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Abstract
Themodeling and simulation of fluid-structure interaction (FSI) involve the two-
way coupling of a fluid flow and a deforming structure. The fluid exerts a load on
the structure, the structure deforms, and, hence, the fluid flow changes, which
leads to an altered loading on the structure. To accomplish this coupling, the
fluid domain has to be updated after each time step, leading to a change in the
fluid mesh. Various mesh update methods have been presented where an initial
mesh is generated and then updated after each time step. Each method comes
with different levels of complexity and has its own advantages and disadvan-
tages. Herein, FSI simulations with fully integratedmesh generation, rather than
updates, are proposed. Instead of updating the mesh at each time step, a new
mesh for the fluid domain is generated based on the deformation of the solid
domain. An advanced structuredmeshing algorithm, based on a block structure,
enables this integrated mesh generation approach. An initial set of coarse-scale
conforming blocks is generated by the user, representing the topology and rough
initial position of the solid and the fluid. Further information is the exact geom-
etry at the boundary and the deformed position of the fluid-structure interface,
plus grading information to obtain a high-quality fluid mesh. Transfinite maps
are used to generate elements inside the blocks with any desired resolution
and order.

1 INTRODUCTION

In fluid-structure interaction (FSI), the fluid forces lead to a deformation of the solid. Subsequently, the fluid flow changes,
which leads to a coupling of the domains. As a result, themesh has to be updated at every time step, as seen in Figure 1. Var-
iousmethods for this update exist, eachwith different advantages and disadvantages. Especially for higher-order elements,
the existing approaches lead to rather poor results or even to invalid meshes, which abort the simulation. Furthermore,
choosing and adapting the right method for a specific FSI application can be difficult, often, a lot of fine-tuning is needed.
One of the more common methods is an elasticity analogy method [1], where the mesh is treated as a solid and the

deformations for the mesh nodes are calculated by solving the elasticity equations, therefore, also called the pseudo-solid
approach. Another popular method is, for example, the spring analogy method [2], where the nodes are connected with
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F IGURE 1 The coupled problem for FSI.

springs and the node positions are then calculated based on the spring deformations. Various methods exist, like the bi-
harmonic approach[3], the radial basis function interpolation method [4], or the Delaunay interpolation method [5], only
to mention a few. Some examples of hybrid approaches, combine different methods are the moving submesh method [6]
or the finite macro-element-based method [7, 8]. The disadvantage of most of the mentioned approaches is, that a large
system of equations has to be solved, with often one equation per node.
Instead of updating the mesh in every time step and solving a system of equations, herein, we propose to fully couple

the mesh generation into the FSI simulation. That is, a new mesh is generated in every time step, using an advanced
higher-order block-structured mesh generation method. This leads to a very robust approach, especially for higher-order
elements. The mesh generation is based on the topology definition via a block structure, using conforming quads, geom-
etry, and grading assignments to the block edges, and transfinite mapping functions to generate higher-order elements
inside the blocks. Based on this approach, any desired order and number of elements may be generated.
The remainder of the article is organized as follows: In Section 2, the governing equations for the FSI problem are

described, and in Section 3, themesh generation is presented. Section 4 describes two numerical examples and conclusions
are given in Section 5.

2 FLUID-STRUCTURE INTERACTION

The coupled problem in FSI is based on a 𝑑-dimensional flow acting on a structure. The computational domainΩ𝑑 ⊂ ℝ𝑑

is subdivided into the solid and fluid domains ΩS and ΩF, respectively, containing the FSI-interface denoted ΓFSI. This
problem is solved using a partitioned approach, only briefly described herein.
For the solid problem, a total Lagrangian formulation is used, always referring to the initial configuration. The structure

is modeled using the St. Venant solid, with the governing equations [9] given by

𝜚S𝒅 − ∇𝑿 ⋅ (𝐅𝐒) − 𝒇 = 𝟎 in ΩS, (1)

where 𝜚S is the solid’s density,𝒅 are the displacements and𝒇 are the volume forces. Furthermore the deformation gradient
𝐅 = 𝐈 + ∇𝑿𝒅, the second Piola–Kirchhoff stress tensor 𝐒 = 𝜆(tr𝐄)𝐈 + 2𝜂𝐄 with 𝜆 and 𝜂 being the Lamé parameters and
the Green–Lagrange strain tensor 𝐄 =

1

2
(𝐅T𝐅 − 𝐈) are given.

Instead the fluid domain model is formulated based on an arbitrary Lagrangian–Eulerian (ALE) description enabling
moving meshes during the simulation. The governing equations are the instationary, incompressible Navier–Stokes
equations [10], consisting of the momentum and the continuity equation. In the pressure-velocity formulation they are

𝜚F (�̇� + �̄� ⋅ ∇𝒙𝒖) − ∇𝒙 ⋅ 𝝈 − 𝒇 = 𝟎 in ΩF, (2)

∇𝒙 ⋅ 𝒖 = 0 in ΩF, (3)

where 𝜚F is the fluid’s density, 𝒖 are the velocities. �̄� = 𝒖 − 𝒖M are the advective velocities, with 𝒖M being themesh veloc-
ities. The fluid stress tensor 𝝈 for a Newtonian fluid is given as 𝝈(𝒖, 𝑝) = −𝑝𝐈 + 2𝜇𝜺(𝒖) with 𝜺(𝒖) =

1

2
(∇𝒙𝒖 + (∇𝒙𝒖)T),

with 𝑝 being the fluid’s pressure and 𝜇 being the dynamic viscosity.
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F IGURE 2 Block-structured mesh generation: (A) Block-structure—valid coarse linear mesh; (B) simulated solid displacements on
FSI-interface; (C) geometry assigned via node position on FSI-interface.

F IGURE 3 Grading assigned to a block edge: (A) Equally distributed nodes on a reference element; (B) reference nodes plotted on the
graph; (C) evaluated quadratic function for the reference nodes; and (D) new quadratic distribution of the nodes on the element edge.

On the moving, hence, time-dependent FSI-interface, ΓFSI, geometrical consistency and mechanical equilibrium is
required. Further boundary conditions are omitted for brevity. The spatial discretization is done via a finite element frame-
work using Taylor–Hood elements and, for the temporal discretization, a finite differencemethod is used. Theweak forms
of the equations, serving as the basis for the finite element treatment, are omitted here for brevity as well.

3 HIGHER-ORDER BLOCK-STRUCTUREDMESH GENERATION

In the FSI-problem, the instationary Navier–Stokes equations are formulated using the ALE description, naturally
enabling a consistent consideration of the moving mesh in the fluid domain. For the proposed inherent and frequent
mesh generation, an advanced higher-order block-structured mesh generation is used, consisting of the topology defini-
tion via a block-structure, geometry and grading assigned to the block edges and transfinite maps to generate nodes inside
the blocks. The mesh velocity is needed to calculate the advective velocity in Equation (2). As the number and the order
of the elements do not change throughout the simulation, the calculation of the mesh velocity is simple and no search or
projection algorithm is required. Next, the individual steps are described in more detail.
As a first step, the topology is defined via a block-structure using conforming (bi-linear) quads. The coordinates and the

node connectivity are user input, and defined so that the block-structure leads to a valid coarse and linear mesh, allowing
the occurring deformation of the FSI-interface without producing invalid blocks, exemplified in Figure 2A. The initial
geometry information is then assigned to the block edges using explicit or implicit definitions, for example, higher-order
edge elements, NURBS, B-splines, function evaluations, or isolines in the frame of the level-set method [11, 12]. After the
first time step of the simulation, the deformation of the FSI-interface results directly from the displacement field of the
solid, as shown in Figure 2B. This means that the simulated solid displacements serve as the new geometry representation
on the block edges corresponding to the FSI-interfaceΓFSI, exemplified in Figure 2C.On all other edges, the same geometry
information as in the initial mesh is prescribed.
Next, grading on the edges to resolve boundary layers is assigned. The steps to generate the desired grading are presented

in Figure 3. As an example, a quadratic grading on the lower edge of a 2D quad-element toward one of the vertices is con-
sidered here. Starting points are equally distributed nodes on the lower edge of the reference element, shown in Figure 3A,
which are plotted on the abscissa of Figure 3B. A quadratic function is then used to evaluate the graded new positions
shown on the ordinate, see Figure 3C. The new distribution on the ordinate is then mapped back to the reference element
in Figure 3D. Other than quadratic grading functions may be used alternatively, enabling different grading options, for
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F IGURE 4 Transfinite maps: (A) Vertex and edge numbering; (B) coordinate data on vertices and edges for 𝒙(𝒓); (C) element and data
in a Cartesian coordinate system; [15].

F IGURE 5 Higher-order submeshes: (A) Reference element with nodes on the edges; (B) reference element with generated nodes via
transfinite mapping function; (C) element and data in a Cartesian coordinate system.

example, with weaker and stronger grading or grading in the other or both directions of the edge. After accomplishing
these steps, the nodes on the edges of the blocks are defined, based on the desired number and order of the elements. As
a next step, the nodes inside the blocks are generated using transfinite maps.

3.1 Transfinite maps

This step enables the generation of the nodes inside the blocks based on the edge nodes, using transfinite mapping
functions. The concept is based on the blending-function method [13, 14] and also outlined for 3D cases in [15].
Starting point is a reference element in the (𝑟, 𝑠)-coordinate system with numbered edges and vertices, as seen in

Figure 4A. The usual bi-linear shape functions 𝑁𝑖(𝒓) are assigned to the reference element, resulting in

𝑁1(𝒓) =
1

4
(1 − 𝑟) ⋅ (1 − 𝑠), 𝑁2(𝒓) =

1

4
(1 + 𝑟) ⋅ (1 − 𝑠),

𝑁3(𝒓) =
1

4
(1 + 𝑟) ⋅ (1 + 𝑠), 𝑁4(𝒓) =

1

4
(1 − 𝑟) ⋅ (1 + 𝑠).

Based on the shape functions, every edge is now assigned a ramp function 𝑅𝑖(𝐫)

𝑅1 = 𝑁1 + 𝑁2, 𝑅2 = 𝑁2 + 𝑁3, 𝑅3 = 𝑁3 + 𝑁4, 𝑅4 = 𝑁4 + 𝑁1,

being 1 on the corresponding edge.
For a point 𝒙(𝒓), seen in Figure 4B, coordinates on the related edges 𝒙e

𝑖
∈ ℝ2 and vertices 𝒙v

𝑖
∈ ℝ2 are given. In order

to generate, the position 𝒙(𝒓) in terms of the given vertex and edge data, the following transfinite map is used,

𝒙(𝒓) =

4∑

𝑖=1

𝑅𝑖(𝒓) ⋅ 𝒙e
𝑖
−

4∑

𝑖=1

𝑁𝑖(𝒓) ⋅ 𝒙v
𝑖
. (4)

An example is seen in Figure 4C. Based on this function, the nodes inside the blocks can now be generated. In Figure 5A,
the nodes on the edges related to the desired number and order of the elements inside the block are shown. Based on
these nodes and the transfinite map in Equation (4) the inner nodes are generated and associated with elements via a
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F IGURE 6 𝐿2-projection: (A) Initial configuration; (B) configuration for simulation: square cavity rotated by 2◦.

F IGURE 7 Convergence study—𝐿2-error of 𝐿2-projection: (A) pseudo-solid approach; (B) mesh generation approach.

connectivity matrix, as depicted in Figure 5C. Generating these submeshes for all blocks and connecting them to one
mesh, leads to a fast mesh generation approach and allows meshes of any desired number and order of elements.

4 NUMERICAL RESULTS

Two numerical examples are considered herein, further examples are omitted for brevity. The first one is an 𝐿2-projection
on a domain with re-entrant angles, comparing the mesh generation and the pseudo-solid approach and highlighting
the advantages of the proposed approach. The second example, a full FSI-simulation for a flap attached to a rigid block
in a fluid flow, is a classic benchmark problem. The results for the mesh updating and mesh generation approaches are
compared again.

4.1 Study on interpolation properties of mesh update and mesh generation schemes

The initial domain is depicted in Figure 6A and an initial mesh is generated. The square cavity is rotated by 𝛼 = 2◦ around
the origin, comparing themesh generation approach and the pseudo-solid approach,where a simple linear elasticmaterial
model is used. An 𝐿2-projection of the function 𝑓(𝑥, 𝑦) = 𝑐 ⋅ sin(𝑓 + 𝑚 ⋅ 𝑥 − 𝑒 ⋅ 𝑦) + 𝑔 ⋅ cos(𝑙 + 𝑤 ⋅ 𝑥 + 𝑘 ⋅ 𝑦) + (𝑎 − 𝑥) ⋅

(𝑏 − 𝑦), with 𝑎, 𝑏, 𝑐, 𝑒, 𝑓, 𝑔, 𝑘, 𝑙,𝑚,𝑤 ∈ [0, 1] on the deformed domain, is executed.
The 𝐿2-error of this 𝐿2-projection is calculated and the convergence plots are shown in Figure 7A for the pseudo-solid

approach and in Figure 7B for the mesh generation approach for element order one to six and various resolutions. The
convergence rates for linear and quadratic elements are optimal for both approaches. For higher-order elements, only the
mesh generation approach leads to optimal convergence rates, whereas, for the pseudo-solid approach, the convergence
rate does not increase with an increasing order of the elements. For the pseudo-solid approach, the elasticity equations are
solved. As can be seen, for a domain with re-entrant angles, singularities may occur in the pseudo-solid approach which
then spoils the accuracy and the convergence rates of the resulting meshes.
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F IGURE 8 Convergence study—𝐿2-error of post-processed derivatives of 𝐿2-projection: (A) first derivative; (B) second derivative; (C)
third derivative.

F IGURE 9 Flap: (A) initial mesh; (B) mesh after 1640 time steps for the coupled mesh generation approach; (C) mesh after 1640 time
steps for the pseudo-solid approach; (D) zoom in on distorted elements of the pseudo-solid approach.

In a post-processing step, the derivatives of the 𝐿2-projection are calculated, resulting in optimal convergence rates
for the mesh generation approach for all derivatives, as seen in Figure 8 for the first, second, and third derivatives. This
feature of optimal convergence rates in the proposedmesh generation highlights the advantages of the proposed approach,
especially for higher-order elements. The optimal convergence for derivatives is particularly beneficial as derivatives are
often needed, for example, to calculate stresses.

4.2 FSI-application with moving flap behind square cylinder

As a benchmark problem in FSI, the flap behind a rigid block is considered using mesh generation and the pseudo-solid
approach, and, later on, comparing mesh metrics. The full problem description may be found in [16] and is omitted here
as the focus is on the treatment of the meshing herein.
Amesh for the initial domain is produced and shown in Figure 9A, and used as a startingmesh for both approaches. For

the pseudo-solid approach, the linear elasticity equations are solved, where on the FSI-interface ΓFSI the displacements
of the solid and zero-displacements on all other boundaries are prescribed. For that approach, significant fine-tuning
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F IGURE 10 Mesh metrics: (A) maximal and minimal determinant of the deformation gradient; (B) maximal and minimal angle
between neighboring elements.

of the pseudo-Young’s moduli for all elements, depending on the size and position, is needed, to generate valid meshes
throughout the simulation. In contrast, for the mesh generation approach, one needs to focus on providing a valid block-
structure which is much simpler.
In Figure 9B the mesh after 1640 time steps for the mesh generation approach is depicted and in Figure 9C the mesh for

the pseudo-solid approach at the same time step is shown. For the secondmesh, squeezed elements, especially around the
flap are arising and are shown in Figure 9D. To compare the two meshes with mesh metrics, the maximal and minimal
determinant of the deformation gradient in the whole mesh over time is calculated, as well as the maximal and minimal
angle between neighboring elements, shown in Figures 10A and B, respectively. Both metrics confirm that the mesh
generation approach leads to significantly better results.

5 CONCLUSIONS

We propose to inherently couple the mesh generation and the FSI-simulation. Instead of using mesh-update algorithms,
a new mesh is generated after each time step, using the concept of advanced higher-order block-structured mesh genera-
tion. The mesh generation is based on a topology definition via a block-structure using conforming quads, geometry, and
grading assigned to the block edges and the transfinite mapping function to generate nodes inside the blocks resulting in
any desired number and order of the elements.
The generation of a suitable block-structure prior to the simulation is a topic on its own. For the moderately complex

geometries common in many FSI simulations, this is not a problem and a broad range of applications may be covered.
Future work may include the application of the approach in biomedical FSI simulations [15, 17]. The inherent coupling
of FSI schemes with a mesh generator adds a level of complexity in the software design but leads to a very robust and
versatile FSI framework, even enabling the use of higher-order meshes.
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