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A B S T R A C T

Given the growing demand for simulating anisotropic material behavior at finite strains,
constitutive modeling is in a challenging position to combine descriptive capabilities for
several inelastic phenomena with the numerical feasibility for real-world applications. In this
article, we develop a material model capable of reproducing anisotropy, viscoelasticity, stress
softening, and permanent set by merging several pre-existing frameworks. Each constitutive
effect is discussed separately in terms of its thermodynamics and mechanical interpretation
and successively built on top of each other. Here, the pseudo-elastic approach to permanent set
occupies a special place, with a novel discussion of its applicability to generic deformations. We
show that the formulation does not lead to physical behavior in general, but can be constrained
in such a way to produce appropriate stress predictions in an average sense. Examples of
the stress response in several different deformation modes are visualized throughout. The
capabilities and possible shortcomings of the formulation are highlighted and at the end a
simple numerical algorithm for stress computation is presented.

. Introduction

Anisotropic material models at finite strains are experiencing ever increasing demand in commercial applications such as fiber-
einforced soft composites (Reese, 2003), tissue-engineered materials (Li et al., 2019; Szafron et al., 2019), and textiles (Pierrat
t al., 2021). While considerable effort has been put into modeling soft fibrous tissues, see Humphrey (2003), Holzapfel and Ogden
2009), Li (2016), Lanir (2017) and Holzapfel et al. (2019), these approaches are not necessarily applicable to synthetic materials.
o make matters worse, inelastic effects, e.g., viscoelasticity, stress softening, and permanent set are in many cases so pronounced
hat a simple hyperelastic formulation is insufficient for a valid approximation, see, e.g., Miehe and Keck (2000), Diani et al. (2009),
aker et al. (2009) and Vernerey (2018).

In this study we attempt to combine several already existing modeling approaches to describe anisotropic material behavior
ncluding all inelastic effects listed above. For this purpose, each aspect of the model is discussed separately, successively building
n each other. Although the resulting formulation is easy to implement, see Appendix D, there are considerable nuances in terms
f thermodynamics and mechanical interpretability in each building block. We begin by introducing certain general continuum-
echanical quantities in Section 2, which will be used throughout. For the most part, symbolic tensor notation is employed, although
switch to index notation can be beneficial.
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All inelastic effects reference the quasi-static, purely elastic formulation in some form, such that a closer discussion thereof is
equired. Therefore, in Section 3, we adapt an anisotropic hyperelastic model introduced by Itskov and Aksel (2004) and Ehret and
tskov (2007) that employs structure tensors to describe classes of material symmetries. These tensors can also be interpreted as
robabilistic quantities, see, e.g., Driessen et al. (2003) and Gasser et al. (2006), which provide a pathway to the concepts of the
rinciple of minimum averaged free energy and non-affine deformation, see Miehe et al. (2004) and Tkachuk and Linder (2012).
worthwhile review of this topic can be found in Britt and Ehret (2022). Therewith closely related is the topic of convexity, more

recisely polyconvexity. At this point, we refer to Balzani et al. (2006), Schröder (2010) or Krawietz (1986, chap. 12), the latter of
hich gives a more physically motivated introduction to the topic, albeit in German.

The constitutive behavior is assumed to be incompressible. In addition to the advantages in the numerical implementation for
hell elements, this feature captures the in vivo behavior of blood-filled polymer scaffolds for which this model was originally

developed. An extension to compressible, inelastic material behavior is possible for all formulations in this study, but we mention
that the application of the isochoric-volumetric split in the case of anisotropy is a delicate issue, as pointed out in Sansour (2008),
and should be employed with caution, if at all.

In Section 4 we discuss the modeling of stress softening, also known as the Mullins effect, see Mullins (1948). At its center rests
the experimental fact that some materials exhibit a certain constitutive behavior on the primary loading path and then become more
compliant, i.e. damaged, during unloading and reloading until the primary loading path is reached again, upon which the material
recovers as if it had not been damaged at all. A widely used, so-called pseudo-elastic, constitutive framework is provided by Ogden
and Roxburgh (1999), which lacks a corresponding thermodynamic discussion subsequently remedied by Naumann and Ihlemann
(2015) without changing the core of the original model. We follow the approach with some minor adjustments.

The above-mentioned pseudo-elastic formulation is extended in Dorfmann and Ogden (2004) and Fereidoonnezhad et al. (2016)
to include permanent set, i.e. residual deformation, even if its validity for general deformations is not discussed. Nonetheless, the
approach appears attractive due to its simple implementation compared to more elaborate models such as Göktepe and Miehe (2005)
and Itskov et al. (2010). We therefore explore the capabilities of the pseudo-elastic formulation including permanent set for general
anisotropic material behavior in Section 5.

For the modeling of viscoelasticity in Section 6, we closely follow Liu et al. (2021), which in turn is based on Simo (1987)
and Holzapfel and Simo (1996). These formulations are referred to as finite linear viscoelasticity, alluding to the linearity of the
underlying evolution equations, with the advantage that an interpretation in terms of Maxwell elements is still applicable, although
only small deviations from thermodynamic equilibrium are valid. A computational advantage over models that use a multiplicative
split of the deformation gradient, such as Reese and Govindjee (1998) and Ciambella and Nardinocchi (2021), is the relative ease
of implementation in case of anisotropy, since the multiplicative approach requires a more thorough treatment of structural-frame
indifference, see, e.g., Casey (2017) and Holthusen et al. (2023). For a detailed discussion of the advantages and disadvantages of
both approaches, the reader is referred to the introduction in Liu et al. (2021).

In Section 7 we summarize the proposed model with reference to the relevant expressions and give an overview of the
material parameters. We also briefly discuss a possible calibration of the model and the consequences for the design of mechanical
experiments. Section 8 contains more application examples of the model to illustrate its capabilities as well as possible shortcomings.
We end the paper with a short conclusion in Section 9.

In general, details and considerations deemed non-obvious by the authors are highlighted as remarks throughout. All relevant
relations are implemented in the programming language Julia, see Bezanson et al. (2017).

2. Continuum-mechanical preliminaries

2.1. Kinematics

A material body  is a set of particles traversing different configurations according to a bijective mapping 𝒙 = 𝝌(𝑿, 𝑡), which
relates the positional vectors 𝑿 ∈ 𝛺0 and 𝒙 ∈ 𝛺 in the reference configuration 𝛺0 ⊂ R3 and the current configuration 𝛺 ⊂ R3,
respectively, for some time 𝑡 ≥ 0. With this, we can define the deformation gradient

𝐅 = 𝛁𝑿𝝌 alongside its determinant 𝐽 = det 𝐅 > 0 (1)

and the right Cauchy–Green tensor

𝐂 = 𝐅T𝐅, (2)

see, e.g., Truesdell and Noll (1965, sec. C.I–II).
Since the material is assumed to be incompressible, i.e. 𝐽 = 1, we also introduce the isochoric-volumetric split, i.e.

𝐅 = 𝐽−1∕3𝐅 with det 𝐅 = 1 and 𝐂 = 𝐅T𝐅, (3)

cf. Flory (1961, eq. 9).
2
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2.2. Thermodynamics

For the purposes of this study, the material is assumed to be isothermal, so a discussion of temperature-related effects is omitted.
nertial effects and moment densities are also neglected. We assume the existence of a free-energy function 𝛹 = 𝛹 (𝐂,…), where the

dots represent any number of internal variables and parameters that must satisfy the Clausius–Duhem inequality

 = 1
2
𝐒 ∶ 𝐂̇ − 𝛹̇ ≥ 0, (4)

where  denotes the dissipation (density) and 𝐒 the second Piola–Kirchhoff stress tensor, see, e.g., Eringen (1980, chap. 4). In
addition, the function 𝛹 adheres to material frame invariance, see, e.g., Truesdell and Noll (1965, eq. 19.2). Notationally, ̇(⋅) indicates
differentiation with respect to time 𝑡 and (⋅) ∶ (⋅) double contraction. The Clausius–Duhem inequality (4) itself does not constitute a
field equation, but rather serves as a guiding principle for the validity of dissipative constitutive formulations.

With incompressibility and the decomposition (3) in mind, we assume an additive split of 𝛹 into an isochoric and a volumetric
part in the form

𝛹 (𝐂,…) = 𝛹iso(𝐂,…) + 𝛹vol(𝐽 ), (5)

where any inelastic effects and thus internal variables, represented by dots in (5), are only introduced with respect to the isochoric
response. We emphasize that for the purposes of this study, the volumetric part only serves as a numerical means to establish near-
incompressibility through a penalty method in a computational context. For perfect incompressibility, 𝛹vol(𝐽 ) = −𝑝(𝐽 − 1), where
𝑝 denotes a Lagrange parameter. Even then, it can be advantageous to continue working with the unimodular right Cauchy–Green
tensor 𝐂. Although this does not play a role for the incompressible limit, it can still influence the convergence behavior in the
omputational context, see, e.g., Gültekin et al. (2019). By construction, the energy function is set to zero in the initial, undeformed
onfiguration, i.e. 𝛹 (𝐈,…) = 0, where 𝐈 denotes the second-order unit tensor. Similarly, we require the body to be stress free,
.e. 𝜕𝛹∕𝜕𝐂 = 𝟎 evaluated at 𝐂 = 𝐈. We emphasize that these conditions only have to be fulfilled in the undeformed configuration at
= 0. For any subsequent returns to 𝐂 = 𝐈 at 𝑡 > 0 these conditions need not hold in general due to inelastic effects.

. Anisotropic hyperelasticity

Here we introduce an anisotropic hyperelastic material model on which the inelastic effects are built. The section consists of three
ubsections. First, we discuss the concept of structure tensors to model anisotropy from both a geometrical and probabilistic point of
iew, independent of any mechanics. Then we use these quantities to define anisotropic invariants, which in turn are arguments for
free-energy function, from which we acquire an expression for the purely elastic stress response. Because these invariants inherit

he probabilistic nature of structure tensors, they all have a physical meaning. Finally, we use this interpretability to illustrate a
rinciple of minimum averaged free energy that does not alter the hyperelastic formulation itself, but provides additional motivation
or using a formalism based on structure tensors.

.1. Structure tensors

As can be seen in Ehret and Itskov (2007, eq. 18), we introduce anisotropy by defining a symmetric, positive semi-definite
eneralized structure tensor in its spectral form, i.e.

𝐇 =
𝑛
∑

𝑘=1
𝐻𝑘𝐋𝑘 with

𝑛
∑

𝑘=1
𝐋𝑘 = 𝐈 and tr𝐇 =

𝑛
∑

𝑘=1
𝐻𝑘 = 1, (6)

here 𝑛 ∈ {1, 2, 3}, depending on the algebraic multiplicity of the eigenvalues 0 ≤ 𝐻𝑘 ≤ 1, which together with their corresponding
rojection tensors 𝐋𝑘 encapsulate the specific type of anisotropy, i.e. isotropy for 𝑛 = 1, transverse isotropy for 𝑛 = 2, and orthotropy
or 𝑛 = 3. More complex material symmetries require structure tensors of higher order, see, e.g., Zheng (1994, chap. 3), which will
ot be discussed here. Each structure tensor 𝐇 is then defined by at most five independent parameters because of its normalized
race.

Another more illustrative way to define a structure tensor is in a probabilistic manner, as carried out by Gasser et al. (2006,
q. 3.14). There,

𝐇∥ = E[𝑵 ⊗𝑵] = 1
4𝜋 ∫

𝑵 ⊗𝑵𝜌(𝑵) d , (7)

i.e. the expected value E[(⋅)] of the dyadic product of the unit vector 𝑵 for a given probability density 𝜌(𝑵) of possible fiber
orientations defined over the surface of the unit sphere . The normalization of 𝜌(𝑵) ensures the identity trace of 𝐇∥. The ‘∥’-
subscript emphasizes that the unit vectors 𝑵 lie coaxially to the physical fiber direction. Since fiber-like constituents are nonetheless
three-dimensional structures, it makes sense to attempt to also capture their transverse orientations, i.e. all directions orthogonal
to 𝑵 . For this purpose, the projection tensor 𝐈−𝑵 ⊗𝑵 encapsulates all vectors lying in the plane with the normal 𝑵 , cf. Schröder
and Neff (2003, eq. 3.25). A straightforward approach is then to introduce an additional structure tensor in the form

𝐇⟂ = E
[ 1 (𝐈 −𝑵 ⊗𝑵)

]

= 1 1 (𝐈 −𝑵 ⊗𝑵)𝜌(𝑵) d = 1 (𝐈 −𝐇∥
)

, (8)
3

2 4𝜋 ∫ 2 2
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Fig. 1. Polar plots of two 𝜋-periodic von Mises distributions 𝜌(𝜑) ∝ exp{𝜅 cos[2(𝜑 − 𝜑0)]}, cf. Evans et al. (2000, chap. 41), with (a) 𝜅 = 1, 𝜑0 = 0° and (b)
𝜅 = 0.5, 𝜑0 = 45° and the corresponding structure tensors in matrix representation. The tilted axis of symmetry in (b) is reflected in the non-diagonal entries of
𝐇∥. The three-dimensional nature of 𝐇⟂ indicates that, although all fibers are in-plane, they still have an extension normal to the plane, i.e. 𝐇⟂ captures all
direction lying in the planes normal to the fibers in an average sense.

where the last step follows from the linearity of expectation. The factor 1∕2 takes care of the normalization and reflects the planar
space of the possible transverse directions. Therefore, 𝐇⟂ can be interpreted as the expected value of all transverse directions lying
in the plane normal to 𝑵 given some fiber distribution 𝜌(𝑵). By comparison with (6), it is evident that 𝐇⟂ itself constitutes a
generalized structure tensor. Consequently, 𝐇∥ and 𝐇⟂ are interdependent and one determines the other. The advantage is that
both the coaxial and the transverse fiber constitutive behavior can now be modeled more tangibly.

Fig. 1 illustrates the interaction of a fiber distribution 𝜌(𝑵) and the resulting structure tensor 𝐇∥ using two distinct, planar
𝜋-periodic von Mises distributions. Although in these cases no fibers are oriented out-of-plane, they still have an extension in that
direction, as indicated by the three-dimensional nature of 𝐇⟂, see (8).

Remark 1. Note that for calibration purposes, knowledge of 𝜌(𝑵) is not essential, but beneficial. Either one of the structure tensors
can simply be treated as five additional material constants, the number of which can be further reduced given the planes of material
symmetry.

Remark 2. Because each coaxial direction has an associated transverse behavior, there is no need for an isotropic ground matrix
embedding fibers as is the case in, e.g., Gasser et al. (2006).

3.2. Polyconvex formulation

For the definition of the isochoric free-energy function 𝛹 0,∞
iso for the undamaged body in equilibrium, hence the superscripts, we

use the polyconvex formulation of Itskov and Aksel (2004, eq. 84), with a slightly different parameterization in the form

𝛹 0,∞
iso (𝐂) = 1

2
∑

𝑝∈{∥,⟂}
𝜇𝑝

[

1
𝛾𝑝 + 1

(

𝐾
𝛾𝑝+1
1𝑝 − 1

)

+ 1
𝛿𝑝 + 1

(

𝐾
𝛿𝑝+1
−1𝑝 − 1

)

]

, (9)

where 𝐾±1𝑝 are four isochoric invariants defined as

𝐾1𝑝 = 𝐇𝑝 ∶ 𝐂 and 𝐾−1𝑝 = 𝐇𝑝 ∶ 𝐂−1 for 𝑝 ∈ {∥,⟂}, (10)

which all have a meaningful physical interpretation.
The macroscopic, isochoric deformation of a single line element along the unit vector 𝑵 follows from the well-known dot product

𝜆2∥ = (𝐅𝑵) ⋅ (𝐅𝑵) = (𝑵 ⊗𝑵) ∶ 𝐂, cf. Miehe et al. (2004, eq. 33). Given the distribution 𝜌(𝑵), we can then calculate the expected
value for 𝜆2∥ by noticing that

E
[

𝜆2∥
]

= E
[

(𝑵 ⊗𝑵) ∶ 𝐂
]

= E[𝑵 ⊗𝑵] ∶ 𝐂 = 𝐇∥ ∶ 𝐂 = 𝐾1∥ (11)

with the help of (7). Likewise, an area element with the normal 𝑵 changes macroscopically for an isochoric deformation according
o 𝜈2∥ = (𝐅−T𝑵) ⋅ (𝐅−T𝑵) = (𝑵 ⊗𝑵) ∶ 𝐂−1, cf. Miehe et al. (2004, eq. 58); in particular, 𝐂−1 = cof 𝐂. Then,

E
[

𝜈2
]

= E
[

(𝑵 ⊗𝑵) ∶ 𝐂−1
]

= E[𝑵 ⊗𝑵] ∶ 𝐂−1 = 𝐇 ∶ 𝐂−1 = 𝐾 . (12)
4

∥ ∥ −1∥
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Fig. 2. Quasi-static, non-dissipative, equibiaxial stress response for different parameter combinations. Unless otherwise stated in the plot, 𝜃0,∞ =
0.7, 0.3, 1 Pa, 0.2 Pa, 0, 0, 0, 0). (a) Only the type of anisotropy is altered, recovering the transversely isotropic behavior for 𝐻1 = 𝐻2 = 0.5 and the orthotropic
ehavior for 𝐻1 = 0.9 and 𝐻2 = 0.1. Notice the overlapping trajectories in the former case. (b) The effect of the ratio between the coaxial and transverse stiffness,
∥ and 𝜇⟂, is illustrated. The direction with the most fibers does not necessarily correspond to the stiffest stress response. (c) Increasing only 𝛾∥ leads to a more
rogressive stiffness evolution for that particular deformation mode. (d) Increasing only 𝛿∥ leads to a degression of stiffness, analogous to (c).

he expressions (11) and (12) carry over analogously to the transverse structure tensor 𝐇⟂. Here the invariants 𝐾1⟂ and 𝐾−1⟂ capture
he expected macroscopic isochoric deformation of line and area elements, 𝜆2⟂ = (𝐈 −𝑵 ⊗𝑵)∕2 ∶ 𝐂 and 𝜈2⟂ = (𝐈 −𝑵 ⊗𝑵)∕2 ∶ 𝐂−1,

in the plane perpendicular to the fiber direction 𝑵 , respectively, i.e.

E
[

𝜆2⟂
]

= E
[ 1
2
(𝐈 −𝑵 ⊗𝑵) ∶ 𝐂

]

= 𝐇⟂ ∶ 𝐂 = 𝐾1⟂,

E
[

𝜈2⟂
]

= E
[ 1
2
(𝐈 −𝑵 ⊗𝑵) ∶ 𝐂−1

]

= 𝐇⟂ ∶ 𝐂−1 = 𝐾−1⟂.
(13)

We emphasize that for the definition of the transverse quantities we never define a particular vector orthogonal to 𝑵 , but always
refer to the plane with the normal 𝑵 containing all possible orthogonal vectors encapsulated by the projection tensor 𝐈 −𝑵 ⊗𝑵 .

Assuming that only isochoric deformations are applicable, sufficient conditions to ensure polyconvexity are 𝜇∥ ≥ 0 and 𝜇⟂ ≥ 0
for the stiffness-like parameters, which weight the coaxial and transverse contributions, and 𝛾∥ ≥ 0, 𝛿∥ ≥ 0, 𝛾⟂ ≥ 0, and 𝛿⟂ ≥ 0 for
the shape parameters that control the influence of their associated invariants, cf. Itskov and Aksel (2004, eq. 59).

Inserting (5) and (9) into (4) and collecting the terms with 𝐂̇, we get the standard expression for the second Piola–Kirchhoff
tress tensor 𝐒, i.e.

𝐒 = 𝐽−2∕3P ∶ 𝐒0,∞ + 𝐒0,∞vol (14)

with the fourth-order projection tensor P = I − 𝐂−1 ⊗ 𝐂∕3, where I denotes the fourth-order unit tensor defined as (I)𝐼𝐽𝐾𝐿 =
𝛿𝐼𝐾𝛿𝐽𝐿 + 𝛿𝐼𝐿𝛿𝐽𝐾 )∕2. Then,

𝐒0,∞ = 2
𝜕𝛹 0,∞

iso

𝜕𝐂
=

∑

𝑝∈{∥,⟂}
𝜇𝑝

(

𝐾
𝛾𝑝
1𝑝𝐇𝑝 −𝐾

𝛿𝑝
−1𝑝𝐂

−1𝐇𝑝𝐂−1
)

, (15)

𝐒0,∞ = 𝐽
𝜕𝛹 0,∞

vol 𝐂−1, (16)
5

vol 𝜕𝐽
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where we leave 𝛹 0,∞
vol unspecified, albeit under the assumption that incompressibility can be enforced either by a penalty function

r by a Lagrange parameter. Other stress measures such as the first Piola–Kirchhoff (nominal) stress and the Cauchy (true) stress
ollow as usual according to 𝐏 = 𝐅𝐒 and σ = 𝐽−1𝐅𝐒𝐅T, respectively.

From now on, the eigenvectors of the structure tensors defining the planes of material symmetry coincide with the global
coordinate system (𝑬𝑘)3𝑘=1 in which the loading is specified, i.e. 𝐋𝑘 = 𝑬𝑘 ⊗ 𝑬𝑘. For implementation, this means the structure
tensors have a diagonal matrix representation. Without loss of generality, we can use 𝐻1 and 𝐻2 from 𝐇∥ to prescribe the type of
anisotropy. For orthotropy, all eigenvalues 𝐻1,𝐻2, and 𝐻3 = 1−𝐻1 −𝐻2 must be distinct, while for transverse isotropy exactly two
must be identical, e.g., 𝐻1 = 𝐻2 and 𝐻3 ≠ 𝐻1. In the case of isotropy, 𝐻1 = 𝐻2 = 𝐻3 = 1∕3.

Fig. 2 shows four examples of the quasi-static, non-dissipative true stress response σ for equibiaxial extension. Incompressibility
is ensured through the use of a Lagrange parameter. The material parameters form an octuple 𝜃0,∞ = (𝐻1,𝐻2, 𝜇∥, 𝜇⟂, 𝛾∥, 𝛾⟂, 𝛿∥, 𝛿⟂).
It can be seen that the formulation can approximate different degrees of anisotropy mainly by adjustment of 𝐻1,𝐻2, 𝜇∥, and 𝜇⟂,
see Fig. 2(a),(b), as well as nonlinear stiffness progressions with the shape parameters 𝛾∥, 𝛾⟂, 𝛿∥, and 𝛿⟂, see Fig. 2(c),(d).

Remark 3. If 𝛾𝑝 = 𝛿𝑝 = 0 and 𝜇⟂ = 2𝜇∥, the material behaves isotropically regardless of the choice of 𝐇∥.

Remark 4. In addition to Sansour (2008), the shortcomings of using the isochoric-volumetric split for compressible material
behavior is further hinted at in Hartmann and Neff (2003, cor. 2.3) by the fact that the common isochoric invariant tr(𝐂−1) is
not polyconvex for general compressible deformations.

3.3. Principle of minimum averaged free energy

The requirement for polyconvexity can be closely related to a principle of minimum averaged free energy, as discussed in Miehe
et al. (2004, sec. 4.3.2) or Tkachuk and Linder (2012, eq. 32), while simultaneously capturing the notion of non-affine deformation.
To clarify, we might know that, given a macroscopic isochoric deformation 𝐅, the affine line deformation along a fiber 𝑵 follows
𝜆2∥ = (𝑵 ⊗𝑵) ∶ 𝐂 and that the representative affine area deformation along all vectors perpendicular to the fiber direction 𝑵 reads
2
⟂ = (𝐈 − 𝑵 ⊗ 𝑵)∕2 ∶ 𝐂−1; however, for a given fiber network 𝜌(𝑵) the fibers do not necessarily have to deform affinely on the

microscale to retrieve the expected macroscopic deformations 𝐾1∥ and 𝐾−1⟂.
Suppose now there are four such microscopic deformation fields 𝜆2𝑝(𝑵 ;𝐅) and 𝜈2𝑝(𝑵 ;𝐅) that are yet to be determined functions.

We can define a functional 𝛹 0,∞
iso,avg that captures the average free energy for a given macroscopic isochoric deformation 𝐅 with

𝛹 0,∞
iso,avg

[

𝜆2∥, 𝜈
2
∥, 𝜆

2
⟂, 𝜈

2
⟂;𝐅

]

= E
[

𝛹 0,∞
iso (𝜆2∥, 𝜈

2
∥, 𝜆

2
⟂, 𝜈

2
⟂)
]

= 1
4𝜋 ∫

𝛹 0,∞
iso (𝜆2∥, 𝜈

2
∥, 𝜆

2
⟂, 𝜈

2
⟂)𝜌(𝑵) d ,

(17)

ubject to the four constraints that the averaged microscopic deformation fields are equivalent to the expected macroscopic
eformation fields from (11)–(13), i.e.

E
[

𝜆2𝑝
]

= E
[

𝜆2𝑝
]

⟹
1
4𝜋 ∫

𝜆2𝑝(𝑵 ;𝐅)𝜌(𝑵) d = 𝐾1𝑝,

E
[

𝜈2𝑝
]

= E
[

𝜈2𝑝
]

⟹
1
4𝜋 ∫

𝜈2𝑝(𝑵 ;𝐅)𝜌(𝑵) d = 𝐾−1𝑝.
(18)

y virtue of variational calculus, the resulting four Euler–Lagrange equations read

𝜕𝛹 0,∞
iso

𝜕𝜆2𝑝
= const. and

𝜕𝛹 0,∞
iso

𝜕𝜈2𝑝
= const., (19)

which implies optimality through

𝜆2𝑝 = const. ⟹ 𝜆2𝑝 = 𝐾1𝑝,

𝜈2𝑝 = const. ⟹ 𝜈2𝑝 = 𝐾−1𝑝.
(20)

It is straightforward to verify that 𝛹 0,∞
iso (𝐾±1𝑝) from (9) is convex in its arguments, which ensures that the extremum is a minimum.

A consequence of convexity is the applicability of Jensen’s inequality

𝛹 0,∞
iso

(

E
[

𝜆2∥
]

,E
[

𝜈2∥
]

,E
[

𝜆2⟂
]

,E
[

𝜈2⟂
]

)

≤ E
[

𝛹 0,∞
iso (𝜆2∥, 𝜈

2
∥, 𝜆

2
⟂, 𝜈

2
⟂)
]

(21)

or, equivalently,

𝛹 0,∞
iso (𝐾1∥, 𝐾−1∥, 𝐾1⟂, 𝐾−1⟂) ≤ 𝛹 0,∞

iso,avg

[

𝜆2∥, 𝜈
2
∥, 𝜆

2
⟂, 𝜈

2
⟂;𝐅

]

, (22)

which illustrates the principle of minimum averaged free energy quite tangibly.
The constrained minimization of the averaged free energy 𝛹 0,∞

iso,avg can therefore be viewed as a kind of analytical homogenization
f a fiber network, whereby a scale transition from a microscopic, non-affine regime to a macroscopic, affine regime is achieved.
6
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Consequently, the introduction of structure tensors like 𝐇∥ and 𝐇⟂ in a free-energy function such as 𝛹 0,∞
iso leads directly to a possible

interpretation in terms of non-affine deformations. Notably, equivalence in (22) is attained when all fibers are aligned in a single
direction, i.e. 𝜌(𝑵) represents a Dirac delta distribution; in this case, all microscopic and macroscopic deformation fields coincide.
The whole argument is neither confined to a certain number of structure tensors nor to their respective tensor orders.

4. Stress softening

In this section, the goal is to extend the constitutive model from the previous section to include stress softening. For an overview
of the experimental evidence of this phenomenon, the reader is referred to Dorfmann and Ogden (2004, sec. 2). The main observation
is that some materials become more compliant after unloading and remain so when reloaded. However, if the previous load level is
exceeded, the material behaves as if it had not been cycled at all until it is unloaded again. All of these concepts are first formalized
in a general manner and then made explicit for a specific choice of softening function. Here we only discuss the modeling of the
stiffness degradation, commonly referred to as the Mullins effect, which we will build on in the subsequent section in order to also
include residual deformation, i.e. permanent set. With regard to the thermodynamics of modeling the Mullins effect, the authors
highly recommend (Naumann and Ihlemann, 2015).

4.1. Thermodynamic framework

In order to model the switch from the primary loading path to the unloading and reloading path, an internal variable is introduced
that tracks the evolution of the maximally attained ‘undamaged’ isochoric free energy, i.e.

𝛹max
iso (𝑡) = max

𝜏≤𝑡
𝛹 0,∞
iso (𝜏), (23)

cf. Naumann and Ihlemann (2015, eq. 8). From here, we refer to the time intervals between updates of 𝛹max
iso as unloading–reloading

cycles. Although the time 𝑡 is explicitly mentioned, the model remains rate-independent.
We can now define a softening function 𝜂m(𝛹

0,∞
iso , 𝛹max

iso ) that scales the stress response in (14) depending on whether the material
is currently experiencing primary loading or not, such that

𝐒 = 𝐽−2∕3P ∶
(

𝜂m𝐒0,∞
)

+ 𝐒0,∞vol . (24)

For physical reasons, 0 < 𝜂m ≤ 1 with 𝜂m(𝛹max
iso , 𝛹max

iso ) = 1. Once more we emphasize that the inelastic effects act only on the isochoric
stress response. The superscript/subscript ‘m’ refers to quantities related to the Mullins effect.

According to Naumann and Ihlemann (2015, eq. 28), the corresponding ‘damaged’ isochoric free-energy function is defined as

𝛹m,∞
iso (𝐂, 𝛹max

iso ) = ∫

𝑡

0
𝜂m

[

𝛹 0,∞
iso (𝜏), 𝛹max

iso (𝑡)
]

𝛹̇ 0,∞
iso (𝜏) d𝜏 = ∫

𝛹0,∞
iso

0
𝜂m(𝜓,𝛹max

iso ) d𝜓. (25)

hether or not the time differentiation is evaluated at 𝑡 or 𝜏 should be clear from the context or is stated explicitly with parentheses
o avoid ambiguity. In the last step, the substitution d𝛹 0,∞

iso = 𝛹̇ 0,∞
iso (𝜏) d𝜏 is used and 𝜓 serves as a dummy variable to avoid confusion

ith the upper limit of integration.
Keeping the Leipniz integral rule in mind, the derivative of (25) with respect to 𝑡 yields

𝛹̇m,∞
iso = ∫

𝛹0,∞
iso

0

𝜕𝜂m
𝜕𝛹max

iso
d𝜓 𝛹̇max

iso + 𝜂m(𝛹
0,∞
iso , 𝛹max

iso )𝛹̇ 0,∞
iso

= ∫

𝛹0,∞
iso

0

𝜕𝜂m
𝜕𝛹max

iso
d𝜓 𝛹̇max

iso + 1
2
𝜂m𝐒0,∞ ∶ 𝐂̇.

(26)

If we insert 𝛹m,∞
iso into (4), we can again bracket the terms with 𝐂̇, whereupon we recover (24); the reduced Mullins-related

dissipation reads

m = −∫

𝛹0,∞
iso

0

𝜕𝜂m
𝜕𝛹max

iso
d𝜓 𝛹̇max

iso = −∫

𝛹max
iso

0

𝜕𝜂m
𝜕𝛹max

iso
d𝜓 𝛹̇max

iso ≥ 0. (27)

y definition, 𝛹̇max
iso ≥ 0 and therefore dissipation only occurs during primary loading, where 𝛹 0,∞

iso = 𝛹max
iso ≥ 0, which explains the

hange in the upper limit of integration. As stated in Naumann and Ihlemann (2015, eq. 37), the sufficient condition
𝜕𝜂m
𝜕𝛹max

iso
≤ 0 (28)

nsures (27).

emark 5. The integration by substitution in (25) skips over the detail that 𝛹 0,∞
iso (𝑡) is not injective, i.e. two different points in

ime 𝑡1 ≠ 𝑡2 might correspond to the same energy function 𝛹 0,∞
iso (𝑡1) = 𝛹 0,∞

iso (𝑡2). Only due to the potential character of 𝛹m,∞
iso , a more

horough treatment is unnecessary.

emark 6. Here, a thermodynamic discussion of the formulation (25) reveals a requirement for 𝜂m(𝛹
0,∞
iso , 𝛹max

iso ). Interestingly, the
hoices made by Ogden and Roxburgh (1999, eq. 3.28) and Dorfmann and Ogden (2004, eq. 57) conform to (28) without this
hermodynamic reasoning, but another more heuristic argument, cf. Ogden and Roxburgh (1999, eq. 3.16).
7
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4.2. Specific choice of softening function

In order to align the modeling of stress softening and permanent set in a more streamlined manner, we introduce the auxiliary
unction

𝜂(𝜒 ; 𝜂0, 𝜂1, 𝛼) = 𝜂0 + (𝜂1 − 𝜂0)
[

(𝛼 + 1)𝜒𝛼 − 𝛼𝜒𝛼+1
]

with 𝜒 =
𝛹 0,∞
iso

𝛹max
iso

(29)

and 𝛼 ≥ 1. Note that 0 ≤ 𝜒 ≤ 1. The domain of (29) is then confined by 𝜂(0) = 𝜂0 and 𝜂(1) = 𝜂1. Also note that the derivative 𝜂′ is
onotonic with respect to 𝜒 , in particular 𝜂′(1) = 0, leading to continuous gradients in the stress response.

In the case of Mullins-related stiffness loss, we specify (29) to

𝜂m(𝛹
0,∞
iso , 𝛹max

iso ) = 𝜂
(

𝜒 ; 𝜂m0, 1, 𝛼m
)

= 𝜂m0 + (1 − 𝜂m0)
[

(𝛼m + 1)𝜒𝛼m − 𝛼m𝜒𝛼m+1], (30)

here 0 < 𝜂m0 ≤ 1. As physically required, the softening function leaves the stress response (24) unchanged on the primary loading
ath, where 𝜒 = 1 and 𝜂m(1) = 1, and scales it to a value 𝜂m0 ≤ 𝜂m(𝜒) < 1 during unloading and reloading, where 𝜒 < 1. For
llustration, Fig. 3(a),(c) show three example trajectories of (30) for different parameter choices 𝜃m,∞ = (𝜂m0, 𝛼m).

By routine differentiation, it can be checked that (30) conforms to (28) and by integration of (27) we get the closed-form
xpression

m =
(1 − 𝜂m0)𝛼m(𝛼m + 1)

𝛹max
iso

∫

𝛹max
iso

0
𝜒𝛼m (1 − 𝜒) d𝜓 𝛹̇max

iso

= (1 − 𝜂m0)
𝛼m

𝛼m + 2
𝛹̇max
iso ≥ 0.

(31)

With the aforementioned restrictions on 𝜂m0 and 𝛼m, the inequality holds in general.
Likewise, the ‘damaged’ isochoric free-energy function in (25) can be integrated analytically, which leads to

𝛹m,∞
iso (𝛹 0,∞

iso , 𝛹max
iso ) = ∫

𝛹0,∞
iso

0
𝜂m0 + (1 − 𝜂m0)

[

(𝛼m + 1)𝜒𝛼m − 𝛼m𝜒𝛼m+1] d𝜓

=
[

𝜂m0 + (1 − 𝜂m0)
(

𝜒𝛼m −
𝛼m

𝛼m + 2
𝜒𝛼m+1

)]

𝛹 0,∞
iso .

(32)

For the special case 𝜂m0 = 1, the softening function 𝜂m(𝜒) ≡ 1, i.e. no stress softening ever occurs, and 𝛹m,∞
iso ≡ 𝛹 0,∞

iso .
In Fig. 3(b),(d), the influence of the Mullins-related material parameters for cyclic, uniaxial extension is illustrated. Now, there

re a total of ten material constants consisting of 𝜃0,∞ = (𝐻1,𝐻2, 𝜇∥, 𝜇⟂, 𝛾∥, 𝛾⟂, 𝛿∥, 𝛿⟂) and 𝜃m,∞ = (𝜂m0, 𝛼m). Evidently, 𝜂m0 determines
he magnitude of the damage, while the shape parameter 𝛼m governs the evolution of stress softening during unloading.

emark 7. Interestingly, the thermodynamic argument does not provide a lower bound for 𝜂m0, although for physical reasons
m0 > 0, otherwise we would acquire a negative semi-definite stiffness tensor and conversely obtain negative energies as evidenced
y (32).

emark 8. In general, a consequence of using the ratio 𝜒 when modeling 𝜂m is the lack of dependence of m on 𝛹max
iso , i.e. the

ccumulated dissipation is always linear in 𝛹max
iso ; this can be checked with the substitution d𝜓 = 𝛹max

iso d𝜒 in (27) reading

m = −∫

𝛹max
iso

0

𝜕𝜂m
𝜕𝛹max

iso
d𝜓 𝛹̇max

iso = ∫

𝛹max
iso

0

𝜕𝜂m
𝜕𝜒

𝜒
𝛹max
iso

d𝜓 𝛹̇max
iso = ∫

1

0

𝜕𝜂m
𝜕𝜒

𝜒 d𝜒 𝛹̇max
iso , (33)

hich is independent from 𝛹max
iso as claimed. A nonlinear behavior can be allowed, e.g., by working with the difference 𝛹max

iso −𝛹 0,∞
iso ≥

, which then also necessitates the introduction of an energy-like material parameter.

. Permanent set

Here we extend the above framework to model stress softening, now including residual deformation. In the current state of the
onstitutive model, the material might display damage after unloading, which is noticeable as a loss of stiffness, but the material
emains elastic thereafter, cf. Naumann and Ihlemann (2015, rem. 1). We can therefore not capture any inelastic deformation that
ay occur, see, e.g., Dorfmann and Ogden (2004, fig. 1). Although many concepts from the modeling of the stiffness degradation

arry over, to the best of the authors’ knowledge, the consequences of using the pseudo-elastic formulation for permanent set,
riginally proposed by Dorfmann and Ogden (2004), have not been discussed in a general manner so far. To this end, we again first
ormalize the necessary concepts and attempt to investigate them in a formal analysis. We then choose a specific formulation and
8

llustrate the resulting constitutive predictions.
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Fig. 3. Three examples for (a) the trajectory of the Mullins-related softening function for constant 𝛼m and changing 𝜂m0 and (b) the quasi-static, cyclic, uniaxial
stress response given the softening functions from (a). Analogously, three examples for (c) the trajectory of the Mullins-related softening function for constant 𝜂m0
and changing 𝛼m and (d) the quasi-static, cyclic, uniaxial stress response given the softening functions from (c). The ‘undamaged’ parameters are kept constant
with 𝜃0,∞ = (0.7, 0.3, 1 Pa, 0.2 Pa, 0, 0, 0, 0).

5.1. Residual stress contribution

Both in Dorfmann and Ogden (2004, eqs. 49, 67, 72) and Fereidoonnezhad et al. (2016, eqs. 10, 20) the basic idea to include
permanent set is through the introduction of an inelastic, residual stress tensor 𝐒r,∞(𝐂⋆), which depends on the isochoric deformation
tate 𝐂⋆ at the instance of the maximally attained isochoric free energy 𝛹max

iso , i.e.

𝐂⋆(𝑡) = 𝐂(𝜏⋆) with 𝜏⋆ = argmax
𝜏≤𝑡

𝛹 0,∞
iso (𝜏) ⟹ 𝛹max

iso = 𝛹 0,∞
iso (𝐂⋆). (34)

The additional stress contribution is then switched on and off continuously with a softening function 𝜂r (𝛹
0,∞
iso , 𝛹max

iso ), similar to
m(𝛹

0,∞
iso , 𝛹max

iso ) from (24), which leads to the quasi-static stress formulation

𝐒 = 𝐽−2∕3P ∶ 𝐒∞ + 𝐒0,∞vol = 𝐽−2∕3P ∶
(

𝜂m𝐒0,∞ + 𝜂r𝐒r,∞
)

+ 𝐒0,∞vol . (35)

Here, the superscript/subscript ‘r’ denotes the terms associated with permanent set. Since 𝐒r,∞ should not affect the material behavior
uring primary loading, 𝜂r (𝛹max

iso , 𝛹max
iso ) = 0. We note that our definition of 𝜂r differs slightly from the original publications.

For general deformations, choosing a relation 𝐒r,∞(𝐂⋆) that leads to consistent physical residual stress responses is challenging.
This difficulty arises because there does not seem to be a thermodynamic framework for treating permanent set, unlike for stress
softening, which is discussed in Section 4.1.

Before continuing, we briefly introduce the set of all isochoric deformation states with free energy (less than or) equal to 𝛹max
iso ,

.e.

 = {𝐂 | 𝛹 0,∞(𝐂) = 𝛹max} and  = {𝐂 | 𝛹 0,∞(𝐂) ≤ 𝛹max}. (36)
9
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Remark 9. There is a slight ambiguity in the definition of 𝐂⋆ given by (34) in the limit case when 𝛹 0,∞
iso reaches 𝛹max

iso after
reloading, but for a different deformation than the current 𝐂⋆, upon which no further primary loading follows. In order to resolve
this indeterminacy, we decide to update 𝐂⋆ only after a ‘new’ maximum in 𝛹 0,∞

iso is reached.

5.2. Net work in a cycle

Given the stress formulation in (35), it is not self-evident how a proper thermodynamic argument should be constructed that
reveals requirements about the constitutive modeling of 𝜂r and 𝐒r,∞ in a physically meaningful way. Hence, we turn to a more
angible constitutive inequality, given by Hill (1968, p. 232), which requires the net work done by strain cycles, i.e. ‘paths of
eformation that begin and end in the same configuration’, to be non-negative. We slightly modify this requirement and ask about
he net work done in an unloading–reloading cycle instead. For us, ‘same configuration’ is thus defined as all 𝐂 ∈ eq. Although

an interesting concept in its own right, it will later also be relevant for attempting to define a meaningful free-energy function
associated with permanent set.

With (35), Hill’s strain cycle condition reads

𝑤cycle =
1
2 ∮ 𝐒 ∶ 𝐂̇ d𝜏 = 1

2 ∮

[(

𝜂m𝐒0,∞ + 𝜂r𝐒r,∞
)

∶ 𝐂̇ + 𝐒0,∞vol ∶ 𝐂̇
]

d𝜏

= 1
2 ∮ 𝜂r𝐒r,∞ ∶ 𝐂̇ d𝜏 ≥ 0,

(37)

where the integral over the volumetric and Mullins-related terms vanishes due to their conservative nature and only the 𝜂r -weighted
residual power (density) remains of relevance.

For a residual stress formulation of the form (35), it can be shown that the requirement (37) is generally not fulfilled. We do
this by proof of contraction. Let us assume that the condition (37) holds in general; then it also holds for any path of isochoric
deformation 𝐂(𝜏) during an unloading–reloading cycle that starts and ends in the same deformation state, i.e. 𝑡𝑎 ≤ 𝜏 ≤ 𝑡𝑏 with
𝐂(𝑡𝑎) = 𝐂(𝑡𝑏) = 𝐂⋆ and 𝛹 0,∞

iso [𝐂(𝜏)] ≤ 𝛹max
iso . By definition, 𝛹max

iso = const. and consequently 𝑆r,∞
𝐼𝐽 = const. From (37), we get

𝑤cycle =
1
2 ∫

𝑡𝑏

𝑡𝑎
𝜂r𝐒r,∞ ∶ 𝐂̇ d𝜏 = 1

2
𝐒r,∞ ∶ ∫

𝑡𝑏

𝑡𝑎
𝜂r [𝐂(𝜏)]𝐂̇(𝜏) d𝜏. (38)

Let us now traverse this closed path of deformation in the reverse sense, so that 𝜏′ = 𝑡𝑏 − (𝜏 − 𝑡𝑎) and 𝐂′(𝜏) = 𝐂(𝜏′), which is itself a
alid closed path of deformation. Then,

𝑤′
cycle = −𝑤cycle ⟹ 𝑤′

cycle ≤ 0. (39)

n the absence of a potential, we can always find a path of deformation for which the work is non-zero and therefore either itself
r its reverse counterpart contradicts the assumption (37), which then cannot hold in general for the modeling approach presented
n (35). In fact, one can show that there exist unloading–reloading cycles for which the net work, be it positive or negative, is
nbounded, see Appendix A. This also renders a variational treatment of (38) difficult, since there might not exist global optima
hich could be used to establish bounds on 𝑤cycle. Whether or not these types of deformation paths are relevant to application is
nother question, though.

Although we have established that given (35) we can always construct an unphysical unloading–reloading cycle, we do not want
o deem the approach inappropriate per se. There is a reasonable choice for 𝐒r,∞ that suggests a positive net work in an averaged

sense, as shown below.

5.3. Specific choice for the residual stress formulation

We define the residual stress contribution in the form

𝐒r,∞(𝐂⋆) = −𝐒0,∞(𝐂⋆). (40)

Somewhat intuitively, the residual stresses ‘counteract’ the stress state encountered at 𝐂⋆. More importantly, there is a mathematical
advantage. We can use the convexity of (9) with respect to 𝐂. The proof thereof can be found in Appendix B. As 𝛹 0,∞

iso is sufficiently
mooth,

𝛹 0,∞
iso (𝐂) − 𝛹 0,∞

iso (𝐂⋆) − 1
2
𝐒0,∞(𝐂⋆) ∶

(

𝐂 − 𝐂⋆
)

≥ 0 ∀𝐂,𝐂⋆, (41)

cf. Ogden (1997, eq. A.8). Since 𝛹 0,∞
iso (𝐂⋆) = 𝛹max

iso , it follows with (40) that

1
2
𝐒r,∞ ∶

(

𝐂 − 𝐂⋆
)

≥ 𝛹max
iso − 𝛹 0,∞

iso ≥ 0 ∀𝐂 ∈ leq. (42)

ltimately, we are interested in a kind of expected value for the net work 𝑤cycle in a finite unloading–reloading cycle, which is
ot straightforward to define, since the sample space of all deformation paths 𝐂(𝜏) is unaccountably infinite. If one interprets
10
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the deformation path during an unloading–reloading cycle as a stochastic process, (37) can be rewritten in the form of a
Fisk–Stratonovich integral

𝑤cycle =
1
2 ∫

𝑡𝑏

𝑡𝑎
𝜂r𝐒r,∞ ∶ 𝐂̇ d𝜏 = lim

𝛥𝑡→0

1
2

𝑁−1
∑

𝑖=0

𝜂r (𝐂𝑖+1) + 𝜂r (𝐂𝑖)
2

𝐒r,∞ ∶
(

𝐂𝑖+1 − 𝐂𝑖
)

, (43)

where 𝐂𝑖 = 𝐂(𝑡𝑖) and 𝑡𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁−1 < 𝑡𝑁 = 𝑡𝑏 with 𝛥𝑡 = (𝑡𝑏 − 𝑡𝑎)∕(𝑁 + 1), cf. Fisk (1963, sec. 2.2.1). By definition,
𝜂r (𝐂0) = 𝜂r (𝐂𝑁 ) = 0 and (43) reduces to

𝑤cycle = lim
𝛥𝑡→0

1
4
𝐒r,∞ ∶

[𝑁−1
∑

𝑖=1
𝜂r (𝐂𝑖)𝐂𝑖+1 −

𝑁−2
∑

𝑖=0
𝜂r (𝐂𝑖+1)𝐂𝑖

]

= lim
𝛥𝑡→0

1
4
𝐒r,∞ ∶

[

𝜂r (𝐂𝑁−1)𝐂𝑁 − 𝜂r (𝐂1)𝐂0 +
𝑁−2
∑

𝑖=1
𝜂r (𝐂𝑖)𝐂𝑖+1 − 𝜂r (𝐂𝑖+1)𝐂𝑖

]

.

(44)

Any unloading–reloading cycle must start at 𝐂0 = 𝐂⋆ and end at some 𝐂𝑁 = 𝐂 ∈ eq, but during the unloading–reloading cycle,
i.e. 𝑖 ∉ {0, 𝑁}, all deformation states in leq are equally likely. Therefore, similar to a path integral, we define the expected value
or the net work as

E
[

𝑤cycle
]

= 1
𝑍𝑁−1 ∫ ⋯∫ 𝑤cycle d𝐂1 …d𝐂𝑁−1 (45)

ith

𝑍𝑁−1 = ∫ ⋯∫ d𝐂1 …d𝐂𝑁−1 =
(

∫ d𝐂𝑖
)𝑁−1

, (46)

.e. 𝑍 = ∫ d𝐂𝑖 for all 𝑖 ∉ {0, 𝑁}. The integrals over the five independent entries in each 𝐂𝑖 ∈ leq are well defined, since leq is a
closed set. If we define

E
[

𝐂
]

= 1
𝑍 ∫ 𝐂𝑖 d𝐂𝑖 and E

[

𝜂r
]

= 1
𝑍 ∫ 𝜂r (𝐂𝑖) d𝐂𝑖 (47)

for all 𝑖 ∉ {0, 𝑁}, we can simplify (45) with (43) considerably through

E
[

𝑤cycle
]

= lim
𝛥𝑡→0

1
4
𝐒r,∞ ∶

{

1
𝑍𝑁−1 ∫ ⋯∫

[

𝜂r (𝐂𝑁−1)𝐂𝑁 − 𝜂r (𝐂1)𝐂0 +
𝑁−2
∑

𝑖=1
𝜂r (𝐂𝑖)𝐂𝑖+1 − 𝜂r (𝐂𝑖+1)𝐂𝑖

]

d𝐂1 …d𝐂𝑁−1

}

= lim
𝛥𝑡→0

1
4
𝐒r,∞ ∶

(

E
[

𝜂r
]

𝐂𝑁 − E
[

𝜂r
]

𝐂0 +
𝑁−2
∑

𝑖=1
E
[

𝜂r
]

E
[

𝐂
]

− E
[

𝜂r
]

E
[

𝐂
]

)

= 1
4
E
[

𝜂r
]

𝐒r,∞ ∶
(

𝐂 − 𝐂⋆
)

∀𝐂 ∈ eq.

(48)

It follows that for E
[

𝑤cycle
]

to be non-negative, we require that E
[

𝜂r
]

and 𝐒r,∞ ∶ (𝐂 − 𝐂⋆) have the same sign. For the latter we
already know from (42) that

1
2
𝐒r,∞ ∶

(

𝐂 − 𝐂⋆
)

≥ 0 ∀𝐂 ∈ eq ⟸ eq ⊂ leq. (49)

ence, we are left with the requirement E
[

𝜂r
]

≥ 0 which is sufficiently satisfied through

𝜂r (𝛹
0,∞
iso , 𝛹max

iso ) ≥ 0. (50)

herefore, given the residual stress formulation (40), we can show that for a random deformation path the expected value for the
et work in an unloading–reloading cycle is non-negative, if (50) holds.

With the consequences of Hill’s strain cycle condition at hand, it is possible to carry over the results in an attempt to define a
ree-energy function 𝛹 r,∞

iso related to permanent set in the form

𝛹 r,∞
iso (𝐂,𝐂⋆) = 1

2
𝜂r (𝛹

0,∞
iso , 𝛹max

iso )𝐒r,∞(𝐂⋆) ∶
(

𝐂 − 𝐂⋆
)

. (51)

To avoid possible limiting issues in the initial, undeformed configuration, we set 𝜂r (0, 0) = 0. With (42) and (50) it is straightforward
to check that 𝛹 r,∞

iso ≥ 0. If we take 𝛹∞
iso = 𝛹m,∞

iso +𝛹 r,∞
iso and plug it into (4), we can bracket the terms with 𝐂̇ as usual resulting in (35),

as desired. The reduced dissipation associated with permanent set reads

r = −1
2
𝜂̇r𝐒r,∞ ∶

(

𝐂 − 𝐂⋆
)

+ 1
2
𝜂r
(

𝐒r,∞ ∶ 𝐂⋆
)

̇

= −1
2
𝜂̇r𝐒r,∞ ∶

(

𝐂 − 𝐂⋆
)

≥ 0,
(52)

where the second term on the right-hand side vanishes, since either 𝜂r or 𝐂̇⋆ is zero at all times. Because of instances with 𝜂̇r > 0,
11

he dissipation inequality does not hold in general. However, if we look at the accumulated dissipation and notice that 𝜂̇r = 0 during
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primary loading, then

∫

𝜏⋆

0
r d𝜏 = −1

2 ∫

𝜏⋆

0
𝜂̇r𝐒r,∞ ∶

(

𝐂 − 𝐂⋆
)

d𝜏

=
∑

cycles
−1
2 ∮ 𝜂̇r𝐒r,∞ ∶

(

𝐂 − 𝐂⋆
)

d𝜏

=
∑

cycles

1
2 ∮ 𝜂r𝐒r,∞ ∶ 𝐂̇ d𝜏

=
∑

cycles
𝑤cycle,

(53)

where in the second step each unloading–reloading cycle is rewritten by partial integration. For more details about this operation,
the reader is referred to (A.2). From the results obtained so far, it follows directly that also the expected accumulated dissipation
up to 𝜏⋆ is non-negative for a random deformation path in the sense given above.

Taking into account (50), we again use (29) from Section 4.2 and define

𝜂r (𝛹
0,∞
iso , 𝛹max

iso ) = 𝜂
(

𝜒 ; 𝜂r0, 0, 𝛼r
)

= 𝜂r0
[

1 − (𝛼r + 1)𝜒𝛼r + 𝛼r𝜒𝛼r+1
]

with 𝜒 =
𝛹 0,∞
iso

𝛹max
iso

,
(54)

hich inherits the advantages pointed out in the discussion on the modeling of stress softening.
The Fig. 4(a),(c) show three examples of (54) for different parameter choices 𝜃r,∞ = (𝜂r0, 𝛼r ), which adds two additional material

arameters to the constitutive model, now a total of twelve. In Fig. 4(b),(d), the stress response to the same cyclic, uniaxial boundary-
alue problem, as discussed in Section 4.2, is plotted, but now including permanent set. It is evident that the material does not return
o a stress-free initial configuration and that the choice of 𝜂r0 controls the magnitude of the residual stress contribution, while the
hape parameter 𝛼r governs its evolution during unloading. We note that the residual stress contribution generally breaks the initial
aterial symmetries defined by 𝐇∥ and 𝐇⟂. Judging from the stress–strain curve alone, the effects of stress softening and permanent

et interact and the conjunctive tuning of 𝜃m,∞ and 𝜃r,∞ can create a variety of material behaviors during unloading and reloading.

emark 10. For an incompressible neo-Hookean material, 𝛹 0,∞
iso = 𝜇(tr 𝐂 − 3)∕2 and it follows that 𝐒r,∞ = −𝜇𝐈 and 𝛹̇ 0,∞

iso ≡
−𝐒r,∞ ∶ 𝐂̇∕2. The residual stress contribution does not become path-dependent regardless of 𝜂r and, consequently, 𝑤cycle ≡ 0, i.e. no
ermanent set occurs. This is not a problem for the hyperelastic formulation introduced in Section 3.2, since it cannot be reduced
o a neo-Hookean model by any combination of material parameters 𝜃0,∞.

emark 11. Another way of looking at (48) is that realizations of 𝜂r and 𝐒r,∞ ∶ 𝐂̇∕2 are uncorrelated for a random deformation
path in an unloading–reloading cycle.

Remark 12. In (48), for the case 𝐂 = 𝐂⋆, i.e. the unloading–reloading cycle starts and ends in the same configuration, we get
E
[

𝑤cycle
]

= 0. This coincides with the intuition gained from the example in Section 5.2, where any unloading–reloading cycle can
be traversed in either direction, providing either a negative or a positive contribution.

6. Finite linear viscoelasticity

This section deals with the introduction of viscoelasticity to the constitutive model. For the most part, it can be treated
independently from the previous two sections on stress softening and permanent set. As before, we start out in a general manner,
albeit already with several restrictions compared to the extensive discussion in Liu et al. (2021), which the authors highly
recommend. We then specify the resulting expressions for the free-energy function introduced in Section 3 and visualize the stress
response in different transient load cases.

By adapting Liu et al. (2021, eqs. 2.37, 2.41, 2.51, 2.55), we define the total isochoric free-energy function as the sum of an
equilibrium part 𝛹∞

iso and the non-equilibrium parts 𝛶𝑙. Ad hoc,

𝛹iso(𝐂,𝐂⋆,Γ1,… ,Γ𝑀 ) = 𝛹∞
iso(𝐂,𝐂

⋆) +
𝑀
∑

𝑙=1
𝛶𝑙(𝐂,Γ𝑙)

= 𝛹∞
iso(𝐂,𝐂

⋆) +
𝑀
∑

𝑙=1

1
4𝜇′𝑙

|

|

|

𝛽𝑙𝐒0,∞(𝐂) − 𝜇′𝑙 (Γ𝑙 − 𝐈)||
|

2
,

(55)

where |(⋅)|2 = (⋅) ∶ (⋅) and 𝑀 denotes the total number of viscous Maxwell elements, each with a stiffness-like parameter 𝜇′𝑙 and a
ight Cauchy–Green-like internal variable Γ𝑙. The dimensionless constant 𝛽𝑙 is a strain–energy factor, cf. Govindjee and Simo (1992,

′

12

q. 16). Note that 𝜇𝑙 are different quantities than 𝜇∥ and 𝜇⟂.
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Fig. 4. Three examples for (a) the trajectory of the softening function which models the permanent set for constant 𝛼r and changing 𝜂r0 and (b) the quasi-static,
cyclic, uniaxial stress response given the softening functions from (a). Analogously, three examples for (c) the trajectory of the softening function which models
the permanent set for constant 𝜂r0 and changing 𝛼r and (d) the quasi-static, cyclic, uniaxial stress response given the softening functions from (c). The other
material parameters are kept constant with 𝜃0,∞ = (0.7, 0.3, 1 Pa, 0.2 Pa, 0, 0, 0, 0) and 𝜃m,∞ = (0.1, 1).

The thermodynamic discussion for the equilibrium part, presented above, applies analogously here. Therefore, our focus in this
section is solely on the non-equilibrium parts. More precisely, we concentrate on a single Maxwell element due to the linearity of
the problem. By inserting 𝛶𝑙 into (4), we get the reduced dissipation according to

neq = − 1
2𝜇′𝑙

[

𝛽𝑙𝐒0,∞ − 𝜇′𝑙 (Γ𝑙 − 𝐈)
]

∶
(

𝛽𝑙𝐒̇0,∞ − 𝜇′𝑙Γ̇𝑙
)

≥ 0. (56)

y taking a closer look at the term
1
2

[

𝛽𝑙𝐒0,∞ − 𝜇′𝑙 (Γ𝑙 − 𝐈)
]

∶ Γ̇𝑙 ≥ 0, (57)

we can ensure positive dissipation by defining the following evolution equation

𝜂𝑙Γ̇𝑙 = 𝛽𝑙𝐒0,∞ − 𝜇′𝑙 (Γ𝑙 − 𝐈) (58)

with the viscosity parameter 𝜂𝑙 ≥ 0 of the 𝑙th Maxwell element. For us, 𝐒0,∞|

|

|𝑡=0
= 𝟎 and thus the initial conditions are Γ𝑙

|

|

|𝑡=0
= 𝐈 and

̇ 𝑙
|

|

|𝑡=0
= 𝟎. Using the auxiliary non-equilibrium stress tensor 𝐐𝑙 = 𝛽𝑙𝐒0,∞ − 𝜇′𝑙 (Γ𝑙 − 𝐈) and the relaxation time 𝜏𝑙 = 𝜂𝑙∕𝜇′𝑙 , we rewrite

he evolution equation in the form

𝐐̇𝑙 +
𝐐𝑙
𝜏𝑙

= 𝛽𝑙𝐒̇0,∞ (59)

with 𝐐𝑙
|

|

|𝑡=0
= 𝟎 and 𝐐̇𝑙

|

|

|𝑡=0
= 𝟎, which can be numerically integrated as described in Holzapfel (2000, eq. 6.267) and shown

in Appendix D.
The second remaining term in the reduced dissipation (56) is

−
𝛽𝑙

′

[

𝛽𝑙𝐒0,∞ − 𝜇′𝑙 (Γ𝑙 − 𝐈)
]

∶ 𝐒̇0,∞ = −
𝛽𝑙

′𝐐𝑙 ∶ 𝐒̇0,∞ = −
𝛽𝑙
′𝐐𝑙 ∶

𝜕2𝛹 0,∞
iso ∶ 𝐂̇, (60)
13

2𝜇𝑙 2𝜇𝑙 𝜇𝑙 𝜕𝐂𝜕𝐂
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Fig. 5. (a) Relaxation after a simple shear loading for different combinations of Maxwell elements, where 𝜏1 = 0.1 s, 𝛽1 = 0.8, 𝜏2 = 1 s, and 𝛽2 = 0.3,
nd (b) the viscoelastic, cyclic simple shear stress response with and without stress softening and/or permanent set for 𝜃neq = (0.1 s, 0.8). Otherwise,
0,∞ = (0.7, 0.3, 1 Pa, 0.2 Pa, 0, 0, 0, 0), 𝜃m,∞ = (0.1, 1), and 𝜃r,∞ = (0.3, 1).

hich can be bracketed with 𝐂̇. Thus, the term can be associated with the 𝐒 and in turn with 𝐒iso. Due to the underlying linearity,
we define

𝐒neq = 2
𝜕2𝛹 0,∞

iso

𝜕𝐂𝜕𝐂
∶

𝑀
∑

𝑙=1

𝛽𝑙
𝜇′𝑙

𝐐𝑙 , (61)

which results in the total second Piola–Kirchhoff stress tensor

𝐒 = 𝐽−2∕3P ∶ 𝐒 + 𝐒0,∞vol = 𝐽−2∕3P ∶
(

𝜂m𝐒0,∞ + 𝜂r𝐒r,∞ + 𝐒neq
)

+ 𝐒0,∞vol (62)

ncluding all constitutive effects. By differentiating (15) with respect to 𝐂 and subsequent insertion into (61), the fictitious
non-equilibrium stress can written explicitly as

𝐒neq =
∑

𝑝={∥,⟂}
𝜇𝑝

[

𝛾𝑝𝐾
𝛾𝑝−1
1𝑝

(

𝐇𝑝 ∶ 𝐐
)

𝐇𝑝 + 𝛿𝑝𝐾
𝛿𝑝−1
−1𝑝

(

𝐇′
𝑝 ∶ 𝐐

)

𝐇′
𝑝 +𝐾

𝛿𝑝
−1𝑝

(

𝐂−1𝐐𝐇′
𝑝 +𝐇′

𝑝𝐐𝐂−1
)]

, (63)

where

𝐐 =
𝑀
∑

𝑙=1

𝛽𝑙
𝜇′𝑙

𝐐𝑙 and 𝐇′
𝑝 = 𝐂−1𝐇𝑝𝐂−1. (64)

The quantity 𝐐∕2 can be interpreted as an elastic Green–Lagrange strain acting on the fourth-order stiffness tensor derived from
𝛹 0,∞
iso in (61).

Upon closer inspection of 𝐐 and (59), it can be checked that 𝛽𝑙 and 𝜇′𝑙 are not independent parameters for the purposes
of computing 𝐒neq due to the linearity of the evolution equation and the subsequent summation; for some choice 𝛽∗𝑙 , the
parametrizations

(

𝛽𝑙 = 𝛽∗𝑙 , 𝜇
′
𝑙 = 1Pa

)

and
(

𝛽𝑙 = 1, 𝜇′𝑙 = 𝛽∗−2l Pa
)

(65)

result in the same values for 𝐒neq. The second parameter is however required for an interpretation of thermodynamic quantities such
s 𝛶𝑙. We emphasize that the material constant 𝜇′𝑙 does not directly represent the stiffness of a spring in the 𝑙th Maxwell element.

Rather, for a fixed value of 𝛽𝑙,

𝜇′𝑙 ∝
ground stiffness × ground stiffness

stiffness of the 𝑙th Maxwell element , (66)

i.e. the larger 𝜇′𝑙 , the smaller the viscous stress contribution of the 𝑙th element, and vice versa.
For the purposes of stress computation, we set 𝜇′𝑙 = 1Pa without loss of generality. Then each Maxwell element is governed by

two independent material parameters, i.e. 𝜃neq = (𝜏1, 𝛽1,… , 𝜏𝑙, 𝛽𝑙 ,… , 𝜏𝑀 , 𝛽𝑀 ), which brings the total number of material parameters
f the constitutive model to 12 + 2𝑀 . Fig. 5(a) shows the relaxation behavior of a specimen after monotonic simple shear up to
n amount 𝛾 = 0.5 at a constant rate 𝛾̇ = 1 s−1 for different combinations of Maxwell elements. Evidently, the relaxation time 𝜏𝑙
overns the return to the equilibrium configuration as well as the magnitude the viscous overstress alongside 𝛽𝑙. An illustration of
he interplay between damage and viscoelasticity is visualized in Fig. 5(b) for cyclic simple shear deformation at |𝛾̇| = 1 s−1. In both

cases the shear mode is ‘12’.

Remark 13. Although there are considerable similarities between this theory of viscoelasticity and its infinitesimal counterpart, to
14

the authors’ knowledge there is generally no corresponding spring–dashpot representation of the former.
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Table 1
Expressions and material parameters 𝜃0,∞ needed for the computation of the polyconvex free-energy function 𝛹 0,∞

iso in (9) and the fictitious elastic stress
response 𝐒0,∞ from (15). If the global coordinate system (𝑬𝑘)3𝑘=1 coincides with the (initial) planes of material symmetry, the structure tensors 𝐇∥ and 𝐇⟂
have a diagonal matrix representation, i.e. 𝐋𝑘 = 𝑬𝑘 ⊗ 𝑬𝑘.

Computationally relevant expressions: (6), (8), (9), (10), and (15)

Parameter Bounds Unit Interpretation

𝐋𝑘 n.a. [–] Coordinate system, i.e. projection tensors, defining the planes of material symmetry

𝐻1 0 ≤ 𝐻1 ≤ 1 [–] Measure of fiber orientation associated with the projection tensor 𝐋1
𝐻1 +𝐻2 ≤ 1

𝐻2 0 ≤ 𝐻2 ≤ 1 [–] Measure of fiber orientation associated with the projection tensor 𝐋2
𝐻1 +𝐻2 ≤ 1

𝜇∥ 𝜇∥ > 0 [Pa] Coaxial stiffness along the fiber direction
𝛾∥ 𝛾∥ ≥ 0 [–] Shape parameter associated with the deformation of a line element along the fiber direction
𝛿∥ 𝛿∥ ≥ 0 [–] Shape parameter associated with the deformation an area element along the fiber direction
𝜇⟂ 𝜇⟂ > 0 [Pa] Transverse stiffness perpendicular to the fiber direction
𝛾⟂ 𝛾⟂ ≥ 0 [–] Shape parameter associated with the deformation of a line element perpendicular to the fiber direction
𝛿⟂ 𝛿⟂ ≥ 0 [–] Shape parameter associated with the deformation of an area element perpendicular to the fiber direction

Remark 14. As mentioned in Liu et al. (2021, rem. 10), an incompressible neo-Hookean model with 𝐒̇0,∞ ≡ 𝟎 never produces a
iscoelastic response, which is not an issue for the hyperelastic formulation from Section 3.2, see Remark 10.

emark 15. This modeling strategy does not require the use of the elastic fictitious stress tensor 𝐒0,∞ in (55). Alternatively, one
could have chosen 𝐒∞ = 𝜂m𝐒0,∞+𝜂r𝐒r,∞ instead, which essentially couples the damage model with the viscoelastic response. Although
thermodynamically sound, this choice leads to unphysical material behavior. From (61) we can interpret the non-equilibrium stress
𝐒neq as a product of an elastic Green–Lagrange strain 𝐐∕2 with a fourth-order stiffness tensor. If we included the damaged, quasi-static
effects in the definition of said stiffness tensor, we would see a stark increase in stiffness with each switch from loading to unloading.
The strain-like quantity 𝐐∕2 reacts to this change with a delay. The result is a sharp increase in 𝐒neq around the switch from loading to
nloading, which cannot be observed experimentally. In general, though, from a thermodynamic perspective, one is unrestricted to
hoose any such relation independently of the actual quasi-static stress response, as long as the dissipative contribution of potential
nternal variables thereof remains non-negative.

. Model summary and calibration outlook

Because the model combines several constitutive effects, we revisit the key expressions needed to calculate a stress response.
urthermore, we summarize all the material parameters involved. Their numbers may seem overwhelming at first, but there are
hree things to keep in mind. First, the model attempts to describe a material that shows stress softening, permanent set, and
iscoelasticity at large strains for select classes of anisotropy, which per se necessitates a base amount of parameters. Second, the
umber of material constants per constitutive effect already tends toward the low end, as emphasized in the remainder of this
ection. Finally, the interpretability of the various parameters leads to a systematic way of acquiring them through experimental
esign.

.1. Model summary

In Section 3.1, we introduce structure tensors to describe anisotropy. In the case of orthotropy, a second-order structure tensor
s required with three distinct eigenvalues and a coordinate system defining the planes of material symmetry, i.e. three independent
arameters, see (6). With its normalized trace, no fewer than five parameters suffice to define a structure tensor for orthotropy.
wo interdependent structure tensors 𝐇∥ and 𝐇⟂ help to quantify the coaxial and transverse material behavior, see (8).

Both structure tensors 𝐇∥ and 𝐇⟂ are then used to define four isochoric invariants 𝐾1∥, 𝐾−1∥, 𝐾1⟂, and 𝐾−1⟂, see (10) in
Section 3.2. These in turn define the polyconvex free-energy function 𝛹 0,∞

iso in (9). To allow sufficient functional generality, each
invariant has a shape parameter, i.e. 𝛾∥, 𝛿∥, 𝛾⟂, and 𝛿⟂, controlling its influence during finite deformations. With the requirement of

stress-free initial configuration, two stiffnesses 𝜇∥ and 𝜇⟂ remain to govern magnitude of the fictitious elastic stress response 𝐒0,∞
from (15). Anything less than these six material constants would involve additional interdependencies between the invariants.
Table 1 summarizes 𝜃0,∞ = (𝐻1,𝐻2, 𝜇∥, 𝜇⟂, 𝛾∥, 𝛾⟂, 𝛿∥, 𝛿⟂) and the relevant expressions. The underlying assumption of incompressibility
must be enforced either with a Lagrange multiplier or a penalty function.

For the modeling of stress softening, the relevant expressions are the definition of the maximally attained ‘undamaged’ isochoric
free energy 𝛹max

iso in (23), the definition of the energy ratio 𝜒 and the softening function 𝜂m in (30), and the fictitious stiffness-reduced
stress response 𝜂m𝐒0,∞ from (24). The softening function 𝜂m requires two parameters 𝜃m,∞ = (𝜂m0, 𝛼m) controlling the magnitude of
amage and the evolution of the stress softening, respectively.

To additionally describe permanent set, we need to keep track of the deformation state 𝐂∗ associated with 𝛹max
iso , as defined

n (34). The residual stress contribution 𝐒r,∞ then follows from (40), which together with the softening function 𝜂 in (54) is added
15
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Table 2
Expressions and material parameters 𝜃m,∞ and 𝜃r,∞ needed for the computation of the fictitious stiffness-reduced and residual stress distribution, 𝜂m𝐒0,∞ in (24)
and 𝜂r𝐒r,∞ in (35), respectively.

Computationally relevant expressions: (23), (24), (30), (34), (35), (40), and (54)

Parameter Bounds Unit Interpretation

𝜂m0 0 < 𝜂m0 ≤ 1 [–] Maximum loss of stiffness
𝛼m 𝛼m ≥ 1 [–] Shape parameter associated with the evolution of the stiffness degradation during unloading–reloading
𝜂r0 𝜂r0 ≥ 0 [–] Maximum residual stress contribution
𝛼r 𝛼r ≥ 1 [–] Shape parameter associated with the evolution of the residual stress contribution during unloading–reloading

Table 3
Expressions and material parameters 𝜃neq needed for the computation of the fictitious non-equilibrium stress 𝐒neq in (63). The parameters 𝛽𝑙 and 𝜇′

𝑙 are
interdependent, see (65).

Computationally relevant expressions: (59), (63), and (64)

Parameter Bounds Unit Interpretation

𝜏𝑙 𝜏𝑙 > 0 [s] Relaxation time of the 𝑙th Maxwell element
𝛽𝑙 𝛽𝑙 ≥ 0 [–] Strain-energy factor of the 𝑙th Maxwell element scaling the non-equilibrium stress contribution
𝜇′
𝑙 𝜇′

𝑙 ≥ 0 [Pa] Stiffness-like parameter of the 𝑙th Maxwell element scaling the non-equilibrium stress contribution

to the fictitious stress response as 𝜂r𝐒r,∞, see (35). Analogous to 𝜂m, the softening function 𝜂r is parametrized by two constants,
amely 𝜃r,∞ = (𝜂r0, 𝛼r ), which govern the magnitude and evolution of the residual stress contribution, respectively. All relevant
xpressions and parameters are listed in Table 2.

For viscoelasticity, every Maxwell element has three material parameters 𝜏𝑙, 𝛽𝑙, and 𝜇′𝑙 , although the last two are interdependent,
see (65). The characteristic time 𝜏𝑙 governs the relaxation behavior, while 𝛽𝑙 and 𝜇𝑙 act as weights in the calculation of 𝐐 in (64)
fter solving 𝑀 evolution Eqs. (59), one for each Maxwell element. The fictitious non-equilibrium stress response 𝐒neq then follows

from (63). Without loss of generality, we can choose 𝜇′𝑙 = 1Pa and consequently 𝜃neq = (𝜏1, 𝛽1,… , 𝜏𝑙, 𝛽𝑙 ,… , 𝜏𝑀 , 𝛽𝑀 ). As with the
previous constitutive effects, the relevant expressions and material parameters are summarized in Table 3.

7.2. Calibration outlook

Although the model can already be used to study the consequences and interactions of the different constitutive effects in a
qualitative manner, a calibration needs to be performed to infer any quantitative predictions. A discussion of the intricacies of
fitting and the actual acquisition of experimental data is beyond the scope of this work, but we still want to provide a pathway to
identify the various material parameters. The modular structure of the constitutive model offers a systematic framework. By precisely
designing the loading protocols in mechanical experiments, the contribution of certain constitutive effects can be singled out and
treated separately. This of course assumes that the material behaves according to the theory presented here, but this epistemological
problem of circular reasoning is unavoidable in experimental design, see the Duhem–Quine thesis, e.g., in Duhem (1976, sec. 2).

The probabilistic interpretation of the structure tensor 𝐇∥ in (7) allows for the identification of the anisotropy without the need
to perform mechanical experiments, if the orientation distribution 𝜌(𝑵) can be acquired through, e.g., imaging of the microstructure.
If such a structural investigation is not possible, the structure tensor 𝐇∥ is included in the calibration as an additional set of five
parameters that have to be fitted by mechanical experiments. If initial planes of symmetry are assumed a priori, the coordinate
system is no longer an unknown and only the eigenvalues 𝐻1 and 𝐻2 have to be determined implicitly, see Remark 1.

The fundamental part of the constitutive model is the anisotropic hyperelastic formulation (9) and is parametrized by 𝜃0,∞,
where 𝐻1 and 𝐻2 can also either be prescribed or replaced by 𝐇∥, depending on prior assumptions about the anisotropy. We can
calibrate 𝜃0,∞ by using any set of measurements from a quasi-static mechanical experiment in which data associated with primary
loading is straightforward to identify, such as uniaxial or equibiaxial extension. A quasi-static loading ensures negligible viscoelastic
contributions and confinement to data on the primary loading path prevents overlap with the constitutive models for the damage-
related effects. Consequently, 𝜃0,∞ can be identified independently from 𝜃m,∞, 𝜃r,∞, and 𝜃neq. This is a calibration task of comparable
complexity to the parameter identification of common isotropic models such as a multi-term Ogden model, cf. Kalina et al. (2020,
sec. 3.2.2).

The four parameters of stress softening and permanent set, 𝜃m,∞ and 𝜃r,∞, can now be determined by holding 𝜃0,∞ fixed. For this
purpose, the previously acquired, quasi-static measurements can simply be reused, albeit now with calibration to the data associated
with unloading–reloading. Therefore, it is advantageous to apply cyclic loading in the quasi-static experiments to ensure that both
primary loading and unloading–reloading data is available.

Finally, the viscoelastic constants 𝜃neq can be determined by prescribing the already identified material parameters 𝜃0,∞, 𝜃m,∞,
and 𝜃r,∞ during the calibration to experimental data with a transient loading, such as relaxation experiments or cyclic loading at
different rates of deformation. In general, the appropriate number of Maxwell elements can be chosen heuristically. Even if only
a few samples are available, the experiments can be designed in such a way that various constitutive effects can be differentiated,
see Haupt (2002, sec. 6.2).

The parameter identification described above has the advantage that the potentially demanding task of calibration is split into
three more manageable sub-problems that can be tackled successively. This also simplifies the planning and execution of the actual
experiments and increases the confidence in the validity of the resulting set of parameters.
16
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Fig. 6. (a) Shear stress and (b) normal stress response for alternately increasing cyclic simple shear in the ‘12’ and ‘21’ modes, (c) uniaxial response for cyclic
ension–compression along the two perpendicular directions ‘1’ and ‘2’, and (d) biaxial response in cyclic tension–compression. Here, the same set of material
arameters is used to illustrate the behavior of inelastic effects independent of the deformation mode: 𝜃0,∞ = (0.6, 0.3, 1 Pa, 0.1 Pa, 0, 0, 0, 2), 𝜃m,∞ = (0.5, 1), and
r,∞ = (0.3, 1). To avoid visual overload, every boundary-value problem is assumed to be quasi-static, so 𝜃neq is omitted.

. Further application examples

When a constitutive model is to be used in a real application, it must remain valid for general deformations. Although we attempt
o investigate these infinite possibilities through mathematical modeling, we also want to make it explicit for common deformation
odes such as simple shear, uniaxial tension–compression, or equibiaxial tension–compression, each with increasing cyclic loading.
his applies especially to the pseudo-elastic model for permanent set, which deviates from more classical theories of plasticity

nvolving yield criteria and flow rules. Nonetheless, the approach reproduces physically meaningful constitutive behavior for these
eformation modes, which is to be exemplified with a set of parameters that is left constant across the various examples.

Fig. 6(a),(b) show a cube subjected to alternately increasing cyclic, quasi-static simple shear in the ‘12’ and ‘21’ modes,
espectively, with damage-related effects enabled. Since the material symmetries align with the reference coordinate system, the
hear stress component 𝜎12 remains almost identical in both modes during primary loading, until third-order effects become
rominent, as proven in Appendix C. In contrast, the normal stress component 𝜎22 reveals clear differences for the two shear modes
ven at smaller values of 𝛾 due to anisotropy. The permanent set follows the expected trend, whereby the residual stress contribution
rogresses for increasing load levels, changing in sign in the case of 𝜎12 while remaining monotonic for 𝜎22.

The case of increasing cyclic, quasi-static, uniaxial tension–compression is illustrated in Fig. 6(c), independently of one another
long the two perpendicular directions ‘1’ and ‘2’, again, with damage-related effects. A Hencky (true) strain measure is used for
ppropriate comparability between tension and compression. Here, the anisotropy and the residual stresses are reproduced in a
hysically meaningful manner, too. Similarly, Fig. 6(d) depicts the stress response in increasing cyclic, quasi-static, equibiaxial
ension–compression. In all of these examples it can be seen how the material returns to its initial constitutive behavior upon
eentering primary loading.

We would also like to point out a possible shortcoming in the residual stress formulation. Intuitively, the choice to update 𝐒r,∞
hen a new maximum in 𝛹 0,∞

iso is encountered seems reasonable, but can lead to highly sensitive material behavior. An example is
cyclic, quasi-static simple shear deformation with some shear amplitude 𝛾amp. Assuming the material symmetry aligns with the

eference coordinate system, 𝛹 0,∞
17

iso is independent of the shearing direction, in contrast to the sign of the shear stress component
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Fig. 7. (a) A cycle in quasi-static simple shear with an amplitude of 𝛾amp = 1. If 𝛾min = −1, no new maximum is reached in 𝛹max
iso after 𝛾max = 1 and the stress

trajectory is simply returned along. However, if 𝛾min = −1− 𝜖 with 𝜖 > 0, the residual shear stress component changes sign, which leads to a completely different
behavior in the second half of the cycle. The parameters are the same as in Fig. 6. (b) Stress response for cyclic simple shear, where the amplitudes are prescribed
in either increasing or decreasing manner. The material parameters are the same as in Fig. 5(b), but without any residual stress contribution, i.e. 𝜂r0 = 0. The
interaction of viscoelasticity and stress softening leads to different responses depending on increasing or decreasing load levels.

𝑆r,∞
12 . Thus, the residual shear stress contribution follows a completely different trajectory, if 𝛹max

iso is only slightly exceeded at the
opposite turning point of the cyclic loading, see also Remark 9. This scenario is visualized in Fig. 7(a) for shear mode ‘12’.

As a final example, Fig. 7(b) depicts the stress response for cyclic simple shear including viscoelasticity at a constant rate
|𝛾̇| = 1 s−1 in mode ‘12’. Depending on whether the shear levels are prescribed in increasing or decreasing fashion, the result
differs in so far as in the former case 𝛹max

iso is updated with each new amplitude, while in the latter case 𝛹max
iso remains constant after

he first shear level. This behavior can also be observed experimentally, cf. Nordsletten et al. (2021, fig. 9), which is difficult to
eproduce without an interaction of stress softening and viscoelasticity.

. Conclusion

In this study, we established an anisotropic, incompressible material model capable of reproducing inelastic effects such as
iscoelasticity, stress softening, and permanent set at finite strains. Due to its modular structure, each constitutive contribution can
e independently tuned by a set of associated, interpretable parameters. Through their interaction, a variety of possible material
ehaviors can be approximated, at least qualitatively, which has been demonstrated for different modes of deformation. However,
e make no claim that the model is able to quantitatively reproduce all experimental data over a large strain range. To this end,
ore general functional dependencies would have to be allowed, e.g., through approaches like Linka et al. (2021) and Linden et al.

2023). Importantly, such extensions are perfectly in line with the constitutive framework presented here. Any part of the model
an be modified, swapped out or, with the exception of the polyconvex free-energy function, disabled.

Each modeling aspect has been independently adapted from existing literature and is built upon in hopes of serving as a possible
tarting point for further exploration and discussion. While the formulations for the polyconvex free-energy function, stress softening,
nd finite linear viscoelasticity follow their original publications fairly closely, the introduction of permanent set by a pseudo-
lastic framework required more attention. From a heuristic point of view, the constitutive model appears to reproduce physically
eaningful residual deformations for a variety of loading protocols and parameter combinations, although we have shown that

here must exist deformation paths associated with negative dissipation, or at the very least, negative stress work. In an attempt to
xplore the apparent validity of the permanent set formulation, we constructed a probabilistic argument to make statements about
he stress work of random deformation paths.

The various material parameters of the model are directly associated with the different constitutive effects, which allows for both
direct interpretation and a systematic way of identifying them through experimental design. For an implementation of the material
odel, only a small number of relationships are necessary to compute a stress response. We briefly summarize the equations required

or the algorithmic evaluation of the fictitious stress 𝐒 in Appendix D. A more detailed discussion of the implementational aspects
such as material stiffness, numerical integration of the evolution equation, etc., can be found in a follow-up article by Terzano et al.
(2023), which includes the simulation of an application example in a commercial finite element software.

Ultimately, we deem the resulting material model to strike a good balance between descriptive efficacy, mechanical interpretabil-
ity, and ease of implementation.
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ppendix A. Construction of an unloading–reloading cycle with an unbounded net work

Here we show that given the residual stress formulation (35) it is possible to construct unloading–reloading cycles with an
nbounded net work. The starting point is again (38) with 𝐂(𝑡𝑏) = 𝐂(𝑡𝑎) = 𝐂⋆, i.e.

𝑤cycle =
1
2 ∫

𝑡𝑏

𝑡𝑎
𝜂r𝐒r,∞ ∶ 𝐂̇ d𝜏. (A.1)

Before continuing, we cast (A.1) into a more illustrative form via integration by parts, which yields

1
2 ∫

𝑡𝑏

𝑡𝑎
𝜂r𝐒r,∞ ∶ 𝐂̇ d𝜏 = 1

2
𝜂r𝐒r,∞ ∶ 𝐂 |

|

|

𝑡𝑏

𝑡𝑎
− 1

2 ∫

𝑡𝑏

𝑡𝑎
𝜂̇r𝐒r,∞ ∶ 𝐂 d𝜏

= −1
2 ∫

𝑡𝑏

𝑡𝑎
𝜂̇r𝐒r,∞ ∶ 𝐂 d𝜏.

(A.2)

Since 𝛹 0,∞
iso (𝑡𝑎) = 𝛹 0,∞

iso (𝑡𝑏) = 𝛹max
iso and 𝜂r (𝛹max

iso , 𝛹max
iso ) = 0, the first term on the right-hand side disappears.

Then we construct a particular path of deformation 𝐂(𝜏) for which 𝑤cycle = 0. To this end, we split the integral into four parts

𝑤cycle = −1
2 ∫

𝑡𝑏

𝑡𝑎
𝜂̇r𝐒r,∞ ∶ 𝐂 d𝜏 = ∫

𝑡1

𝑡𝑎
… d𝜏 + ∫

𝑡2

𝑡1
… d𝜏 + ∫

𝑡3

𝑡2
… d𝜏 + ∫

𝑡𝑏

𝑡3
… d𝜏, (A.3)

such that the first interval 𝑎→1 and the last interval 3→𝑏 share the same deformation path, albeit in opposite directions. Hence,

∫

𝑡1

𝑡𝑎
… d𝜏 = −∫

𝑡𝑏

𝑡3
… d𝜏 (A.4)

and 𝐂(𝑡1) = 𝐂(𝑡3) with 𝛹 0,∞
iso (𝑡3) = 𝛹 0,∞

iso (𝑡1) < 𝛹max
iso . Likewise, the two middle contributions 1→2 and 2→3 are taken to follow an

equivalent, but time-reversed deformation path, i.e.

∫

𝑡2

𝑡1
… d𝜏 = −∫

𝑡3

𝑡2
… d𝜏. (A.5)

We presuppose that 𝛹 0,∞
iso (𝑡2) = 𝛹 0,∞

iso (𝑡1), but 𝐂(𝑡2) ≠ 𝐂(𝑡1). If there is no potential, we can choose 𝐂(𝜏) in 1→2 such that the partial
work is non-zero and from (A.5) it follows that

∫

𝑡2

𝑡1
… d𝜏 ≷ 0 ⟹ ∫

𝑡3

𝑡2
… d𝜏 ≶ 0. (A.6)

It is evident that 𝑤cycle = 0 by construction.
Now, we slightly alter 𝐂(𝜏) to define a deformation 𝐂′(𝜏) in order to produce a non-zero net work 𝑤′

cycle. Note that in (A.2) we
an take any deformation path along an energy contour, where 𝛹 0,∞

iso = const. and therefore 𝜂̇r = 0, without contributing to the
work integral due to the vanishing integrand. Therefore, we can skip the contribution to (A.3) of either 1→2 or 2→3 as long as
𝛹 0,∞
iso [𝐂′(𝜏)] = const. therein, while taking us from 𝐂(𝑡1) to 𝐂(𝑡2) or from 𝐂(𝑡2) to 𝐂(𝑡3), respectively. In the remaining three intervals,

𝐂′(𝜏) = 𝐂(𝜏).
It follows that we can always make 𝑤′

cycle non-zero for a continuous deformation path by skipping or keeping either the
ontribution from 1→2 or 2→3, the choice of which defines the sign of 𝑤′

cycle, see (A.6). Such a strain subcycle, half of it traveling
along an energy contour, is itself a closed path of deformation and can be traversed an indefinite number of times, each instance
generating a non-zero work contribution. The net work of the entire unloading–reloading cycle is therefore neither bounded from
above nor from below.

Let us give an illustrative example for 𝐂(𝜏) and 𝐂′(𝜏). Suppose a cube has been extended uniaxially up to a stretch 𝜆1(𝑡𝑎) reaching
some 𝛹max 𝐂(𝜏):
19

iso and is therefore residually stressed. Then for
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1. 𝑎→1: Uniaxial unloading to some stretch 𝜆1(𝑡1) < 𝜆1(𝑡𝑎), where 𝛹 0,∞
iso (𝑡1) < 𝛹max

iso .
2. 1→2: Further uniaxial unloading to some stretch 𝜆1(𝑡2) < 1 < 𝜆1(𝑡1) until 𝛹 0,∞

iso (𝑡2) = 𝛹 0,∞
iso (𝑡1) in compression.

3. 2→3: Uniaxial reloading until 𝜆1(𝑡3) = 𝜆1(𝑡1), where 𝛹 0,∞
iso (𝑡3) = 𝛹 0,∞

iso (𝑡1).
4. 3→𝑏: Further uniaxial reloading until 𝜆1(𝑡𝑏) = 𝜆1(𝑡𝑎).

he resulting net work along 𝐂(𝜏) is zero. For 𝐂′(𝜏) we can alter step three in 𝐂(𝜏):

3. 2→3: Biaxial deformation up to 𝜆1(𝑡3) = 𝜆1(𝑡1), where 𝜆2(𝑡) is chosen such that 𝛹 0,∞
iso (𝑡) = const.

he non-zero contribution in 2→3 is skipped, resulting in a non-zero net work along 𝐂′(𝜏), the sign of which depends on the modeling
hoice for 𝐒r,∞.

ppendix B. Convexity of 𝛹 0,∞
iso with respect to 𝐂

Analogous to Schröder (2010, sec. 5), albeit with respect to 𝐂, the condition for convexity reads

𝛿𝐂 ∶
𝜕2𝛹 0,∞

iso

𝜕𝐂𝜕𝐂
∶ 𝛿𝐂 ≥ 0 ∀𝐂, 𝛿𝐂. (B.1)

By routine differentiation of (9), we acquire

𝜕𝛹 0,∞
iso

𝜕𝐂
= 1

2
∑

𝑝∈{∥,⟂}
𝜇𝑝

(

𝐾
𝛾𝑝
1𝑝𝐇𝑝 −𝐾

𝛿𝑝
−1𝑝𝐂

−1𝐇𝑝𝐂−1
)

(B.2)

and after introducing the abbreviation 𝐇′
𝑝 = 𝐂−1𝐇𝑝𝐂−1 and differentiating a second time with respect to 𝐂, we arrive at

𝜕2𝛹 0,∞
iso

𝜕𝐂𝜕𝐂
= 1

2
∑

𝑝∈{∥,⟂}
𝜇𝑝

[

𝛾𝑝𝐾
𝛾𝑝−1
1𝑝 𝐇𝑝 ⊗𝐇𝑝 + 𝛿𝑝𝐾

𝛿𝑝−1
−1𝑝 𝐇′

𝑝 ⊗𝐇′
𝑝 +𝐾

𝛿𝑝
−1𝑝

(

𝐂−1 ⊙𝐇′
𝑝 +𝐇′

𝑝 ⊙ 𝐂−1
)]

, (B.3)

where (⋅) ⊙ (⋅) denotes the major-symmetric dyadic product, i.e. [(⋅)𝐼𝐾 (⋅)𝐽𝐿 + (⋅)𝐼𝐿(⋅)𝐽𝐾 ]∕2. Inserting the last expression into
condition (B.1) yields

1
2

∑

𝑝∈{∥,⟂}
𝜇𝑝

[

𝛾𝑝𝐾
𝛾𝑝−1
1𝑝 tr

(

𝐇𝑝𝛿𝐂
)2

+ 𝛿𝑝𝐾
𝛿𝑝−1
−1𝑝 tr

(

𝐇′
𝑝𝛿𝐂

)2
+ 2𝐾

𝛿𝑝
−1𝑝 tr

(

𝐂−1𝛿𝐂𝐇′
𝑝𝛿𝐂

)

]

≥ 0 ∀𝐂, 𝛿𝐂. (B.4)

Because the trace of the product of a positive-definite tensor, here 𝐂 and 𝐂−1, and a structure tensor 𝐇𝑝 is itself always positive,
it follows that the four invariants 𝐾±1𝑝 > 0. Likewise, the term tr(𝐂

−1
𝛿𝐂𝐇′

𝑝𝛿𝐂) ≥ 0 through the positive semi-definiteness of 𝐇′
𝑝.

his guarantees the convexity of 𝛹 0,∞
iso with respect to 𝐂, since the expression (B.4) is just a sum of non-negative products given the

bounds on the material parameters provided in Section 3.2.

Appendix C. Third-order effects in simple shear

Here we prove the claim that given the hyperelastic formulation in (9), the Cauchy shear stress in modes ‘12’ and ‘21’ during
primary loading are identical until third-order effects become relevant. The approach is inspired by the discussion in Truesdell and
Noll (1965, sec. 54).

For the constitutive behavior shown in Fig. 6(a), viscoelasticity is omitted and the damage-related effects are switched off during
primary loading. The matrix representation of the deformation gradient for simple shear in mode ‘12’ reads

[[𝐅]] =
⎡

⎢

⎢

⎣

1 𝛾 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

and [[𝐅−1]] =
⎡

⎢

⎢

⎣

1 −𝛾 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

. (C.1)

Since the planes of material symmetry coincide with the global coordinate system, we have

[[𝐇∥]] =
⎡

⎢

⎢

⎣

𝐻1 0 0
0 𝐻2 0
0 0 1 −𝐻1 −𝐻2

⎤

⎥

⎥

⎦

. (C.2)

onsequently,

[[𝐅𝐇∥𝐅T]] =
⎡

⎢

⎢

⎣

𝐻1 +𝐻2𝛾2 𝐻2𝛾 0
𝐻2𝛾 𝐻2 0
0 0 1 −𝐻1 −𝐻2

⎤

⎥

⎥

⎦

⟹ 𝐾1∥ = 1 +𝐻2𝛾
2, (C.3)

[[𝐅−T𝐇∥𝐅−1]] =
⎡

⎢

⎢

⎣

𝐻1 −𝐻1𝛾 0
−𝐻1𝛾 𝐻2 +𝐻1𝛾2 0

0 0 1 −𝐻1 −𝐻2

⎤

⎥

⎥

⎦

⟹ 𝐾−1∥ = 1 +𝐻1𝛾
2, (C.4)

nd, analogously, for 𝐇 = (𝐈 −𝐇 )∕2.
20

⟂ ∥
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Algorithm 1 Computation of fictitious stress 𝐒
⊳ The history variables are indicated with the subscript ‘hist’ and are assumed to be properly initialized. ⊲

Require: 𝐂, 𝛥𝑡, (𝛹max
iso,hist , 𝐒

0,∞
hist , 𝐒

r,∞
hist , 𝐐1,hist , . . . , 𝐐𝑀,hist)

⊳ Computation of the undamaged material behavior. ⊲
𝐒0,∞ ←

∑

𝑝∈{‖,⟂} 𝜇𝑝
(

𝐾
𝛾𝑝
1𝑝𝐇𝑝 −𝐾

𝛿𝑝
−1𝑝𝐂

−1𝐇𝑝𝐂−1
)

⊳ See (15)

𝛹 0,∞
iso ← 1

2
∑

𝑝∈{‖,⟂} 𝜇𝑝

[

1
𝛾𝑝+1

(

𝐾
𝛾𝑝+1
1𝑝 − 1

)

+ 1
𝛿𝑝+1

(

𝐾
𝛿𝑝+1
−1𝑝 − 1

)

]

⊳ See (9)

⊳ Update of the damage-related history variables. ⊲
if 𝛹 0,∞

iso ≥ 𝛹max
iso,hist then

𝛹max
iso,hist ← 𝛹 0,∞

iso ⊳ See (9)
𝐒r,∞hist ← −𝐒0,∞ ⊳ See (40)

𝜂m ← 𝜂m0 + (1 − 𝜂m0)
[

(𝛼m + 1)𝜒𝛼m − 𝛼m𝜒𝛼m+1] ⊳ See (30)
𝜂r ← 𝜂r0

[

1 − (𝛼r + 1)𝜒𝛼r + 𝛼r𝜒𝛼r+1
]

⊳ See (54)
𝐒∞ ← 𝜂m𝐒0,∞ + 𝜂r𝐒

r,∞
hist

⊳ Update of viscoelastic history variables. ⊲
for all 𝑙 ∈ {1, ...,𝑀} do

𝐐𝑙,hist ← exp
(

− 𝛥𝑡
𝜏𝑙

)

𝐐𝑙,hist + exp
(

− 1
2
𝛥𝑡
𝜏𝑙

)

𝛽𝑙
(

𝐒0,∞ − 𝐒0,∞hist
)

⊳ See (59)

𝐐 ←
∑𝑀
𝑙=1

𝛽𝑙
𝜇′𝑙
𝐐𝑙,hist ⊳ See (64)

𝐒neq ←
∑

𝑝={‖,⟂} 𝜇𝑝
[

𝛾𝑝𝐾
𝛾𝑝−1
1𝑝

(

𝐇𝑝 ∶ 𝐐
)

𝐇𝑝 + 𝛿𝑝𝐾
𝛿𝑝−1
−1𝑝

(

𝐇′
𝑝 ∶ 𝐐

)

𝐇′
𝑝 +𝐾

𝛿𝑝
−1𝑝

(

𝐂−1𝐐𝐇′
𝑝 +𝐇′

𝑝𝐐𝐂−1
)]

⊳ See (63)

𝐒0,∞hist ← 𝐒0,∞
⊳ Final computation of the total fictitious stress. ⊲
𝐒 ← 𝐒∞ + 𝐒neq
return 𝐒, (𝛹max

iso,hist , 𝐒
0,∞
hist , 𝐒

r,∞
hist , 𝐐1,hist , . . . , 𝐐𝑀,hist)

The shear stress component 𝜎12 follows as the push-forward of (14) with

𝜎12(𝛾) = 𝜇∥𝛾
[

(

1 +𝐻2𝛾
2)𝛾∥𝐻2 +

(

1 +𝐻1𝛾
2)𝛿∥𝐻1

]

+ 𝜇⟂𝛾

[

(

1 +
1 −𝐻2

2
𝛾2
)𝛾⟂ 1 −𝐻2

2
+
(

1 +
1 −𝐻1

2
𝛾2
)𝛿⟂ 1 −𝐻1

2

]

. (C.5)

As expected, 𝜎12 is an odd function in 𝛾, i.e. 𝜎12(−𝛾) = −𝜎12(𝛾). If we expand the expression around 𝛾 = 0, we arrive at

𝜎12(𝛾) =
[

𝜇∥(𝐻1 +𝐻2) + 𝜇⟂

(

1 −
𝐻1 +𝐻2

2

)]

𝛾 + (𝛾3). (C.6)

permutation of 𝐻1 and 𝐻2 is equivalent to a change in simple shear from mode ‘12’ to ‘21’, which is straightforward to verify by
arrying out the tensor products (C.3) and (C.4) for simple shear in mode ‘21’ reading

[[𝐅]] =
⎡

⎢

⎢

⎣

1 0 0
𝛾 1 0
0 0 1

⎤

⎥

⎥

⎦

and [[𝐅−1]] =
⎡

⎢

⎢

⎣

1 0 0
−𝛾 1 0
0 0 1

⎤

⎥

⎥

⎦

. (C.7)

he linear term in (C.6) is invariant under this operation. Therefore, any differences in the shear stress between modes ‘12’ and ‘21’
re the result of additional terms, i.e. third-order effects, as claimed above.

ppendix D. Algorithm for the computation of the fictitious stress 𝐒

Here we describe an algorithm for calculating the fictitious stress 𝐒, which plays the central role in the constitutive model,
ee (62). The initial values for the history variables are 𝛹max

iso,hist = 0 and 𝐒0,∞hist = 𝐒r,∞hist = 𝐐𝑙,hist = 𝟎, although it may be numerically
advantageous to choose some 𝛹max

iso,hist = 𝜖 > 0 to avoid limiting issues in the first increment. The discrete time step of the current
increment is denoted by 𝛥𝑡.
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