ∥X − XS∥ − RS

with XS = [−1, 1, 2]T and RS = 2, see Fig. 19(a). The bulk domain is defined as

ΩX =
{

X ∈ R3
: ψ (X) ≤ 0 and 0 ≤ φ(X) ≤ 1/2

}
.

The resulting undeformed bulk domain with an example mesh is seen in Fig. 19(b). All material parameters, loading
and boundary conditions are given as in the previous test case in Section 5.3. Results are seen in Figs. 19(c) and
(d) following previous visualizations. Benchmark values for the convergence studies are D (u) = 1.032907088507
and e (u) = 1.863258461070. However, because the resulting convergence plots are virtually identical to previous
test cases, only the convergence in the stored energy error εe is shown in Fig. 19(e).

5.5. Test case 5 in 2D: Bulk material with embedded fibres

The final example considers a coupled problem where some isotropic and homogeneous bulk material is
reinforced with curved, one-dimensional fibres. This application relates to the discussion of continuously embedded
sub-structure models in Section 3.7. The bulk domain is a quarter annulus centred at the origin, an inner radius
of Ri = 8 and an outer radius of Ro = 12, see Fig. 20(a). The resulting area is A = 1/4 · π ·

(
R2

o − R2
i

)
= 20π .

In contrast to the previous examples where the focus was exclusively on the behaviour of ropes and membranes
22



T.-P. Fries and M.W. Kaiser Computer Methods in Applied Mechanics and Engineering 415 (2023) 116223

r

w

b

fi
s
a
t
a
a
T
fi

T
m
n

a

k
b
T
e

Fig. 20. Discrete fibre model in an annulus where the number of fibres (and their stiffness) is associated to the number of elements in
radial direction nrad. The embedded fibres are meshed conformingly by the element edges shown as green lines. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)

ithin bulk domains, in this study, there is also an isotropic bulk material characterized by a Young’s modulus
of Eb = 10 000 and a Poisson’s number of νb = 0.3; the Lamé constants are then computed according to plane
strain conditions. The behaviour of the bulk material is modelled according to standard finite strain theory in two
dimensions. There is a body force of F(X) = [0,−20]T acting on the bulk material only (i.e., there are no additional

ody forces on the fibres). Zero-displacements are prescribed on the lower side of the bulk domain where Y = 0.
For the modelling of the fibres, two strategies are compared: In the first approach, we consider a discrete set of

bres where the number of fibres is coupled to the element number used in the analysis, see Fig. 20. As can be
een, the discrete fibres are meshed conformingly by curved, one-dimensional elements and one may use standard
pproaches (i.e., classical Surface FEM) for the modelling and analysis, see, e.g., [1–4,13]; of course, coupled to
he analysis of the bulk material. Let nrad be the number of elements in radial direction of the annulus, then there
re nrad + 1 fibres with geometries Γ i

X , i = 1, . . . nrad + 1 in the analysis. In order not to make the fibre-reinforced
nnulus stiffer upon increasing the element number, we reduce the stiffness of the fibres with each refinement step.
herefore, it is useful to define a target value for the integrated Young’s modulus over the bulk domain and the
bres as∫

ΩX

Eb dΩ +

nrad+1∑
i=1

∫
Γ i

X

Ediscr dΩ = 580 000π,

⇒

nrad+1∑
i=1

∫
Γ i

X

Ediscr dΩ = 580 000π − 20π · 10 000,

⇒ Ediscr = 76 000 / (nrad + 1) .

his enables us to keep the cross section of the fibres at 1. Of course, one could also define a constant Young’s
odulus for the discrete fibres and adjust the cross section with respect to nrad. Note that the Poisson number plays

o role for fibres, hence, ν = 0. A sketch of the deformed domain may be seen in Fig. 21(a).
The other strategy for the fibres is to associate a continuous set of fibres to the level sets of φ (X) = ∥X∥ in the

interval φmin = 8 and φmax = 12, see Fig. 21(b), as proposed in this work. Then, the Young’s modulus is computed
s ∫

ΩX

Eb dΩ +

∫
ΩX

Econt · ∥∇Xφ∥ dΩ = 580 000π,

⇒ Econt · 20π = 580 000π − 20π · 10 000,

⇒ Econt = 19 000,

eeping the cross section constant at 1. Together with ν = 0, these material parameters are used for the analysis
ased on the Bulk Trace FEM as outlined above, this time coupled with the classical 2D analysis of the bulk material.
he deformed domain, obtained with the Bulk Trace FEM, is shown in Fig. 21(c). We observe a stored elastic
nergy of e u = 674.363 and a displacement of the lower left node as u 0, 8 = −1.0194534,−2.710712 T.
( ) ( ) [ ]
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Fig. 21. (a) shows the deformed configuration according to the discrete fibre model with nrad = 10, (b) shows the continuous fibre model
in an annulus where the fibres are implied by all level sets in the interval φ ∈ [8, 12], (c) is the deformed configuration for the continuous

bre model as obtained with the Bulk Trace FEM.

Fig. 22. (a) shows the deformed configuration according to the prescribed displacement field in Eq. (51), (b) shows convergence rates for
he continuous fibre model and (c) for the discrete fibre model towards the reference energy of the continuous model.

ost importantly, we confirm that the strategy based on the discrete fibres converges to the case of continuous
bres as proposed herein. However, it is also important to note that due to the boundary conditions, there is a
ingularity at the corner points at X = [8, 0]T and [12, 0]T which hinders optimal convergence rates. Therefore,
hese results are given with reduced accuracy compared to the previous test cases.

In order to make the results more quantifiable, it was found useful to provide energy results for a prescribed
isplacement field of

u (X) =

[
u (X, Y )
v (X, Y )

]
=

[
1/2 sin (1/2Y )
1/10 sin (Y )

]
, (51)

ee Fig. 22(a). Then, a benchmark energy for the scenario with continuously embedded fibres may be provided
ith e (u) = 11499.322459892 with high accuracy. The Bulk Trace FEM converges with optimal accuracy to this
enchmark value, see Fig. 22(b). It can also be confirmed that the discrete-fibre setting converges to this energy
s seen in Fig. 22(c). However, one may then only expect a first-order convergence (independently of the element
rders) due to the different geometric representation of the fibres. It is thus confirmed that the proposed modelling
nd analysis of structures implied by all level sets within a bulk domain provides the basis for continuously
mbedded sub-structure models within (isotropic) bulk materials which will be further investigated in future works.

. Conclusions

A mechanical model for structural ropes and membranes is formulated which simultaneously applies to all level
ets in a bulk domain. Interpreting the level sets in the undeformed and deformed bulk domains yields the material
nd spatial configurations of the (curved) structures. For the modelling, it is crucial to employ classical differential

perators with respect to the bulk domain as well as surface differential operators with respect to the level sets. Then,
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all mechanical quantities such as displacements, stresses and strains may be specified accordingly. The resulting
BVP in strong form may be reformulated in weak form using the co-area formula and the divergence theorem on
manifolds, resulting in integral terms over the bulk domain.

For the numerical analysis, one may then employ a (higher-order) mesh in the bulk domain which conforms to the
oundaries of the bulk domain, however, it does (typically) not conform to the geometry of the level-set structures.
his method is called the Bulk Trace FEM as it features similarities to the classical FEM with conforming meshes
nd the Trace FEM using non-conforming meshes. Most importantly, the Bulk Trace FEM does not feature cut
lements and, therefore, standard methods for the numerical integration and enforcement of boundary conditions
ay be employed without any need for stabilization. Technical aspects of the implementation are outlined and

nable a straightforward implementation of the method in an existing FE solver.
The numerical results confirm that higher-order convergence rates are achieved as expected. The potential of the

roposed method for the simultaneous assessment of mechanical properties of structures implied by all level sets in
bulk domain is shown. Furthermore, the described model may easily be combined with conventional (mechanical)
ulk models for d-dimensional structures, introducing a new concept for advanced material models, possibly labelled

continuously embedded sub-structure models or embedded, layered manifold models. In future works, we shall
extend the present approach for membranes also to classical theories of shells with the same motivation to enable
the simultaneous analysis of shells on all level sets in a bulk domain or to add sub-structures to existing bulk
materials.
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