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Abstract
Generation of suitable meshes for patient-specific vascular domains remains
a major obstacle in the context of numerical simulations relying on the finite
elementmethod, aswell asmany similarmethods. Herein, we discuss a skeleton-
based structured meshing approach, revolving around block-structures. We rely
on an implicitly represented surface, either via a signed distance function, or a
convolution surface. The mesh generation using the aforementioned concepts
is performed through the proper utilisation of transfinite maps. Application-
wise, we consider healthy blood vessels, and extensions required to tackle aortas
afflicted by aortic dissection. The high quality of the resulting meshes is affirmed
through common mesh quality metrics. Our approach features large flexibility
in terms of spatial resolution, as well as mesh order.

1 INTRODUCTION

Structured hexahedral mesh generation offers a multitude of advantages compared to the more commonly utilised
unstructured meshing approaches. Examples include straightforward control over the number of nodes and elements
in the mesh, as well as more nuanced, computational fluid dynamics themes, such as flow-oriented elements and high-
quality treatment of boundary layers [1]. However, generating structuredmeshes for arbitrary domains often remains only
a semi-automatic, or rather a non-viable task. Tubular structures, such as patient-specific blood vessels, represent a class of
domains where structured mesh generation has shown to be both useful, as well as achievable [2–4]. Furthermore, signif-
icant effort is required to tackle aortas plagued by aortic dissection [5], a serious cardiovascular condition. The established
approaches to meshing similar domains primarily focus on generating linear meshes, whereas we pay special attention to
higher-order meshes as well. Additionally, we deem the ability to generate coarse meshes important, as they have proven
to be useful for various purposes, for example, problems where a huge number of simulations is required, or the geometric
multigridmethod for solving linear systems, where they are in fact a requirement.
The mesh generation consists of four main steps: skeleton extraction, implicit surface representation, block-structure

generation and the final volumetric mesh generation step. This essentially serves as an outline of this work, supplemented
by examples.
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F IGURE 1 The skeleton and the surface of a part of a patient-specific aorta: (A) the skeleton, (B) the triangulated surface for the SDF
and (C) the convolution surface.

2 METHODS

We refer to the skeleton as a set of segments representing the centerline of the domain. It is extracted based on the mesh
contraction approach fromAu et al. [6], with additional details in Bošnjak et al. [7]. The surface description is implicit, that
is, we find a function 𝑓 ∶ ℝ3 → ℝ, such that its zero level-set {𝒙 ∈ ℝ3 ∶ 𝑓(𝒙) = 0} represents the surface. A viable and
well-known approach is the signed distance function (SDF), defined as the orthogonal distance of a point to the surface,
which is additionally negative if the point is inside the region bounded by the surface, and positive if it is outside. Thus,
given a triangulated surface of the domain, one may directly generate the SDF. Alternatively, for healthy blood vessels,
we employ convolution surfaces [8]. Namely, given a skeleton 𝑆 consisting of segments 𝑆𝑖 , denoted by 𝑆 =

⋃𝑛

𝑖=1
𝑆𝑖 , and

the corresponding indicator function 𝟙𝑆(𝒙) =

{
1, 𝒙 ∈ 𝑆

0, 𝒙 ∉ 𝑆
, the convolution surface is defined as the convolution of the

indicator function with a filter function ℎ, originally proposed to be ℎ(𝑥) = 𝑒
−‖𝒙‖2

2 :

𝐶𝑆(𝒙) = ∫
ℝ3

𝟙𝑆(𝒚)ℎ(𝒙 − 𝒚)𝑑𝒚.

Making use of the facts that the skeleton is consisted of segments, which share only individual points, and the definition
of the indicator function, the evaluation of the convolution surface boils down to

𝐶𝑆(𝒙) =

𝑛∑
𝑖=1

∫
1

0

𝐾(‖𝒙 − Γ𝑖(𝑠)‖)𝑑𝑠,
where 𝐾 ∈ 𝐶1(ℝ+) is called a kernel function, and Γ𝑖 ∶ [0, 1] → ℝ3 is the parametrization of the segment 𝑆𝑖 = [𝑎𝑖, 𝑏𝑖],
defined by Γ𝑖(𝑠) = 𝒂𝑖 + 𝑠(𝒃𝑖 − 𝒂𝑖). The kernel function may be freely chosen, resulting in different properties. We make
use of the framework based on a compactly supported kernel function 𝐾(𝑥) = 35

16
(1 − 𝑥2)3𝟙[0,1](𝑥), presented by Fuentes

Suaréz [9], offering provenly good radius control of the resulting surface. In regards to dissected aortas, at this point in
time, the SDF is the only viable option of the two. Thus, we utilise convolution surfaces exclusively in the case of healthy
blood vessels. Figure 1 shows an example of a skeleton, triangulated surface from which one can generate a SDF, and a
convolution surface.
Following the skeleton extraction and the surface representation, we turn to the generation of a block-structure [10],

that is, a subdivision of the domain into coarse blocks, aimed at capturing the topology of the domain, without neces-
sarily considering all of the geometrical information (e.g. curvature). In our work, blocks are hexahedra, and even valid
linear elements themselves, although generally, they need not possess either of the two properties. The block-structure is
generated based on the skeleton, via prototypes of specific skeleton configurations. Since the skeleton is a centerline that
abstracts the topology of the domain, it fits well with the notion of a block-structure.
One of the biggest hurdles that occurs when modelling vascular networks are bifurcations, that is, skeleton points

connected to three other points via segments. Herein, we describe a way to model bifurcations, whose final configuration
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F IGURE 2 Generation of the blocks for non-junction points: (A) a skeleton consisting of two segments, (B) the cutting planes
determined for the placement of the cross-sections, (C) the cross-sections and (D) the block-structure.

is similar to the bifurcation approach in Ghaffari et a. [2]. Given a point with two neighbours, which is, therefore, not in
a bifurcation, a cross-section is placed around it exactly in the plane between the two segments, as in Bošnjak et al. [7].
Formally, given a skeleton point 𝑋 with neighbours 𝑌1 and 𝑌2, we define 𝑢𝑖 = 𝑌𝑖 − 𝑋, 𝑖 = 1, 2 from which the normal
of the aforementioned plane is computed as 𝑛 = 𝑢1−𝑢2‖𝑢1−𝑢2‖ . Thereafter, computing 𝑑 = −⟨𝑛, 𝑋⟩ yields the plane which may
then be represented as 𝑛1𝑥 + 𝑛2𝑦 + 𝑛3𝑧 + 𝑑 = 0. In case of a terminal point, meaning it has only one neighbour, the given
segment between 𝑋 and 𝑌1 immediately serves as the normal of the plane for the cross-section. This is illustrated in
Figure 2.
Given a bifurcation point 𝑋, three neighbouring points are associated with it, denoted by 𝑌1, 𝑌2 and 𝑌3. Looking at the

neighbours in pairs, three distinct combinations arise. This yields three normal vectors when applying the aforementioned
plane computation for each pair, denoted by 𝑛12, 𝑛23 and 𝑛31. The subscripts of the normals denote the corresponding pair
of points 𝑌𝑖 . Thereafter, we compute cross-products of the normals, to find out whether the planes in question perhaps
intersect on a line. We consider the basic properties of the cross-product, namely anticommutativity, compatibility with
scalar multiplication and distributivity over addition:

𝑛12 × 𝑛23 = (𝑢1 − 𝑢2) × (𝑢2 − 𝑢3) = 𝑢1 × 𝑢2 − 𝑢1 × 𝑢3 − 𝑢2 × 𝑢2 + 𝑢2 × 𝑢3

= 𝑢1 × 𝑢2 + 𝑢2 × 𝑢3 + 𝑢3 × 𝑢1

𝑛23 × 𝑛31 = (𝑢2 − 𝑢3) × (𝑢3 − 𝑢1) = 𝑢2 × 𝑢3 − 𝑢2 × 𝑢1 − 𝑢3 × 𝑢3 + 𝑢3 × 𝑢1

= 𝑢1 × 𝑢2 + 𝑢2 × 𝑢3 + 𝑢3 × 𝑢1

𝑛31 × 𝑛12 = (𝑢3 − 𝑢1) × (𝑢1 − 𝑢2) = 𝑢3 × 𝑢1 − 𝑢3 × 𝑢2 − 𝑢1 × 𝑢1 + 𝑢1 × 𝑢2

= 𝑢1 × 𝑢2 + 𝑢2 × 𝑢3 + 𝑢3 × 𝑢1,

implying that

𝑛12 × 𝑛23 = 𝑛23 × 𝑛31 = 𝑛31 × 𝑛12 = 𝑢1 × 𝑢2 + 𝑢2 × 𝑢3 + 𝑢3 × 𝑢1.

Hence, the three planes in question indeed all intersect at the same line parametrized by the point𝑋 and the direction vec-
tor 𝑢1 × 𝑢2 + 𝑢2 × 𝑢3 + 𝑢3 × 𝑢1. Then, this line is used as a reference towards building a junction configuration, enabling
a connection to the cross-sections around 𝑌𝑖 , as shown in Figure 3. The reference lines for non-junction points are then
computed by interpolation. In future work, we wish to further develop this notion to accommodate for the case of two or
more bifurcations extremely close to one another. This is often encountered in dissected and occasionally healthy aortas.
The bifurcation scheme presented here offers a step towards extending [7] to aortic dissection. To this end, the next

task is the generation of a block-structure for the parts of the blood vessel which do not have a circular (nor near-circular)
cross-section. Figure 4 shows a dissected aorta, with the false lumen in red, and the true lumen in green. Unlike the cross
sections found in a healthy aorta, the cross-sections of the false lumen, and its neighbouring true lumen, are far from

 16177061, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300023 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [21/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 8

F IGURE 3 Generation of a bifurcation block-structure: (A) intersection (the blue line) of planes (in grey, red and green) determined by
taking all 2-combinations of the branches of a bifurcation, (B) reference lines around each point in a bifurcation, (C) cross-sections around the
involved points, and (D) the bifurcation block-structure.

F IGURE 4 Generation of the cross-sections and blocks along a non-circular lumen of a dissected aorta: (A) the surface mesh of an
example of aortic dissection, with the true lumen in green and the false lumen in red, (B) the skeleton of the true lumen in the immediate
vicinity of the false lumen, (C) an example of a cross-section around a skeletal point in the true lumen, with its minimum-volume bounding
ellipse and (D) a cross-section for block-structure generation.

circular. However, in the examples we encountered, they follow somewhat of an ellipsoidal or kidney-shaped pattern, and
they may even be non-convex.
Given a non-junction point 𝑋, the plane for the cross-section is determined as described earlier. Thereafter, the point

𝑋 is projected to every surface triangle that intersects the cross-section plane, to form a set of points on the boundary of
the lumen, as in Figure 4C. Now we find the minimum-volume bounding ellipse of those points. This algorithm seeks to
generate an ellipse that contains all points of interest with theminimum volume, noting that this approachmay be used in
any dimension. Since it may be formulated as a convex optimization problem, we can solve it via established methods, in
this case utilising the implementation inMostagh [11]. Figure 4C showcases a cross-section and the associated minimum-
volume (in this case, area) bounding ellipse. Next, we observe that we can use the two axes of the ellipse to automatically
build a scheme for the cross-section, such as Figure 4D. Following the construction of the cross-sections, blocks are formed
between them, yielding the false lumen block-structure. For the part of the true lumen that is the immediate vicinity of the
false lumen, the same procedure is applied. The accompanying block-structures and meshes are in the examples section.
Now, everything is ready for the mesh generation step.
The mesh generator employs transfinite maps to compute the proper (inner) node positions, whereas the implicit sur-

face representation is used to equip the block-structure with the geometrical details of the domain. Two user-defined
parameters are required, the order of the mesh, denoted by 𝑝, and the number of elements per block, denoted by 𝑛el,
which corresponds to the refinement level (spatial resolution) of the mesh. From these two parameters, we compute the
relevant values for the number of nodes per block edge 𝑛edge = 𝑛el ⋅ 𝑝 + 1, number of nodes per block face, 𝑛face = 𝑛2

edge

and the number of nodes in each block interior 𝑛block = 𝑛3
edge

.
For completeness, we provide a summary of the transfinite maps [12] for quadrilaterals, noting that the procedure for

hexahedra is quite similar. A reference quad (Figure 5A) equipped with an (𝑟, 𝑠) coordinate system is associated with four
(bilinear) shape functions, denoted by 𝑁𝑖, 𝑖 ∈ 1, … , 4. From the shape functions, we construct a ramp function for each
edge as

 16177061, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202300023 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [21/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BOŠNJAK and FRIES 5 of 8

F IGURE 5 Transfinite maps: (A) points needed to get 𝒙(𝒓), (B) switch to the Cartesian coordinate system (𝑥, 𝑦, 𝑧); (C) and (D) the
equivalent situation for hexahedra. The figure is taken from Bošnjak et al. [7], fig. 16 and fig. 17.

𝑅1 = 𝑁1 + 𝑁2, 𝑅2 = 𝑁2 + 𝑁3,

𝑅3 = 𝑁3 + 𝑁4, 𝑅4 = 𝑁4 + 𝑁1.

Note that each ramp function equals exactly 1 along the corresponding edge. Let us fix the point 𝒓𝒓𝒓𝒓 = (𝑟, 𝑠)T. We define
𝒙v
𝑖
∈ ℝ3 as the vertices of the quadrilateral, and 𝒙e

𝑖
∈ ℝ3 as the edge points illustrated in Figure 5A. Given those values,

the transfinite map is defined as

𝒙(𝒓) =

4∑
𝑖=1

𝑅𝑖(𝒓) ⋅ 𝒙
e
𝑖
−

4∑
𝑖=1

𝑁𝑖(𝒓) ⋅ 𝒙
v
𝑖
. (1)

As mentioned, the process of defining the transfinite maps for hexahedra is quite similar, thus, it is only illustrated in
Figure 5C. We refer the interested reader to Solín et al. [12] for more details on transfinite maps, and the associated topics.
Alongside transfinite maps, a method for projecting a point to the surface of the domain is required. If the surface

is represented with a SDF, a simple closest point projection may be applied. The evaluation of the function inherently
requires the computation of the closest projection on the surface. In the case of convolution surfaces, one may apply a
Newton-type iteration algorithm, made possible by the fact that the resulting function is at least 𝐶1. Thereby, before the
mesh generation step, all of the surface points of the block-structure are projected onto the surface of the domain.
The mesh generation starts by placing 𝑛edge equidistant points on every edge of the block-structure. If the given edge

lies on the surface of the domain, we project the edge points onto the surface, noting that only the inner edge nodes
need to be projected. To amend potential problems that may occur if the projections are far from their original points, we
employ order elevation. An edge of the block-structuremay be viewed as a one-dimensional linear finite element. It is then
converted to a quadratic element, by adding an additional point, which is then projected to the surface. In contrast to the
original approach, where points are placed onto the original edge (linear element), they are now placed on the quadratic
element, yielding better start guesses for the projection method. If necessary, the process may be repeated, by increasing
the order of the edge.
Based on the points generated on the edges of the block-structure, transfinite maps are applied to generate 𝑛face points

on each block-structure face. Similarly, faces on the surface require the projection of the inner nodes to the surface. In
the penultimate step, the transfinite maps for hexahedra are applied to yield the 𝑛block points in each block. Finally, we
define a connectivity matrix based on the generated points, thereby generating a sub-mesh in every block which is, in
turn, combined to the final mesh in the block-structure. It should be noted that the mesh generation step does not depend
on this specific setup. Given a block-structure and an accompanying implicit surface representation, the same procedure
may be applied. This is particularly relevant as it implies that developing new block-structure schemes does not negatively
impact the remainder of the algorithm.

3 RESULTS

In this section, we show examples of themeshes generatedwith ourmethod, alongwith appropriatemesh qualitymetrics.
Figure 6 showcases a part of a patient-specific aorta, following our pipeline. Specifically, we show meshes of different
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F IGURE 6 Resulting meshes that correspond to the skeleton and implicit surface shown in Figure 1: (A) the block-structure (272
blocks), (B) a sixth-order coarse mesh (272 elements), (C) a linear (first-order) refined mesh (470 016 elements) and (D) a cubic (third-order)
refined mesh (470 016 elements).

F IGURE 7 The histograms of the scaled Jacobian metric values for the meshes in Figures 6C and 6D. Values closer to 1 indicate
elements of higher quality.

F IGURE 8 An example of hexahedral meshing of a part of a dissected aorta, namely the parts of the lumina with non-circular
cross-sections: (A) the skeleton of the true lumen, (B) the block-structure of the true lumen (320 blocks), (C) the linear mesh of the true
lumen (163 840 elements) and (D) the skeleton of the false lumen, (E) the block-structure of the false lumen (320 blocks), (F) the linear mesh
of the false lumen (215 040 elements) and (G) the two lumina meshes plotted together for better visibility, in terms of the full dissected aorta
from Figure 4.

orders and spatial resolutions. As mentioned in the previous section, the blocks are valid linear elements themselves, thus
we observe that the coarsest mesh we are able to produce with our approach has the same number of elements as the
number of blocks in the block-structure.
Thereafter, Figure 7 shows the standardly used scaled Jacobianmesh qualitymetric for the two refinedmeshes presented

in Figure 6C and 6D. For a given element, the valuemay be in ⟨−∞, 1], where a negative value indicates an invalid element,
leading to an invalid and unusable mesh, and a value of 1 indicates an ideal element.
Observing the results, we see that both meshes exhibit very high quality, as most of the elements belong to the final two

intervals. We do not reasonably expect for all of the elements to be ideal, thus, the results are extremely satisfactory. For
both cases, the median value of the scaled Jacobian was around 0.89.
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BOŠNJAK and FRIES 7 of 8

F IGURE 9 The scaled Jacobian metric for the meshes of the false and true lumen shown in Figures 8C and 8F.

The next example shows the mesh of the part of the dissected aorta with non-circular cross-sections, separately for the
true and the false lumen. As mentioned, the cross-sections are ellipsoidal and potentially non-convex. Figure 8 illustrates
the skeletons, the block-structures and the linear meshes. The relevant scaled Jacobian histograms are shown in Figure 9.
As the cross-sections are more complex compared to the healthy blood vessel case, we see an increase in the number of
blocks in the block-structure in both lumina, relative to the number of points in the skeleton.

4 CONCLUSIONS

We have presented an automatic approach for the generation of structured, higher-order and fully hexahedral meshes
of vascular networks. They offer parametric control of anisotropy, and may be very coarse if desired. The meshes are
generated inMATLAB andmay be exported in the well-known .msh format. The values of the widely used scaled Jacobian
mesh metric are an indicator of very high mesh quality. Additionally, we presented relevant steps towards structured
meshing of dissected aortas, whereby the additional effort required to automatically generate appropriate block-structures
is left for future work.
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