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Over the past several decades, there has been significant growth in the design and
development of more efficient and advanced biomaterials based on non-
cellulosic biological macromolecules. In this context, hydrogels based on
stimuli-responsive non-cellulosic biological macromolecules have garnered
significant attention because of their intrinsic physicochemical properties,
biological characteristics, and sustainability. Due to their capacity to adapt to
physiological pHs with rapid and reversible changes, several researchers have
investigated pH-responsive-based non-cellulosic polymers from various
materials. pH-responsive hydrogels release therapeutic substances in response
to pH changes, providing tailored administration, fewer side effects, and improved
treatment efficacy while reducing tissue damage. Because of these qualities, they
have been shown to be useful in a wide variety of applications, including the
administration of chemotherapeutic drugs, biological material, and natural
components. The pH-sensitive biopolymers that are utilized most frequently
include chitosan, alginate, hyaluronic acid, guar gum, and dextran. In this
review article, the emphasis is placed on pH stimuli-responsive materials that
are based on biological macromolecules for the purposes of drug administration.
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1 Introduction

In recent years, there has been an increase in interest in personalized pharmacotherapy
and precision medicine, both of which have been the driver for smart biomaterial design.
Stimuli-responsive hydrogels can be considered as smart biomaterials, and external triggers
like as pH, temperature, electrical and magnetic fields, light, and biomolecule concentration
can be employed to elicit drug release (Salehi et al., 2023). Hydrogels are three-dimensional
polymeric systems with considerable promise for application as transport conduits for
medicines, bioactive components, and dietary ingredients. Hydrogel has the potential to
accommodate enormous volumes of water through capillary action and osmotic pressure.
These characteristics make hydrogels resemble extracellular matrices in living tissues
(Aswathy et al., 2020). Hydrogels made from sustainable biological macromolecules have
a number of beneficial properties, including low immunogenicity, excellent biocompatibility
and biodegradability, cytocompatibility, cellular/tissue targeting, stability, superb structural
design, 3D geometry, and tunable solubility (Gu et al., 2022). Some limitations of bio-
macromolecular hydrogels include their natural origin and thus the batch-to-batch
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variability, fragile mechanical strengths, limited processability (for
example, chitosan), source limitations, rapid biodegradation, rapid
catabolization rates (for example, gelation), as well as microbial
degeneration (especially in the case of polypeptides) (Abbasian et al.,
2019; Salehi et al., 2023).

Recently, pH-sensitive hydrogels have been extensively
investigated and employed in biomedical applications,
particularly in drug delivery systems that take advantage of
pH shifts along the gastrointestinal tract (GIT) and targeted
delivery of specific therapeutics such as anticancer drugs and
genes (Rizwan et al., 2017; Salehi et al., 2023). pH-responsive
hydrogels possess a notable advantage in the field of drug
delivery due to the presence of pH fluctuations in various
physiological compartments along the physiological pH ranges
such as the gastrointestinal tract, tumor microenvironment, and
intracellular compartments. pH-responsive hydrogels possess the
capability to be deliberately designed and tailored to exhibit a site-
specific response to particular pH ranges. This unique characteristic
enables controlled drug release in these specific pH environments
(Salehi et al., 2023). pH-responsive hydrogels provide controlled
drug release kinetics via pH-dependent swelling or collapse
behavior. Such customization of drug release profiles can be
achieved by modifying the hydrogel composition and
crosslinking density, thereby accommodating specific therapeutic
needs (Rizwan et al., 2017; Bami et al., 2022; Ding et al., 2022).

As cellulose-based pH-sensitive hydrogels have been extensively
reviewed previously and have been thus, (Chen et al., 2019; Fu et al.,
2019; Deng et al., 2022), excluded from the scope of this review.
Biopolymer-based materials that are sensitive to various stimuli,
including pH, temperature, light, electrical or magnetic fields, and
ionic strength have been developed. However, pH and temperature
are two principal stimuli that exist naturally in the human
physiological environment (Zhuo et al., 2020; Cui et al., 2021).

The use of pH-responsive hydrogels derived from non-cellulosic
biological macromolecules is an emerging area of research that lies at
the intersection of materials science and medication delivery. Due to
their intrinsic pH sensitivity, these hydrogels have significant
potential in the domains of controlled drug release and targeted
therapy. The development of hydrogel systems with adjustable pH-
triggered behaviors has resulted in the ability to precisely control
drug delivery profiles in accordance with certain physiological
conditions. Hydrogels have been used in many therapeutic
domains, including cancer therapy and oral drug administration,
with the aim of augmenting treatment effectiveness while mitigating
adverse reactions (Garshasbi et al., 2023). Nevertheless, there are still
obstacles that need to be overcome in order to achieve the desired
mechanical qualities, ensure long-term stability, and address
possible issues with the immunogenicity of biological
macromolecules. The potential of integrating pH-sensitive
hydrogels with other responsive stimuli, such as temperature or
enzymes, to develop multifunctional delivery platforms, presents
promising avenues for future research. Furthermore, the tailoring of
hydrogels to align with specific patient profiles has the potential to
advance personalized medicine, hence driving the field towards
therapies that prioritize the needs and characteristics of particular
patients. In the current review, intrinsic physio-chemical properties
and application of non-cellulosic sustainable pH stimuli-responsive
macromolecule hydrogels are discussed.

2 Properties of non-cellulosic
biological pH-sensitive polymer

pH-sensitive polymers alter their structure and characteristics,
such as surface activity, chain conformation, and solubility, in
response to pH changes. pH and functional groups regulate the
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characteristics of pH-sensitive hydrogels (Bami et al., 2022). pH-
sensitive block copolymers or network structured pH-sensitive
polymers react to pH changes by self-assembling into unimers,
micelles, gels, vesicles, swelling/deswelling phenomena, etc. as a
function of their degree of (de)protonation (Kocak et al., 2016).
Chitosan, alginate, hyaluronic acid, dextran, xanthan, and gum-
tragacanth are some examples of pH-sensitive biopolymers
(Belscak-Cvitanovic et al., 2015; Garshasbi et al., 2023).

Ionic hydrogels with charge-carrying functional groups are
responsible for pH-sensitive swelling. They are influenced by
various factors, including ionic charge (strength and size),
dissociation constants (pKa or pKb), ionization degree,
hydrophilicity, polymer concentration, and swelling media pH.
A polymer with acidic functional groups reveals an expanded state
when the medium pH is greater than pKa, while it dismantles at
pH < pKa. Likewise, polymer chain dismantling for a polybase
occurs above the value of pKb (pH > pKb) (thus, they expand at
pH < pKb). Cationic polymers like chitosan swell in pH media
below pKb due to the protonation of cationic amine/imine group
(Ding et al., 2022; Rehman et al., 2022). The hydrogenated
positively charged groups lead to swelling of the polymer
chains, creating repulsion between functional groups. As such,
they can be employed as carriers for parenteral drug delivery
systems or targeted gastric delivery of antibiotics in the
treatment of ulceritis. Anionic polymers like sodium alginate
swell at basic pH values because of the ionization of the acidic
groups. Thus, the negative charge of polymer chains induces a
repulsion between themselves, resulting in facilitated swelling.
This feature of hydrogels can be utilized for colon drug delivery
at pH of 7.4 (Du et al., 2015). Non-cellulosic biological
macromolecule based pH-sensitive polymers can be
distinguished by their origin. A pH-responsive structural
conformation with solubility variations in biopolymers is a
common issue (Gil and Hudson, 2004). The drug delivery
mechanism of pH-responsive hydrogel is demonstrated
schematically in Figure 1. The monomeric units of pH-sensitive
non-cellulosic polymers are listed in Table 1 and Figure 2.

Chitosan, the second most prevalent polymer after cellulose, is
made of D-glucosamine and N acetyl-D-glucosamine residues from
chitin deacetylation. (Drury and Mooney, 2003). Chitosan is widely
applied due to its low toxicity, bioactivity, biodegradability,
antibacterial, hemostatic, and mucoadhesive qualities (Costa-
Pinto et al., 2011; Verma et al., 2017). Chitosan’s antimicrobial
activity is related to two mechanisms: (i) cationic polymers of
chitosan interact with sialic acid in phospholipids in the
microbial cell membranes, limiting their mobility and disrupting
the net negatively charged cell membrane structure and (ii)
oligomeric chitosan enters microorganism cells and converts
DNA to RNA, stopping growth (Sashiwa et al., 2004). Apart
from that, Chitosan shows strong mucoadhesive properties due
to its cationic nature and interaction with net negatively charged
intestinal mucus layer, enhancing its residence time in the colon and
drug diffusion gradient, leading to increased absorption (Shah et al.,
2016). The mechanism of mucoadhesion lies in interactions between
positive chitosan with negatively charged sialic acid and sulphate
groups present in mucin residues in the mucus layer, (Du et al.,
2015). In addition, chitosan is a potential vaccination adjuvant and a
macrophage clearance modifier due to its mucoadhesive properties,
especially in the nanoparticle form (Wei et al., 2017).

Alginate from brown seaweeds is a common polysaccharide
used in food, medicine, and regenerative treatments (Draget et al.,
2002; D’Ayala et al., 2008; Sharma et al., 2023). Mannuronic and
guluronic acid residues include carboxylic functional groups,
making alginate pH-responsive (George and Abraham, 2006).
Due to its anionic nature, alginate, its derivatives, and
polyelectrolyte complexes are suitable carriers for pH-responsive
drug delivery of many drugs such as famotidine, ampicillin, etc. (Jao
et al., 2010; Modasiya et al., 2010). Alginic acid spontaneously forms
gel in the presence of divalent cations such Ca2+, Ba2+, Sr2+, and Zn2+

(Shalaby and Burg, 2003). Alginate gels can encapsulate drugs or
cells with minimal adverse effects due to their pH-dependent mild
gelling ability (Milivojević et al., 2023).

Hyaluronic Acid (HA) is a anionic non cellulosic
biomacromolecules (Duranti et al., 1998). Because the pKa of the
carboxylic acid groups is between three to four, it behaves as an
anionic polyelectrolyte at physiological pH, making it hydrophilic. It
swells up to 1,000-fold compared to its volume due to its propensity
to absorb water, resulting in a loose and water-rich network (Kamaly
et al., 2016). Hydroxyl and carboxylic acid groups add functionality
through conjugation, chemical bonding, and cross-linking, making
pH-sensitive hydrogels easier to formulate (Kim et al., 2014; Kwon
et al., 2015; Luan et al., 2017).

Dextran is a biocompatible and sustainable exo-polysaccharide
produced by the bacterium Leuconostoc mesenteroides. The essential
characteristic of dextran is prone to enzymatic degradation by
dextranase. This enzyme is generated by a bacterium that belongs
to the genus bacteroids found in the colon. Dextran is an exceptional
carrier matrix for drug release in the colon as the enzyme dextranase
breaks the 1,6-glycosidic bond of dextran and breaks down the
hydrogel matrix (Hovgaard and Brøndsted, 1995; Simonsen et al.,
1995; Chiu et al., 1999).

Xanthan, an anionic polymer with a carboxylic group on one of
the side chains of glucuronic acid, is pH sensitive and exhibits
swelling in the basic environment due to the carboxylic group
ionization. The carboxylic acid group has a pKa value of 4.6,

FIGURE 1
Schematic representation of two basic approaches used in the
formation of pH-responsive drug delivery.
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above which it is ionized with a negative charge, causing swelling. As
a result, it can be employed as a pH-responsive hydrogel in the
intestinal region at pH 7.4 for controlled drug delivery above its pKa
value (Bueno et al., 2013).

Guar gum contains acidic functional groups, which help in the
expansion of hydrogel at intestinal pH of 7.4. It is sensitive to
microbial degradation in the large intestine, (Sinha and Kumria,
2001; Seeli and Prabaharan, 2016). Because of its chemical stability

TABLE 1 Properties of the Non-cellulosic Biological Macromolecules with their advantages.

Name of
Polymers>

Monomer units Ionic
nature

Source pKa Advantages

Chitosan D-glucosamine and N acetyl-D-
glucosamine

Cationic Exo-skeleton of crustaceans (shrimps,
crabs, lobsters), yeast and fungi

6.5 low toxicity, bioactivity,
biodegradability, antibacterial
properties, hemostatic effect, and
excellent mucoadhesive properties

potential adjuvant to vaccine and
modifier to macrophage clearance

Alginate D-mannuronic acid (M) and -L-
guluronic acid (G)

Anionic Brown seaweed 3.2 high content of acidic functional groups

forms a gel having different swelling
characteristics in the presence of
divalent cations such as Ca2+, Ba2+,
Sr2+, and Zn2+

permit the encapsulation of different
compounds or even cells

Hyaluronic acid D-glucuronic acid and N-acetyl-
glucosamine disaccharide units linked
by β (1, 4) and β (1, 3) glucosidic bonds

Anionic Part of almost every tissue in vertebrates 3–4 swells up to 1000-fold

anionic polyelectrolyte at neutral pH,
rendering it very hydrophilic

Dextran D-glucose linked by 1,6-glycosidic
bonds

Cationic Bacteria (Leuconostocmesenteroides) 7.4 dextranase generated by colon bacteria
can break it

Xanthan D-glucose (linked through 1,4-
glycosidic linkage) and a trisaccharide
branch connected by 1,3-glycosidic
bonds on the backbone’s alternating
glucose units with 2:2:1 ratio of
D-glucose, D-mannose, and

D-glucuronic acid

Anionic Bacteria (Xanthomonas compestris) 3.1 produced by anerobic bacteria
Xanthomonas compestris

Guar-gum D-mannopyranose (-D-mannose)
units linked to the main backbone
through 1, 4-glycosidic bonds, with

periphery branches of -D-
galactopyranose (-D-galactose) at

every alternate mannose unit attached
to the main backbone with 1, 6-

glycosidic bonds

Non-ionic Endosperm of Cyamopsistetragonolobus 3.5 biodegradable, non-toxic, readily
commercially available, hydrophilic
nature

Carrageenan D-galactose and -D-galactose or 3,6-
anhydro—D-galactose linked

by −1,3 and −1,4-glycosidic links

Anionic Cell wall of Red seaweed 4.9 quantity of sulphate substitution and
the equilibrium of related cations
determine carrageenan water solubility,
viscosity, and gel strength

Chondroitin sulfate (1–3)-β-N-acetyl- D-galactosamine
and (1–4)- β -glucuronic acid

Anionic cartilage, bone and cornea of animals −3.7 strongly hydrophilic and lack of
mechanical stability - needs to be
chemically functionalized or used with
other polymers for drug delivery and
tissue engineering applications

Fucan and
fucoidans

backbones consisting of (1,3)-linked-l-
fucopyranose residues or backbones
with alternating (1,3)-linked and (1,4)-
linked l-fucopyranose residues, with

sulfation at varying degree

Anionic Brown Seaweed—Fucus spp. 1.0–2.5 Water soluble sulphated
polysaccharide—the degree of sulfate
substitution determines the
characteristic properties of the polymer

Mannan and
Galacotmannan

Mannose linked by β (1–4) linkage and
galactose in side chain linked by α

(1–6) linkagae

Neutral Endosperm of leguminous seeds high molecular weight, high water
solubility, and a hydroxyl-rich side
chain—helps in intramolecular
crosslinking and overall network
entanglement, - imparts mechanical
properties
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over a wide pH range, controlled drug release, and, most crucially,
microbial breakdown in intestinal fluids, the hydrophilic
characteristic of guar gum can be used for oral and colon-specific

drug delivery (Seeli and Prabaharan, 2016). In one study, drug
release was sustained in simulated gastric and intestinal fluids up to
20%, but in simulated colonic fluid increased up to 80%–100%. The

FIGURE 2
Structures of monomeric units of Non-cellulosic Biological Macromolecules.
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presence of the enzyme galactomannanase increased tablet
disintegration time, subsequently leading to more rapid,
ultimately drug release from the formulation (Wong et al., 1997).

Guar gum succinate is a derivative of guar gum used for colon-
focused drug delivery due to hydrophilicity, pH responsiveness,
sustained drug delivery, and susceptibility to microbial degradation.
Guar gum succinate microparticles were developed as a pH-
responsive colon-specific medication carriers. The performance of
these particles in physiological fluids was studied, and it was shown
that at pH 7.4 in simulated intestinal fluid (SIF), the microparticle
swelled faster and exhibited rapider drug release compared to
simulated gastric fluid (SGF) pH 1.2 (Seeli et al., 2016).

Carrageenan is the name of the family of red seaweeds. It is the
major component of red seaweed cell walls. Carrageenan is a
polysaccharide composed of alternating units of -D-galactose and
-D-galactose or 3,6-anhydro-D-galactose linked by −1,3 and −1,4-
glycosidic links. Carrageenan is classified into six separate subtypes:
kappa, lambda, nu, iota, theta, and mu. The biological form mu and
nu carrageenan are precursors for kappa and iota carrageenan,
respectively, whereas theta carrageenan is physiologically
generated from lambda carrageenan (Campo et al., 2009).
Generally speaking, kappa carrageenan is used as a
pH responsive material. Water-soluble carrageenan’s are insoluble
in organic solvents. The quantity of sulphate substitution and the
equilibrium of related cations determines carrageenan aqueous
solubility, viscosity, and gel strength (Li et al., 2014).
Carrageenan’s anionic nature makes it suitable to use in pH-
sensitive hydrogels for controlled medication release systems. In
a previous study, the drug release rate increased from 15% at pH of
1.2%–80% with the in pH of 7.4 of the medium (Kotwal et al., 2007).

Chondroitin sulfate (CS) is water soluble natural polysaccharide
polymer composed of D-glucuronic acid and N-acetyl-D-
galactosamine. Due to the carboxylic and sulphonate functional
groups, CS shows increased water uptake capacity (Suhail et al.,
2022). Fucoidan, a long chain anionic polysaccharide with sulphate
functional group, is present in some species of brown algae. The
seaweed species Fucus vesiculosus, Cladosiphon okamuranus,
Laminaria japonica, and Undaria pinnatifida are frequently used
to extract the fucoidan used in commercial products. Due to its large
number of negatively charged sulfonic acidic groups, fucoidan is
considered to be pH sensitive (Wang et al., 2022; Haggag et al.,
2023). Galactommans are polysaccharides-based macromolecules
obtained from plants, microorganisms, animals and algae. It shows
no intrinsic gelling abilities but is commonly used in synergy with
other gelling agents such as xanthan gum, agar gum, etc. (Silveira
and Bresolin, 2011).

3 pH-sensitive hydrogel in drug delivery
applications

pH-sensitive hydrogels have been extensively explored and
employed in drug delivery systems that take advantage of
pH variations along the GIT.

Bio-macromolecules responsive to changes in the local
physiological environment govern cellular processes in biological
systems (Shakya et al., 2010). In the human body, pH ranges from
extremely acidic, i.e., 1.2 to normal, i.e., 7.4 (Florence and Attwood,

1998). pH differences can also be found in within organs like the
vaginal tract, gastrointestinal tract, blood vessels, etc., extracellular
and endosomal/lysosomal microenvironments, and the skin (Lee
et al., 2007; Bae et al., 2012; Koetting et al., 2015). Furthermore, the
pH variations between normal and malignant tissues is used in the
disease’s treatment solutions (Ko et al., 2007). In comparison to
normal tissues, the tumor microenvironment is highly acidic due to
tumor cells’ aggressive metabolism (Liu et al., 2014). pH-sensitive
hydrogels are widely utilized in medicine or gene delivery to target
specific organs or regions in the human body and cancer treatment
to assault malignant cells (Zhuo et al., 2020).

Two basic approaches are used in the formation of pH-
responsive drug delivery systems. Firstly, polymers with ionizable
groups are used to fulfill the organ- or site-based approach. These
ionizable groups can achieve a targeted and regulated drug discharge
in reaction to local pH alterations by experiencing conformational,
solubility changes or transitioning between swelling and deswelling
states (Kocak et al., 2016; Deirram et al., 2019). The second method
involves forming ionic interactions between the pH-responsive
polymer and the drug. The ionic interaction can dissolve in
response to pH changes, causing the drug to be released from the
polymer backbone (Pang et al., 2016; Deirram et al., 2019).
Nanoparticles, nanoaggregates, nanogels, nanocapsules, core-shell
particles, micelles, liposomes, polymersomes, hydrogels, layer-by-
layer films, and bioconjugates have been developed as pH-sensitive
polymer-based drug delivery devices (Hendi et al., 2020; Li et al.,
2021; Ofridam et al., 2021).

3.1 Oral drug delivery

Drugs that are absorbed poorly along the GIT and higher
pH are perfect candidates for stomach delivery. Gastric specific
delivery is critical for gastric cancer, gastritis, and carcinoma
(Ishak et al., 2007). Some of the above-mentioned stomach
disorders are caused by Helicobacter pylori, which inhibits the
gastric mucus layer. Due to insufficient drug absorption
beyond the gastric mucus barrier and poor chemical stability
in the gastric medium, single antibiotic therapies may not
appear effective. Chitosan, its derivatives, and blends are
employed as successful carriers to increase the drug
residence time in the stomach and its sustained release
(Bami et al., 2022). In one study, pH-sensitive chitosan-
based hydrogels loaded with metronidazole were prepared.
The hydrogels swelled more rapidly at the stomach pH and
showed increased drug release rate compared to the intestinal
pH. These findings revealed prolonged residence time of
hydrogel systems in a dog’s stomach of over 48 h compared
to commercially available metronidazole tablets. The dog’s
stomach contained pH-sensitive chitosan-based hydrogels
for 48 h, as seen by radiography. This shows that the
housekeeping wave did not interchange the hydrogel. The
migrating mylo-electric cycle of the stomach emptying cycle,
which happens every 2 h in humans and 1 h in dogs, did not
empty the hydrogel. The hydrogel turned around in the
stomach on the radiographs, indicating that it floated on the
gastric fluids rather than adhering to the gastric mucosa (El-
Mahrouk et al., 2016).
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Orally administered drugs are mainly absorbed in the small
intestine. The primary goal of oral drug delivery is safely delivering
the drugs from the stomach’s acidic environment to the weakly
alkaline intestinal milieu while preserving their pharmacological
activity. Poor permeability through the intestinal mucosa, acid-
catalyzed drug degradation, and proteolytic degradation along the
GIT are additional challenges in oral drug delivery, along the
pH gradient ranging from pH 1.2 (stomach) to pH 8 (intestine)
(George and Abraham, 2007). These issues are addressed mainly by
preventing drug release in the stomach by employing hydrogel
carriers that shrink in the acidic gastric environment, preventing
the drug from being released. Natural polymers with anionic
pendant groups like carboxylic and sulphonate functional groups
that remain protonated in an acidic medium the best choice for
hydrogel delivery system matrix. As a result, hydrogels maintain
their shrunk condition in this acidic environment, preventing rapid
drug release. Acrylic acid and its derivatives are commonly used in
naturally grafted polymers to counteract pH sensitivity and deliver
the drug from the acidic gastric environment to the intestine, where
the highest amount of drug can be released and absorbed (Yang
et al., 2016).

Dexamethasone has a short half-life (2-5 h) in the plasma due to
the low aqueous solubility. Due to short half-life and indicated to be
used in ulcerative colitis, it must be administrated in the small
intestine and colon. Acrylic acid grafted guar gum/β-cyclodextrin
composite hydrogels linked with tetraethyl orthosilicate (TEOS) for
targeted intestine administration of dexamethasone were
successfully formulated for this purpose. The hydrogels were pH-
sensitive, with delayed drug release correlating to guar gum
concentration and the highest drug release achieved at high
pH in the colon (Das and Subuddhi, 2015).

Therapeutic delivery into the systemic circulation via colonic
absorption is a unique method of delivering peptide and protein
therapeutics, as well as drugs that are poorly absorbed via the upper
gastrointestinal GIT. Colonic drug delivery is beneficial for treating
arthritis, angina, nocturnal asthma, and colonic disorders such as
colorectal cancer, Crohn’s disease, and ulcerative colitis (Arévalo-
Pérez et al., 2020; Lee et al., 2020; Naeem et al., 2020; Cui et al., 2021).

pH-responsive hydrogels prone to microbial breakdown have an
exceptional property that allows controlled and drug delivery in the
colon. Guar gum and its analog-based composite hydrogels are
preferred materials for sustained drug delivery in the large intestine,
which is accompanied by guar gum-based hydrogels natural
microbial breakdown. pH-responsive hydrogels beads, made of
guar gum succinate-sodium alginate (GGS-SA), were prepared to
develop ibuprofen-controlled release formulations. The hydrogel
beads swelled faster and released more ibuprofen at pH 7.4 than
compared with pH 1.2, respectively. The reason behind this were the
anionic groups on the side alginate side chains, while the sustained
drug release was achieved due to guar gum succinate swelling
properties. (Seeli et al., 2016).

Insulin oral delivery has numerous hurdles due to its chemical
structure. Oral insulin administration has several benefits such as
fast hepatic insulin delivery, avoidance of peripheral
hyperinsulinemia, weight gain, hypoglycemia, and improved
patient compliance (Fonte et al., 2013). However, intestinal
proteses degrade insulin, and its permeability through the
intestinal wall is poor due to relatively high molecular weight

and high hydrophilicity. Various drug delivery techniques, such
as pH-responsive hydrogels, microparticles, nanoparticles,
permeation enhancers, and insulin conjugates, have been
developed to address these issues (Ramesan and Sharma, 2014).
Due to obvious shortcomings of invasive drug delivery like
lipoatrophy, lipohypertrophy, poor patient compliance, sterile
manufacturing, painful administration, high manufacturing costs,
oral insulin delivery is preferred. Insulin is administrated into
systemic circulation directly by injections, generating peripheral
hyperinsulinemia, which leads to hypoglycemia, cancer,
atherosclerosis, and peripheral hypertension (Lee et al., 2010).

Many researchers have investigated pH-responsive hydrogels
for oral insulin delivery to bypass its degradation by intestinal
proteses like trypsin, alpha-chimotrypsin and elastase breakdown
in the stomach’s acidic medium, by leveraging the anionic hydrogels
natural propensity of swelling exclusively in the alkaline
environment of the intestine. Mukhopadhyay, Piyasi, et al. (2014)
formulated a pH sensitive hydrogel of insulin for oral delivery using
N-succinyl chitosan. Developed pH sensitive hydrogel released the
insulin in stomach was negligible while the release in alkaline
environment was quantitive. Insulin-loaded hydrogel
demonstrated strong hypoglycemic effects in diabetic mice
following oral administration, with a 4.43% insulin relative
bioavailability. Furthermore, in vivo toxicity and histopathology
studies revealed no adverse effects (liver, kidney) after oral
administration of the hydrogels (Mukhopadhyay et al., 2014).
Cikrikci, S., Mert, B., and Oztop, M. H. (2018) was developed
oral pH sensitivity gel of insulin using the alginate, gum
tragacanth and chitosan and evaluated for in vitro drug release
studies. Results indicated that hydrogel retain the insulin in gastric
buffer and release in intestinal condition (Mukhopadhyay et al.,
2014).

An aqueous free radical polymerization approach was
employed to produce a drug-loaded smart hydrogel composed
of chitosan and fenugreek-g-poly (MAA), which exhibits
pH responsiveness. The network that was created underwent
evaluation in several aspects including the percentage of
capecitabine loading, swelling response, morphology, structural
and compositional properties, and drug release behavior. The
hydrogel formulations shown a notable increase in swelling and
in vitro drug release rate when subjected to a pH of 7.4 compared to
a pH of 1.2, thereby indicating the pH-responsive nature of the
hydrogels. The swelling percentage and CAP loading exhibited a
range of 74.45%–83.54% and 50.13%–72.43%, respectively. The
hydrogels exhibited a regulated release pattern of capecitabine,
with a maximum release of 93% observed within a 30-h timeframe.
The improved formulation underwent further screening to assess
its potential for acute oral toxicity in laboratory experiments.
There were no observed indications of oral, cutaneous, or
ocular toxicities, hence providing confirmation of the network’s
safety profile. In addition, the pharmacokinetic research revealed
the sustained release properties of capecitabine from hydrogels, as
evidenced by a notable elevation in the plasma half-life (t1/2)
(13 h) and the area under the curve (AUC) (42.88 μg h/mL) of
capecitabine. Based on the aforementioned findings, it is highly
advised to utilize manufactured hydrogels as a biocompatible
carrier for the purpose of delivering active drugs to the
colorectal region (Rehman et al., 2022).
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3.2 Parenteral drug delivery

Hydrogels for injectable drug delivery have recently gained
attention because of their potential to provide both rapid and
sustained drug release following a single administration. This will
reduce drug concentration and side effects (Rizwan et al., 2017).
Ischemia, tumors, and healing wounds are all acidic environments
(Xin and Naficy, 2022).

The production of injectable polysaccharide hydrogels with
biocompatibility and self-healing properties has been achieved
through the chemical crosslinking of multialdehyde guar gum
(MAGG) and N, O-carboxymethyl chitosan (N, O-CMCS) using
pH-sensitive, biodegradable, and dynamic Schiff base connections.
This marks the first-ever instance of such crosslinking. The
hydrogels exhibited favorable characteristics for the purpose of
administering drugs by injection due to their remarkable
viscoelastic, thixotropic, and self-healing qualities. After being
loaded with Dox for a duration of 5 days, the hydrogels exhibited
a release mechanism that was responsive to changes in pH. Notably,
a greater amount of Dox was released at the acidic pH characteristic
of tumor environments compared to the neutral pH typically found
in healthy conditions. The non-toxicity of these hydrogels was
confirmed by the use of MTT and hemolytic tests. The hydrogel
loaded with Dox exhibited a substantial decrease in MCF-7 cell
viability, resulting in a mortality rate of 72% (Shim et al., 2021;
Garshasbi et al., 2023).

Liang, Yongping et al., 2019, was developed the injectable
pH responsible hydrogel using the pullulan and chitosan. The
effects of pH levels of 5.5, 6.8, and 7.4 on in vitro drug release
were studied at 37°C. The extracellular matrix in tumor tissues often
has a lower pH value than normal tissues due to acidification caused
by glycolysis of tumor cells. At 5.5, the swelling ratio is larger and the
DOX release percentage is higher than at 7.4, and this is because the
electrostatic repulsion between the protonated -NH2 group in
chitosan and the weaker connection between -NH2 and -CHO
created during the Schiff base reaction causes the -NH2 group to
repel the -CHO group (Rizwan et al., 2017).

Doxorubicin (DOX) is one of the most effective
chemotherapeutical components for treating various types of
cancer (Anand et al., 2018; Menendez et al., 2022). Omidi, S.,
Pirhayati, M., & Kakanejadifard, A. (2020), formulated the pH-
sensitive injectable of doxorubicin and curcumin using a chitosan
with graphene and cellulose nanowhisker (CGW). The hydrogel
formulation exhibited a pH-responsive release pattern in relation to
the delivery of anticancer drugs. The in vivo experiment
demonstrated rapid gelation of the hydrogel upon subcutaneous
injections into the skin of rats. The antimicrobial investigations
conducted have confirmed that CGW exhibits robust antibacterial
activity specifically against Gram-positive bacteria. The findings of
this study indicate that the CGW hydrogel exhibits potential as a
viable option for localized drug delivery systems (Omidi et al., 2020).

For efficient gene distribution, multifunctional gene vehicles
using a layer-by-layer method with the top one as a pH-responsive
hydrogel was explored. Condensing deoxyribonucleic acid (DNA)
with protamine to form DNA/protamine complexes provided the
cationic core that served as a template. With the help of a layer-by-
layer approach, the anionic DNA, cationic liposomes, and the
O-carboxymethyl Chitosan (CMCS-CLDPD complexes) were

applied to the first layer. The top layer of CMCS hydrogel aids
gene transfection efficiency while also protecting the CMCS-CLDPD
from serum contact. Animal and cell culture studies revealed that
the CMCS layer came off in the tumor medium at pH 6.5, allowing
the loaded DNA to be released faster in the acidic tumor media than
in the neutral condition (Li et al., 2012).

3.3 Transdermal drug delivery

The top layer of skin, namely, stratum corneum’s properties, such
as cohesion, intercellular lipid, homeostasis, and permeation barrier
are regulated by various circumstances, involving the skin’s pH. The
pH of skin is between 5.0 and 6.0, so the stratum corneum is known as
the acid mantle. Many factors influence the pH of the same, including
age, gender, sebaceous glands, apocrine glands, eccrine glands, and
epidermal cells. Skin sickness (acne, inflammation, and irritation),
impaired permeation barrier, and cell cohesiveness in the acid mantle
are symptoms of an imbalanced pH when the pH of the top layer of
the skin is higher. Many biological polymers and their analogs, such as
chitosan and carboxymethyl guar gum, have been utilized to
encapsulate medicines because they produce free-standing
membranes. To evaluate the medication transport of diclofenac,
researchers developed nanosilica/acrylic acid grafted guar gum
membranes for transdermal patch therapy. (GG-g-AA) stands for
guar gum-g-acrylic acid. The composition 10/0.1/0.5 had the highest
water uptake of all the compositions. Diclofenac release was more
regulated in GG-g-AA nanocomposites than in guar gum (Hendi
et al., 2020; Zhuo et al., 2020).

4 Biological fate of biopolymer
hydrogel used in drug delivery

Biopolymer hydrogels employed in the context of drug delivery
exhibit a distinct biological trajectory subsequent to their
administration. Upon introduction into the biological system, the
hydrogels undergo a process of swelling, resulting in the formation
of a three-dimensional network architecture. Over a period of time,
the materials undergo regulated biodegradation via enzymatic or
hydrolytic mechanisms. The process of degradation results in the
liberation of the encapsulated drug molecules into the immediate
vicinity. The drugs that have been released adhere to their respective
pharmacokinetic pathways, while the biodegraded components of
the hydrogel are eliminated through diverse routes (Xin and Naficy,
2022). Mucoadhesion of non-cellulosic biological macromolecules is
dependent on numerous mechanisms. These large molecules form
mucoadhesive contacts with glycoproteins in the mucus layer via
hydrogen bonding. The negatively charged mucin glycoproteins
interact with the positively charged macromolecules via
electrostatic forces. The hydrophobic contacts and chain
entanglement caused by Van der Waals forces also play a role.
Some macromolecules are able to penetrate the mucus layer and
interact with underlying cells, while others can expand and create a
gel to make close contact with mucosal surfaces. Collectively, these
methods improve the mucoadhesion of non-cellulosic biological
macromolecules, paving the way for their use in mucosal tissue-
specific medication delivery (Zhuo et al., 2020).
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5 Biopolymer based pH-sensitive
hydrogel for drug delivery:
opportunities and gaps

Biocompatibility, biodegradability, and non-toxicity are
critical for biomedical and drug delivery materials. The pH,
temperature, light, electrical or magnetic fields, and ionic
strength of biological macromolecule-based materials have
been studied. pH and temperature are two stimuli that exist
naturally in the human body’s interior environment. Thus,
internal stimuli-responsive hydrogels can deliver targeted
medications via multiple channels. Non-cellulosic biological
polymer-based pH-sensitive hydrogels have been widely
researched for site-specific medication administration, cancer
therapies, insulin delivery, and genetic material delivery.
Smaller internal stimuli-responsive hydrogels are preferred for
this reason. The pH-sensitive swelling/deswelling biological
components were extracted or grafted or copolymerized with
anionic/acidic monomers or cationic groups like quaternary
ammonium groups on polymer chains (Zhuo et al., 2020).
This strategies can help to develop commercially viable non
cellulosic drug delivery systems. Different commercially
available non cellulose based hydrogel products are shown in
Table 2.

Chitosan, alginate, hyaluronic acid, guar-gum, and dextran are
used most often in pH-sensitive hydrogels. The natural origin, weak
mechanical properties, poor processability (cellulose and chitosan),
limited sources, high production costs, rapid biodegradation,
catabolization rates (e.g., during gelation), and susceptibility to
microbial spoilage are all drawbacks of this material

(Hendi et al., 2020). By studying effective extraction, tissue
culture, biotechnology, and green chemistry, biological
macromolecule synthesis and modification may be addressed.
Efficient biological macromolecule extraction may lower
manufacturing costs and microbial overburden. Development of
high-yielding algae/plant strains, innovative biological
macromolecules, and novel strains may overcome problems
including poor processability, high biodegradation, supply
constraint, and production costs. To solve these issues, future
semi-synthetic and bioengineering solutions should physically,
chemically, or biologically change biological macromolecule-
based hydrogels. In addition, grafting techniques and
copolymerization with other natural or synthetic molecules can
open novel facets in the fields of pH responsive drug delivery (Bera
et al., 2015; Chandel et al., 2016; Singh Chandel and Jewrajka, 2020).
Recent pH-responsive hydrogel research, which uses non-cellulosic
biological macromolecules, focuses on several drug delivery issues.
First, new bio-derived macromolecules beyond cellulose may
improve hydrogel performance, biocompatibility, and drug
delivery. In addition, the incorporation of these hydrogels into
state-of-the-art imaging and monitoring technologies, such as
pH monitoring in real-time or drug administration guided by
imaging, has the potential to enhance the accuracy and efficacy
of therapies, therefore addressing significant deficiencies in existing
medical methodologies (Ofridam et al., 2021).

The use of non-cellulosic macromolecules in biomaterials is
consistent with global sustainability efforts. These materials are
often renewable and may be made to biodegrade sustainably.
Beyond scientific discoveries, this rise affects various sectors and
economies. The improvement in biomaterial design allows

TABLE 2 Some commercially available non-cellulose based hydrogels. Adapted from (Cascone and Lamberti, 2020).

Main component Commercial product Company Administration route

Hyaluronic acid Gengigel® Oraldent Ltd buccal

Vagisil® Combe Inc vaginal

Zestica Moisture® Searchlight Pharma Inc vaginal

Hyalo gyn® Fidia pharma United States Inc vaginal

Collagen and Sodium Hyaluronate Collagen Hydrogel Mask Skin Republic transdermal

Sodium hyaluronate Hylo® Gel Candorpharm Inc ocular

non-animal stabilized hyaluronic acids Juvederm® Allergan Parenteral (filler injections)

Restylane® Q-Med Parenteral (filler injections)

bacterial-based hyaluronic acids Captique® Genzyme Parenteral (filler injections)

Alginic acid Ocusert® Alza Corporation Ocular

Alginate Algisite M® Smith and Nephew Topical (Wound dressing)

Medihoney® Adhesive Dressings Derma Sciences Inc Topical (Wound dressing)

Ca-alginate dressing Gentell Corp Topical (Wound dressing)

NU-Derm® Hydrogel Systagenix Topical (Wound dressing)

Kaltostat® Convatec Topical (Wound dressing)

Xanthan gum Buccastem® M Alliance Buccal

Xanthan gum and gelatin Nicotinell® GlaxoSmithKline Buccal
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researchers, physicians, and corporations to collaborate on novel
medical devices and treatments. Large-scale biomaterial
production might boost economic growth while addressing
healthcare and environmental challenges. The development
and design of biomaterials using non-cellulosic biological
macromolecules present a significant chance to revolutionize
the fields of medicine, technology, and sustainability. Overall
non-cellulosic macromolecules based pH-stimuli responsive
materials are a promising choice for targeted and sustained
release drug delivery.
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