
Information and Computation 295 (2023) 105013
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Learning Mealy machines with one timer ✩

Frits Vaandrager a,∗, Masoud Ebrahimi b,∗, Roderick Bloem b

a Radboud University, Nijmegen, Netherlands
b Graz University of Technology, Graz, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2021
Received in revised form 8 February 2023
Accepted 12 February 2023
Available online 20 February 2023

We present Mealy machines with a single timer (MM1Ts), a class of sufficiently expressive 
models to describe the real-time behavior of many realistic applications that we can learn 
efficiently. We show how we can obtain learning algorithms for MM1Ts via a reduction 
to the problem of learning Mealy machines. We describe an implementation of an MM1T 
learner on top of LearnLib and compare its performance with recent algorithms proposed 
by Aichernig et al. and An et al. on several realistic benchmarks.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Model learning, also known as active automata learning, is a black-box technique for constructing state machine models 
of software and hardware components from information obtained through testing (i.e., providing inputs and observing the 
resulting outputs). Model learning has been successfully used in numerous applications, for instance, for spotting bugs in 
implementations of major network protocols. e.g. in [4–9]. We refer to [10,11] for surveys and further references.

Timing plays a crucial role in many applications. A TCP server, for instance, may retransmit packets if the recipient does 
not acknowledge them within a specified time. Also, a timeout will occur if a TCP server does not receive an acknowl-
edgment after several retransmissions or if it remains in certain states for too long. Existing learning tools cannot capture 
timing behavior. These tools typically only support the learning of deterministic finite automata (DFAs) and related models. 
In the case of TCP, previous work only succeeded in learning models of real implementations by having the network adap-
tor ignore all retransmissions, and by completing learning queries before the occurrence of certain timeouts [5]. All timing 
issues had to be artificially suppressed.

Several authors already addressed the challenge of extending model learning algorithms to a setting of timed systems. 
Most proposals aim to develop learning algorithms for the popular framework of timed automata [12], which extends DFAs 
with clock variables. Transitions of timed automata may contain both guards that test clocks’ values and resets that update 
the clocks. Since guards and resets are not directly observable in a black-box setting, this poses major challenges during 
learning.

✩ This work was supported by the Austrian Research Promotion Agency (FFG) through project TRUSTED (867558), Graz University of Technology’s 
LEAD project “Dependable Internet of Things in Adverse Environments” and by Radboud University’s NWO TOP project 612.001.852 “Grey-box learning 
of Interfaces for Refactoring Legacy Software (GIRLS)”. This article is an extended version of [1]. We have included missing proofs that were left out due 
to the page limit, describe a way to implement untimed membership queries with fewer timed membership queries, improved the exposition of this key 
part of our approach (in section 3.4), and improved the experimental evaluation of our new algorithm and the comparison with the related approaches of 
Aichernig et al. [2] and An et al. [3].

* Corresponding authors.
E-mail address: ebrahimi@tugraz.at (M. Ebrahimi).
https://doi.org/10.1016/j.ic.2023.105013
0890-5401/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

https://doi.org/10.1016/j.ic.2023.105013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2023.105013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ebrahimi@tugraz.at
https://doi.org/10.1016/j.ic.2023.105013
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
Grinchtein et al. [13,14] developed learning algorithms for deterministic event-recording automata (DERAs), which have 
a clock for each action in the alphabet, and where each transition resets the clock corresponding to its input action. This 
restriction makes clock resets observable, but the complexity of the resulting algorithms still appears to be prohibitively 
high due to the difficulties of inferring guards. The restrictions of DERAs also make it hard to capture the timing behavior 
of standard network protocols. For instance, a pattern that often occurs is that within t time units after an event a there 
should be an event b. (For instance, in TCP, a SYN should be followed by a SYN-ACK within a specified time interval.) In 
a DERA, upon the occurrence of two consecutive a’s, the automaton no longer remembers when the first a has occurred; 
thus, it cannot ensure the occurrence of a timeout at the required moment in time.

Recently, Henry et al. [15] proposed a learning algorithm for a slightly larger class of reset-free DERAs, where some 
transitions may reset no clocks. Even though this algorithm appears to be more efficient than those of [13,14], it still suffers 
from a combinatorial blow-up because, for each transition, it has to guess whether this transition resets a clock. An et al. [3]
developed a learning algorithm for deterministic one-clock timed automata (DOTAs), using a brute force approach to reset 
guessing, also leading to a combinatorial blow-up.

Entirely different, heuristic algorithms are proposed recently by Aichernig et al. [16,2], using genetic programming. They 
succeeded in learning timed automata models with multiple clocks for several industrial benchmarks.

Given the difficulties in inferring the guards and resets of timed automata, the question arises whether timed automata 
provide the proper modeling framework to support learning algorithms. As an alternative, we propose to consider the use 
of timers instead of clocks. The difference is that the value of a timer decreases when time advances, whereas the value of 
a clock increases. In a setting with clocks, guards and invariants constrain the timing of events. However, a timer simply 
triggers a timeout whenever its value becomes 0. The absence of guards and invariants makes model learning much easier 
in a setting with timers. A learner still has to figure out which transitions set a timer, but this also becomes easier and 
does not create a combinatorial blow-up. If a transition sets a timer, then slight changes in the timing of this transition will 
trigger corresponding changes in the timing of the resulting timeout, allowing a learner to figure out the exact cause of 
each timeout event.

DFAs with timers are strictly less expressive than timed automata if we assume that timeout events are observable. 
For many realistic applications, however, this reduced expressivity causes no problems. For instance, Kurose and Ross [17]
use finite state machine models with timers to explain transport layer protocols. Caldwell et al. [18] propose a learning 
algorithm for a simple class of automata with timers, which they call time delay Mealy machines. These machines have 
only a single timer, which every transition resets. As a result, time delay Mealy machines are not sufficiently expressive to 
capture the timing behavior of realistic network protocols.

In this paper, we present Mealy machines with a single timer (MM1Ts), a class of sufficiently expressive models to 
describe the real-time behavior of many realistic applications that we can learn efficiently. In an MM1T, the timer can be 
set to integer values on transitions and may be stopped or time out in later transitions. Each timeout triggers an observable 
output, allowing a learner to observe the occurrence of timeouts. We show how we can easily obtain learning algorithms 
for MM1Ts via a reduction to the problem of learning Mealy machines and then apply established algorithms for learning 
Mealy machines like L∗

M [19] and TTT [20].
We describe an implementation of an MM1T learner on top of LearnLib, a state-of-the-art tool for learning Mealy ma-

chines [21], and compare its performance with the tools of Aichernig et al. [2] and An et al. [3] on several benchmarks: TCP 
connection setup, Android’s Authentication & Key Management (AKM) service, and some industrial benchmarks taken from 
[2]. The tool of [3] can only learn the benchmarks with a “helpful” teacher that provides information about resets; without 
help, it is unable to learn the benchmarks. The tool of [2] is more generally applicable because it can learn timed automata 
with multiple clock variables. However, our implementation outperforms it with several orders of magnitude in terms of 
the total number of input symbols required to learn the benchmark models with a single clock. We only compare against 
that tool in a restricted setup where we learn Deterministic One-clock Timed Automata (DOTAs), a model that is closest to 
MM1Ts in terms of expressiveness.

2. Mealy machines with a single timer

This section introduces Mealy machines with a single timer (MM1Ts) and describes their semantics. We write f : X ⇀ Y
to denote that f is a partial function from X to Y . We write f (x) ↓ to mean that the result is defined for x, that is, 
∃y : f (x) = y, and f (x) ↑ if the result is undefined. We often identify a partial function f : X ⇀ Y with the set of pairs 
{(x, y) ∈ X × Y | f (x) = y}. If f and g are partial functions, then f (x) = g(y) holds if either both f (x) and g(y) are 
undefined, or both f (x) and g(y) are defined and have the same result.

MM1Ts are just regular (deterministic) Mealy machines, augmented with a timer that can be switched on and off, a 
timeout input, and a function that specifies how transitions affect the timer. We view a timeout as an input event. This 
choice makes sense because the timeout event can be triggered by the environment by not providing a regular input to the 
system (or prevented by providing an input immediately).

Definition 1. A Mealy machine with a single timer (MM1T) is defined as a tuple M = (I, O , Q , q0, δ, λ, τ ), where

• I is a finite set of inputs, containing a special element timeout,
2



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
q0start q1

q2q3

in/send0
set-timer(3)

ack0/void

timeout/send0
set-timer(3)

ack1/void

in/send1
set-timer(3)

ack1/void

timeout/send1
set-timer(3)

ack0/void

Fig. 1. MM1T model of alternating-bit protocol sender.

• O is a set of outputs,
• Q = Q off ∪ Q on is a finite set of states, partitioned into subsets where the timer is off and on, respectively; q0 ∈ Q off is 

the initial state,
• δ : Q × I ⇀ Q is a transition function, satisfying

δ(q, i) ↑ ⇔ q ∈ Q off ∧ i = timeout (1)

(inputs are always defined, except for timeout in states where timer is off),
• λ : Q × I ⇀ O is an output function, satisfying

λ(q, i) ↓ ⇔ δ(q, i) ↓ (2)

(each transition has both an input and an output),
• τ : Q × I ⇀N>0 is a reset function, satisfying

τ (q, i) ↓ ⇒ δ(q, i) ∈ Q on (3)

q ∈ Q off ∧ δ(q, i) ∈ Q on ⇒ τ (q, i) ↓ (4)

δ(q, timeout) ∈ Q on ⇒ τ (q, timeout) ↓ (5)

(when a transition (re)sets the timer, the timer is on in the target state; when it moves from a state where the timer is 
off to a state where the timer on, it sets the timer; if the timer stays on after a timeout, it is reset).

Let δ(q, i) = q′ and λ(q, i) = o. We write q 
i/o,n−−→ q′ if τ (q, i) = n ∈N>0, and q 

i/o,⊥−−−→ q′ or just q 
i/o−→ q′ if τ (q, i) ↑.

Example 1. The MM1T shown in Fig. 1 is a simplified model of the sender from the alternating-bit protocol, adapted from 
[17, Figure 3.15]. We write set-timer(n) on the i-transition from state q to indicate that τ (q, i) = n. The MM1T has four 
states, with Q on = {q1, q3} and Q off = {q0, q2}. In the model, input “in” corresponds to a request from the upper layer to 
transmit data. Initially, upon receipt of such a request, the sender builds a packet from the data and a sequence number 
0, sends this over the network (output “send0”) and starts the timer with timeout value 3. When the sender receives an 
acknowledgment with the correct sequence number 0 (input “ack0”) it stops the timer and jumps to state q2 without 
generating visible output (“void”). Acknowledgment with the incorrect sequence number (input “ack1”) is ignored. Likewise, 
in state q1, input “in”, and in state q0 inputs “ack0” and “ack1” are ignored (for readability, we hid these self-loop transitions 
in the diagram). If no “ack0” input arrives within 3 time-units, a timeout occurs, and the same packet is retransmitted. The 
behavior in states q2 and state q3 is symmetric to that in states q0 and q1, respectively, except that the roles of sequence 
numbers 0 and 1 is swapped.

Remark The output “void” in a transition corresponds to the absence of an observable output. When the environment offers 
an input to an MM1T and this does not trigger a visible output, then this is interpreted as a void output. Similarly, when 
the environment observes an output in a situation where it did not offer any input to the MM1T, it may conclude that a 
timeout has occurred. Thus the input “timeout” corresponds to the absence of an observable input in situations where an 
output is observed. For each transition with input i and output o we require that either i �= timeout or o �= void. This ensures 
that all i/o interactions of an MM1T can be observed.

We present two formal semantics for MM1Ts, an untimed and a timed one. An untimed word just collects the transition 
labels on finite paths in an MM1T, whereas a timed word also describes how much time may elapse in between the 
transitions of the automaton. Whereas the untimed semantics is close to the syntax of an MM1T model, the timed semantics 
describes the real-time observations that may be recorded during interaction with a physical system. For the MM1T of Fig. 1, 
an example of an untimed word is

(in, send0,3)(ack1,void,⊥)(ack0,void,⊥)(in, send1,3)(timeout, send1,3)
3



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
whereas an example of a timed word is

(59, in, send0)(1.1,ack1,void)(1.7,ack0,void)(2.2, in, send1)(3, timeout, send1)

Here the real-number at the start of each triple denotes the time that elapses before the subsequent occurrence of the input 
and the output. Below we formally define the untimed and timed semantics.

Untimed semantics In the untimed semantics, we only record the labels of sequences of transitions. Formally, an untimed 
word over inputs I and outputs O is a sequence

w = (i0,o0,n0), (i1,o1,n1) · · · (ik,ok,nk),

where each i j ∈ I , each o j ∈ O , and each n j ∈N>0 ∪{⊥} is a timer value. An untimed run of MM1T M over w is a sequence

α = q0
i0/o0,n0−−−−→ q1

i1/o1,n1−−−−→ q2 · · · ik/ok,nk−−−−→ qk+1

that begins with the initial state q0 of M such that for each j ≤ k, q j
i j/o j ,n j−−−−→ q j+1 is a transition of M. Note that, since 

MM1Ts are deterministic, for each untimed word w , there is at most one untimed run over w . We say that w is an 
untimed word of M iff M has an untimed run over w . MM1Ts M and N with the same set of inputs are untimed 
equivalent, M ≈untimed N , iff they have the same untimed words.

It will be useful to characterize untimed equivalence in terms of bisimulations. The fact that MM1Ts are deterministic 
allows us to simplify the second transfer condition (8).

Definition 2. Let M1 and M2 be two MM1Ts with the same inputs, where M j = (I, O j, Q j, q
j
0, δ j, λ j, τ j), for j = 1, 2. A 

bisimulation between M1 and M2 is a relation R ⊆ Q 1 × Q 2 satisfying, for every q1 ∈ Q 1, q2 ∈ Q 2 and i ∈ I ,

q1
0 R q2

0 (6)

q1 R q2 ∧ δ1(q1, i) ↓ ⇒ δ2(q2, i) ↓ ∧ δ1(q1, i) R δ2(q2, i)

∧λ1(q1, i) = λ2(q2, i) ∧ τ1(q1, i) = τ2(q2, i) (7)

q1 R q2 ∧ δ2(q2, i) ↓ ⇒ δ1(q1, i) ↓ (8)

We write M1 �M2 iff there is a bisimulation R between M1 and M2.

The next lemma, which is easy to prove, is a variation of the classical result that trace equivalence and bisimulation 
coincide for deterministic systems [22].

Lemma 1. Let M1 and M2 be MM1Ts with the same inputs. Then M1 �M2 iff M1 ≈untimed M2 .

Timed semantics The timed semantics, which is slightly more involved, describes the real-time behavior of an MM1T. It 
associates an infinite state transition system to an MM1T that describes all possible configurations and transitions between 
them. A configuration of an MM1T is a pair (q, t), where q ∈ Q is a state and t ∈R≥0 ∪ {∞} specifies the value of the timer. 
We require t = ∞ iff q ∈ Q off . We refer to (q0, ∞) as the initial configuration. Using four rules we define a transition relation 
that describes how one configuration may evolve into another. For all q ∈ Q , r ∈ Q off , s, s′ ∈ Q on , i ∈ I , o ∈ O , t ∈R≥0 ∪{∞}, 
d ∈R≥0 and n ∈N>0,

d ≤ t

(q, t)
d−→ (q, t − d)

(9)

q
i/o,n−−→ s, i = timeout ⇒ t = 0

(q, t)
i/o−→ (s,n)

(10)

q
i/o−→ r, i = timeout ⇒ t = 0

(q, t)
i/o−→ (r,∞)

(11)

s
i/o−→ s′, i �= timeout

(s, t)
i/o−→ (s′, t)

(12)

Rule (9) states that the value of the timer decreases proportionally when time advances, until it becomes 0. Here we use the 
convention that ∞ − d = ∞, for any d ∈R≥0. So when the timer is off, time may advance indefinitely. Rule (10) describes 
4



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
events where the timer is (re)set; a timeout may occur only when the timer expires in the source state. Rule (11) describes 
events where the timer is off in the target state; again, a timeout may occur only when the timer expires in the source 
state. Finally, rule (12) describes events where the timer remains on and is not reset.

A timed word over inputs I and outputs O is a sequence

w = (t0, i0,o0), (t1, i1,o1) · · · (tk, ik,ok),

where, for each index j, t j ∈ R≥0, i j ∈ I , and o j ∈ O . A timed word w describes a behavior that an experimenter may 
observe when interacting with an MM1T: after an initial delay of t0 time units, input i0 is applied which triggers output o0, 
after a subsequent delay of t1 time units, input i1 is applied, etc. For such a timed word w , a timed run of MM1T M over 
w is a sequence

α = C0
t0−→ C ′

0
i0/o0−−−→ C1

t1−→ C ′
1

i1/o1−−−→ C2 · · · tk−→ C ′
k

ik/ok−−→ Ck+1

that begins with the initial configuration C0 of M and where, for each j ≤ k, C j
t j−→ C ′

j and C ′
j

i j/o j−−−→ C j+1 are transitions of 
M. Since MM1Ts are deterministic, for each timed word w there is at most one timed run of M over w . We say w is a 
timed word of M iff there is a timed run of M over w . MM1Ts M and N with the same set of inputs are timed equivalent, 
M ≈timed N , iff they have the same sets of timed words.

Although the definitions are quite different, the timed and untimed equivalence actually coincide. Below we show that 
untimed equivalence implies timed equivalence, a result that we need to prove the correctness of our learning algorithm. 
(The converse implication also holds, but we will not discuss this here, as it would distract from the main line of this 
article.)

Theorem 1. M ≈untimed N implies M ≈timed N .

Proof. Assume M ≈untimed N and assume w = (i0, o0, t0), (i1, o1, t1) · · · (ik, ok, tk) is a timed word of M. Since ≈untimed is 
symmetric, it suffices to prove that w is a timed word of N .

Because w is a timed word of M, M has a timed run over w:

C0
t0−→ C ′

0
i0/o0−−−→ C1

t1−→ C ′
1

i1/o1−−−→ C2 · · · tk−→ C ′
k

ik/ok−−→ Ck+1.

Let C j = (q j, u j) and C ′
j = (q j, u′

j), for all j. Now observe that for each transition in this timed run, there is a unique rule 
(either (9), (10), (11) or (12)) that has been applied, with a unique untimed transition of M in the antecedent. Thus M
has a corresponding untimed run

q0
i0/o0,n0−−−−→ q1

i1/o1,n1−−−−→ · · · ik/ok,nk−−−−→ qk+1,

and thus w ′ = (i0, o0, n0), (i1, o1, n1) · · · (ik, ok, nk) is an untimed word of M. Since M ≈untimed N , w ′ is also an untimed 
word of N . Therefore, N has an untimed run over w ′:

r0
i0/o0,n0−−−−→ r1

i1/o1,n1−−−−→ · · · ik/ok,nk−−−−→ rk+1,

with all r j states of N and r0 the initial state of N . Let D j = (r j, ui) and D ′
j = (r j, u′

j), for all j. We claim that

D0
t0−→ D ′

0
i0/o0−−−→ D1

t1−→ D ′
1

i1/o1−−−→ D2 · · · tk−→ D ′
k

ik/ok−−→ Dk+1

is a timed run over w of N . In order to prove this claim, we show by induction on j that the part of the sequence up to 
D j is a timed run of N , and moreover the timer is on in state q j iff it is on in state r j :

• Basis. Since q0 is the initial state of M and r0 is the initial state of N , the timer is off in both states. Moreover, u0 = ∞
and so D0 is the initial configuration and a timed run of N .

• Induction step. Suppose the statement holds for index j ≤ k. By rule (9), D j
t j−→ D ′

j is a timed step of N . If n j ∈ N>0, 

then by rule (3), the timer is on both in q j+1 and r j+1, and by rule (10), D ′
j

i j/o j−−−→ D j+1 is a timed step of N . Otherwise, 
if n j =⊥ and the timer is off in state q j , then by induction hypothesis it is also off in state r j . Hence, by rule (4), the 

timer is also off in states q j+1 and r j+1. Therefore u j = u j+1 = ∞, and D ′
j

i j/o j−−−→ D j+1 is a timed step of N . Finally, we 
consider the case where n j =⊥ and the timer is on in state q j . Then by induction hypothesis the timer is also on in 
state r j . If i j = timeout then by rule (5) the timer is off in states q j+1 and r j+1. This means that u j+1 = ∞. Moreover, 

by rule (11), u j = 0 and thus D ′
j

i j/o j−−−→ D j+1 is a timed step of N . Otherwise, if i j �= timeout then we claim that the 
timer is on in state q j+1 iff it is on in state r j+1. Because suppose the timer is on in q j+1 and off in r j+1. Then M
5



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
has an untimed word (i0, o0, n0), (i1, o1, n1) · · · (i j, o j, n j)(timeout, o, n), for certain o and n. But N cannot possibly have 
such an untimed word, since the timer is off in r j+1. This contradicts the assumption M ≈untimed N . Via a symmetric 
argument we can derive a contradiction when we assume that the timer is off in q j+1 and on in r j+1. If the timer is off 

in both q j+1 and r j+1, then D ′
j

i j/o j−−−→ D j+1 is a timed step of N by application of rule (11). If the timer is on in both 

q j+1 and r j+1, then D ′
j

i j/o j−−−→ D j+1 is a timed step of N by application of rule (12).

Thus w is a timed word of N , as required. �
3. Learning MM1Ts

3.1. A MAT framework for MM1Ts

Many active learning algorithms have been designed following Angluin’s approach of a minimally adequate teacher (MAT)
[23]. In this approach, learning is viewed as a game in which a learner has to infer the behavior of an unknown state 
diagram by asking queries to a teacher. We present a natural timed adaptation of the MAT framework for learning MM1Ts, 
based on the timed semantics. In a timed membership query (TMQ), the learner supplies a sequence of inputs with precise 
timing. In response, the teacher returns a timed word that also contains the timeouts and outputs that occur in response 
to these inputs, as well as their precise timing. Via a timed equivalence query (TEQ), the learner asks whether a hypothesis 
MM1T that it has constructed accepts exactly the same timed words as the (unknown) MM1T of the teacher. If this is the 
case, the teacher’s answer is ‘yes’; otherwise, it is ‘no’ coupled with a timed word showing that the hypothesis is incorrect. 
The learner’s task is to infer the unknown MM1T of the teacher via a finite number of timed membership and timed 
equivalence queries.

Formally, a timed membership query consists of a timed input word, which is an alternating sequence of delays in R≥0

and inputs from I \ {timeout}, beginning and ending with a delay, that is, an element from R≥0 ((I \ {timeout}) R≥0)∗ .
The operation • concatenates two timed input words by putting them in sequence but adding the final delay of the first 

sequence and the initial delay of the second sequence:

(ud) • (d′u′) = u (d + d′) u′.

We may associate a timed input word tiw(w) to any timed word w by removing the outputs and occurrences of timeout, 
replacing consecutive numbers by their sum, and possibly placing 0 at the end of the sequence:

tiw(ε) = 0

tiw((t, i,o) w) =
{

t • tiw(w) if i = timeout

(t i 0) • tiw(w) otherwise

Thus, for instance,

tiw((7, i,o), (1, i,o), (1, timeout,o′)) = 7 i 1 i 1,

tiw((3, i1,o1), (1.1, i2,o2), (2, timeout,o3), (2.1, i4,o4)) = 3 i1 1.1 i2 4.1 i4 0.

If u and u′ are timed input words, then we write u ∝ u′ if u and u′ are equal, except that the final delay of u is less than 
or equal to the final delay of u′ . Let u be any timed input word over I .

A timed word w of M is an outcome of running experiment u on M if tiw(w) ∝ u and w is maximal in the 
sense that there is no timed word w ′ with w a proper prefix of w ′ and tiw(w ′) ∝ u. For instance, if we run experi-
ment 1 in 7 on the MMT of Fig. 1, then (1, in, send0), (3, timeout, send0), (3, timeout, send0) is an outcome, but its prefix 
(1, in, send0), (3, timeout, send0) is not. Thus, if a timeout is still possible before the final delay of u expires, it must be 
included in an outcome.

Note that when we run an experiment u on M there will always be at least one outcome: inputs from I \ {timeout} are 
enabled in every state of an MM1T, we can always wait until the occurrence of the next timeout, and only finitely many 
timeouts can occur in any given interval of time. However, due to race conditions between inputs and timeouts, the outcome 
of an experiment is not always uniquely determined. For instance, the experiment 1 in 3 ack0 0 has two timed words 
as possible outcomes: (0, in, send0), (3, ack0, void) and (0, in, send0), (3, timeout, send0), (0, ack0, void). The timed membership 
query function tmqM assigns to each timed input word the set of all outcomes of running experiment u on M. It is easy 
to see that two MM1Ts M and N are timed equivalent iff they behave the same in all experiments, that is, for all timed 
input words u, tmqM(u) = tmqN (u).
6



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
3.2. From MM1Ts to Mealy machines and back

Below we explore the connection between MM1Ts and the classical notion of Mealy machines because this will allow us 
to reuse existing learning algorithms for Mealy machines [24,25] for learning MM1Ts. In this way, we may obtain a learning 
algorithm for MM1Ts almost for free. Essentially, a Mealy machine is just an MM1T in which the timer is off in all states. 
Thus, MM1Ts generalize Mealy machines. Conversely, we can view each MM1T as a Mealy machine of a special form.

Definition 3. A Mealy machine (MM) is a tuple M = (I, O , Q , q0, δ, λ), where I is a finite set of inputs, O a set of outputs, 
Q a finite set of states, q0 ∈ Q the initial state, δ : Q × I → Q a transition function, and λ : Q × I → O an output function. 
We generalize the transition function to sequences of inputs as usual: δ(q, ε) = q and δ(q, σ i) = δ(δ(q, σ), i), for σ ∈ I∗ and 
i ∈ I . The membership query function mqM : I+ → O assigns to each nonempty sequence of inputs the final output when we 
apply these inputs from the initial state of M: mqM(σ i) = λ(δ(q0, σ), i). Mealy machines M and N with the same set of 
inputs I are equivalent, denoted by M ≈N , if for all σ ∈ I+ , mqM(σ ) = mqN (σ ).

Note that the transition function of a Mealy machine is total, unlike the transition function of an MM1T, which is 
undefined for the timeout input in states where the timer is off. We say that Mealy machines are input complete. It will be 
useful to characterize equivalence of Mealy machines in terms of bisimulations. Since Mealy machines are input complete 
and deterministic, the definition is simpler than the usual definition of bisimulation on labeled transition systems.

Definition 4. Let M1 and M2 be two Mealy machines with the same inputs, where M j = (I, O j, Q j, q
j
0, δ j, λ j), for j = 1, 2. 

A bisimulation between M1 and M2 is a relation R ⊆ Q 1 × Q 2 satisfying, for all q1 ∈ Q 1, q2 ∈ Q 2 and i ∈ I ,

q1
0 R q2

0

q1 R q2 ⇒ λ1(q1, i) = λ2(q2, i) ∧ δ1(q1, i) R δ2(q2, i)

We write M1 �M2 iff there is a bisimulation relation between M1 and M2.

The next lemma, which like Lemma 1 is a variation of the classical result of [22], is again easy to prove.

Lemma 2. Let M1 and M2 be Mealy machines with the same inputs. Then M1 �M2 iff M1 ≈M2 .

We associate a Mealy machine Mealy(M) to each MM1T M as follows. We keep the same states, initial state, inputs 
and transitions, but add timeout self-loops for each state in Q off to make the Mealy machine input enabled. We associate 
a special output nil to each new timeout self-loop. The outputs of the other transitions of Mealy(M) are pairs consisting of 
the output from M together with the timer update. An inverse operation assigns a tuple MM1T(N ) to each Mealy machine 
N with the right input and output alphabets. We will see that under certain assumptions MM1T(N ) is indeed an MM1T.

Definition 5. Let M = (I, O , Q , q0, δ, λ, τ ) be an MM1T. Then Mealy(M) is the Mealy machine (I, O ′, Q , q0, δ′, λ′), where

O ′ = (O × (N>0 ∪ {⊥})) ∪ {nil}
δ′(q, i) =

{
δ(q, i) if δ(q, i) ↓
q otherwise

λ′(q, i) =
⎧⎨
⎩

(λ(q, i), τ (q, i)) if τ (q, i) ↓
(λ(q, i),⊥) if λ(q, i) ↓ and τ (q, i) ↑
nil otherwise

Conversely, suppose N = (I, O , Q , q0, δ, λ) is a Mealy machine with timeout ∈ I and O  ⊆ (	 × (N>0 ∪ {⊥})) ∪ {nil}, for some 
set 	. Then we may reverse the above construction and define MM1T(N ) = (I, O ′, Q off ∪ Q on, q0, δ′, λ′, τ ), where

O ′ = {o ∈ 	 | ∃n ∈N ∪ {⊥} : (o,n) ∈ O }
Q off = {q ∈ Q | λ(q, timeout) = nil}
Q on = Q \ Q off

δ′(q, i) =
{

δ(q, i) if q ∈ Q on or i �= timeout
undefined otherwise

λ′(q, i) =
{

π1(λ(q, i)) if λ(q, i) �= nil
undefined otherwise

τ (q, i) =
{

π2(λ(q, i)) if λ(q, i) ∈ O ′ ×N>0

undefined otherwise
7



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
q0start q1 q0start q1

press/void
set-timer(5)

timeout/beep

press/void

press/(void, 5)

timeout/nil

timeout/(beep, ⊥)

press/(void, ⊥)

Fig. 2. MM1T M (left) and corresponding Mealy machine N (right).

where π1 and π2 project a pair to its first and second element, respectively.

Example 2. The translations between MM1Ts and Mealy machines are illustrated in Fig. 2 with an MM1T M and a Mealy 
machine N that translate to each other: Mealy(M) = N and MM1T(N ) = M. The MM1T M models a device that says 
“beep” exactly 5 time units after a button is pressed.

The following result, which follows from Definition 5, Theorem 1, Lemma 2 and Lemma 1, asserts that Mealy and MM1T
act (in one direction) like adjoint operators.

Theorem 2. Suppose M is an MM1T with inputs I and outputs O  ⊆ 	, and N is a Mealy machine with all states reachable, inputs I
and outputs Ô ⊆ (	 × (N>0 ∪ {⊥})) ∪ {nil}. Suppose Mealy(M) ≈N . Then MM1T(N ) is an MM1T and M ≈timed MM1T(N ).

Proof. Let

M = (I, O , Q ,q0, δ, λ, τ ), where Q = Q off ∪ Q on

Mealy(M) = N ′ = (I, O ′, Q ,q0, δ
′, λ′)

N = (I, Ô , Q̂ , q̂0, δ̂, λ̂)

MM1T(N ) = M′ = (I, Ô ′, Q̂ , q̂0, δ̂
′, λ̂′, τ̂ ), where Q̂ = Q̂ off ∪ Q̂ on

(By Definition 5, M and N ′ have the same inputs, as well as N and M′ .)
Let R be a bisimulation relation between N ′ and N (R exists by Lemma 2). We first check that M′ = MM1T(N ) is an 

MM1T:

1. Since M is an MM1T, I is finite and timeout ∈ I .
2. By construction of MM1T(N ), Q̂ off and Q̂ on are disjoint.
3. Suppose (q, ̂q) ∈ R . We show that q ∈ Q off iff q̂ ∈ Q̂ off :

q ∈ Q off ⇔ δ(q, timeout) ↑ (since M satisfies rule (1))

⇔ λ(q, timeout) ↑ ∧ τ (q, timeout) ↑ (since M satisfies rules (2) and (3))

⇔ λ′(q, timeout) = nil (by definition Mealy)

⇔ λ̂(q̂, timeout) = nil (since R is a bisimulation)

⇔ q̂ ∈ Q̂ off (by definition MM1T)

4. Since M is an MM1T, q0 ∈ Q off . Since R is a bisimulation, q0 R q̂0. By the previous item, this implies q̂0 ∈ Q̂ off .
5. M′ satisfies rule (1) by definition of δ̂′ .
6. We show that M′ satisfies rule (2). Let q̂ ∈ Q̂ . Since all states of N are reachable and R is a bisimulation between N ′

and N , there is a state q ∈ Q with q R q̂. Now we derive:

λ̂′(q̂, i) ↓ ⇔ λ̂(q̂, i) �= nil (by definition MM1T)

⇔ λ′(q, i) �= nil (since q R q̂)

⇔ λ(q, i) ↓ (by definition Mealy)

⇔ δ(q, i) ↓ (M satisfies rule (2))

⇔ q ∈ Q on ∨ i �= timeout (M satisfies rule (1))

⇔ q̂ ∈ Q̂ on ∨ i �= timeout (item 3 above)

⇔ δ̂′(q̂, i) ↓ (M′ satisfies rule (1))
8



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
7. We show that M′ satisfies rule (3). Let q̂ ∈ Q̂ and q ∈ Q with q R q̂.

τ̂ (q̂, i) ↓ ⇒ λ̂(q̂, i) ∈ Ô ′ ×N>0 (by definition MM1T)

⇒ λ′(q, i) ∈ Ô ′ ×N>0 (since q R q̂)

⇒ τ (q, i) ↓ (by definition Mealy)

⇒ δ(q, i) ∈ Q on (as M satisfies rule (3))

⇒ δ′(q, i) ∈ Q on (by definition Mealy)

⇒ δ̂(q̂, i) ∈ Q̂ on (by q R q̂ and item 3 above)

⇒ δ̂′(q̂, i) ∈ Q̂ on (by definition MM1T)

8. We show that M′ satisfies rule (4). Let q̂ ∈ Q̂ and q ∈ Q with q R q̂.

q̂ ∈ Q̂ off ∧ δ̂′(q̂, i) ∈ Q̂ on (by definition MM1T)

⇒ q̂ ∈ Q̂ off ∧ δ̂(q̂, i) ∈ Q̂ on (by q R q̂ and item 3 above)

⇒ q ∈ Q off ∧ δ′(q, i) ∈ Q on (by definition Mealy)

⇒ q ∈ Q off ∧ δ(q, i) ∈ Q on (as M satisfies rule (4))

⇒ τ (q, i) ↓ (by definition Mealy)

⇒ λ′(q, i) ∈ O ×N>0 (by q R q̂)

⇒ λ̂(q̂, i) ∈ Ô ′ ×N>0 (by definition MM1T)

⇒ τ̂ (q̂, i) ↓
9. We show that M′ satisfies rule (5). Let q̂ ∈ Q̂ and q ∈ Q with q R q̂.

δ̂′(q̂, timeout) ∈ Q̂ on (by definition MM1T)

⇒ δ̂(q̂, timeout) ∈ Q̂ on (by q R q̂ and item 3 above)

⇒ δ′(q, timeout) ∈ Q on (by definition Mealy and M satisfies rule (1))

⇒ δ(q, timeout) ∈ Q on (as M satisfies rule (5))

⇒ τ (q, timeout) ↓ (by definition Mealy)

⇒ λ′(q, timeout) ∈ O ×N>0 (by q R q̂)

⇒ λ̂(q̂, timeout) ∈ Ô ′ ×N>0 (by definition MM1T)

⇒ τ̂ (q̂, timeout) ↓
Next we prove that R is also a bisimulation between M and M′ .

1. Since R is a bisimulation between N ′ and N , q0 R q̂0.
2. Suppose q R q̂. Then

δ(q, i) ↓ ⇔ q ∈ Q on ∨ i �= timeout (M satisfies rule (1))

⇔ q̂ ∈ Q̂ on ∨ i �= timeout (by q R q̂ and item 3 above)

⇔ δ̂′(q̂, i) ↓ (M′ satisfies rule (1))

3. Suppose q R q̂ ∧ δ(q, i) ↓. Then, by the previous item, δ̂′(q̂, i) ↓.
• Since R is a bisimulation between N ′ and N , δ′(q, i) R δ̂(q̂, i). By the definition of Mealy, δ′(q, i) = δ(q, i). By the 

definition of MM1T and because M′ satisfies rule (1), δ̂′(q̂, i) = δ̂(q̂, i). Thus, δ(q, i) R δ̂′(q̂, i), as required.
• Since M and M′ satisfy rule (2), λ(q, i) ↓ and λ̂′(q̂, i) ↓. Then

λ(q, i) = π1(λ
′(q, i)) (by definition Mealy)

= π1(λ̂(q̂, i)) (R is a bisimulation between N ′ and N )

= λ̂′(q̂, i) (by definition MM1T)
9



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
MM1T Learner

MM
Learner

Adaptor

MQ

EQ

MM1T
Teacher

TMQ

TEQ

Fig. 3. Using a Mealy machine learner to construct an MM1T learner.

• In order to prove τ (q, i) = τ̂ (q̂, i), we distinguish two cases.
– If τ (q, i) ↓ then

τ (q, i) = π2(λ
′(q, i)) (by definition Mealy)

= π2(λ̂(q̂, i)) (R is a bisimulation between N ′ and N )

= τ̂ (q̂, i) (by definition MM1T)

– If τ (q, i) ↑ then, by definition of Mealy, λ′(q, i) ∈ O  × {⊥}. Therefore, since R is a bisimulation between N ′ and N , 
λ̂(q̂, i) ∈ O  × {⊥}. Now the definition of MM1T implies τ̂ (q̂, i) ↑.

Since R is a bisimulation between M and M′ , M � M′ . Therefore, by Lemma 1, M ≈untimed M′ , and by Theorem 1, 
M ≈timed M′ , as required. �
3.3. Using a Mealy machine learner to build an MM1T learner

Theorem 2 allows us to reduce the problem of learning MM1Ts to the classical problem of learning Mealy machines. 
This simple reduction makes it possible to apply established and highly efficient/optimized algorithms for learning Mealy 
machines like L∗

M [19], TTT [20] and L# [26].
In the MAT framework for Mealy machines, the task of the learner is to learn an unknown Mealy machine M through 

two types of queries: With a membership query (MQ), the learner asks what the output is in response to an input sequence 
σ ∈ I∗ . The teacher answers with output mqM(σ ). With an equivalence query (EQ), the learner asks if a hypothesized Mealy 
machine N is correct, that is, whether M ≈ N . The teacher answers ‘yes’ if this is true. Otherwise, she answers ‘no’ and 
supplies a counterexample σ ∈ I∗ that distinguishes M and N .

To achieve the reduction, we place an adaptor between a Mealy machine learner and a teacher for an MM1T M, as illus-
trated in Fig. 3. From the perspective of the Mealy machine learner, the adaptor behaves like a teacher for Mealy(M) that 
answers membership (MQ) and equivalence queries (EQ). In order to answer these queries, the adaptor poses timed mem-
bership queries (TMQ) and timed equivalence queries (TEQ) to the MM1T teacher for M. When the learner has succeeded 
to learn a minimal Mealy machine N that is equivalent to Mealy(M), we know by Theorem 2 that M ≈timed MM1T(N ), 
and so the learner has learned an MM1T that is timed equivalent to M. Effectively, the adaptor and the Mealy machine 
learner together act as an MM1T learner.

Thus, the only thing that we need to implement in order to obtain an active learning algorithm for MM1Ts is an adap-
tor that answers membership and equivalence queries for Mealy(M) by posing timed membership and timed equivalence 
queries to a teacher for M. Actually, since our implementation uses the LearnLib tool as Mealy machine learner, and Learn-
Lib uses membership queries to approximate equivalence queries, Theorem 2 implies that there is no need to implement 
equivalence queries in our setting. Below we describe how the adaptor answers membership queries for Mealy(M) by 
posing timed membership queries to M.

3.4. Implementing membership queries

As its main data structure, the adaptor maintains an observation tree, which describes the part of the MM1T that has 
been explored thus far.

Definition 6. An observation tree T is an MM1T except that:

1. Inputs need not be enabled, that is, instead of rule (1) we only require the weaker rule q ∈ Q T
off ∧ i = timeout ⇒

δT (q, i) ↑.
10



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
start

in/send0, 3

ack0/void, ⊥ timeout/send0, 3
ack1/void, ⊥

in/send1, 3 ack0/void, ⊥

Fig. 4. Observation tree for the MM1T of Fig. 1.

2. Its graph is a tree, that is, there is a unique untimed run to each state.

We say that T is an observation tree for MM1T M iff there is a refinement function from T to M, that is, a function 
f : QT → QM that preserves the initial state, transitions, and whether the timer is on/off. Formally, we require for every 
q, q′ ∈ Q T , i ∈ I , o ∈ O and n ∈N>0 ∪ {⊥},

f (qT0 ) = qM0

q
i/o,n−−→ q′ ⇒ f (q)

i/o,n−−→ f (q′)
q ∈ Q T

on ⇔ f (q) ∈ Q M
on

A refinement function is a (functional) bisimulation as in Definition 2, except that it does not have to satisfy transfer 
condition (8). Note that if T is an observation tree for M, any untimed word of T is also an untimed word of M. Fig. 4
shows an observation tree for our running example. There is an obvious refinement function that maps each state in this 
tree to a unique state of the MM1T of Fig. 1, that preserves the initial state, and such that each transition in the tree 
corresponds to a transition in the MM1T of Fig. 1.

The adaptor poses timed membership queries to M to construct an observation tree T for M which is then used to 
answer membership queries for Mealy(M). Initially, the adaptor starts with a trivial observation tree T with a single state 
with the timer off and no transitions. Trivially, the function that maps the single, initial state of T to the initial state of M
is a refinement from T to M. Tree T and refinement f are then extended one state at a time, using the following lemma.

Lemma 3. Assume the adaptor knows an upper bound � on the maximal timer value occurring in M. Let T be an observation tree for 
M, let q be a state of T without an outgoing transition for i ∈ I such that i = timeout ⇒ q ∈ Q on. Then, via a single timed membership 
query, the adaptor may construct an observation tree T ′ for M that extends T with an outgoing i-transition for q.

Proof. The adaptor first adds a new state q′ to tree T and set δ(q, i) = q′ . In order to determine the values for λ(q, i) and 
τ (q, i), and decide whether the timer should be on or off in q′ , the adaptor constructs a timed membership query. Let α be 
the unique untimed run of T leading to state q:

α = q0
i0/o0,n0−−−−→ q1

i1/o1,n1−−−−→ q2 · · · ik/ok,nk−−−−→ qk+1 = q.

The adaptor constructs a corresponding timed run α′ of T :

α′ = C0
d0−→ C ′

0
i0/o0−−−→ C1

d1−→ C ′
1

i1/o1−−−→ C2 · · · dk−→ C ′
k

ik/ok−−→ Ck+1,

with C j = (q j, t j) and C ′
j = (q j, t′

j). For indices j with i j �= timeout, the adaptor chooses d j = 0, that is, it performs these 
inputs as fast as possible. By definition of a timed run, this choice determines the values of all t j ’s and t′

j ’s. For indices j

with i j = timeout, the adaptor waits until the timeout occurs, so we have d j = t j by definition of a timed run, and thus α′
is fully determined. Note that each t j is either a positive integer or ∞, for all j: if the timer is off in q j then t j = ∞, and if 
it is on then t j still equals the value to which the timer was last set. This implies that t′

j ≥ 1 for indices j with i j �= timeout. 
Let w be the timed word corresponding to α′ . The adaptor poses the following timed membership query u:

u =
{

tiw(w) • (tk+1 + �) if i = timeout

tiw(w) • ( 1 i �) if i �= timeout
2

11



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
Since there is a refinement from T to M, timed input word tiw(w) will drive M from its initial configuration with timed 
word w to a configuration (r, tk+1), where r is the image of state q under the refinement. Actually, the timed run to state 
r in M is identical to the timed run α′ of T , except for the states. Since t′

j ≥ 1 for indices j with i j �= timeout, no race 
conditions will occur and the timed run of M is uniquely determined. Upon receiving timed membership query u, the 
teacher will return the unique timed word w ′ in tmqM(u). The adaptor distinguishes between two cases.

1. If i = timeout then, since q ∈ Q on , the timer is also on in state r. Therefore, after timed input word tiw(w) and a 
subsequent delay of tk+1, a timeout event will occur in M with some output o, leading to a configuration with state r′ . 
The adaptor sets λ(q, i) = o. In this case, the refinement maps state q′ to state r′ . If w ′ contains no further timeout event 
then the adaptor sets τ (q, i) ↑ and adds q′ to set Q off . If w ′ does contain a subsequent timeout event, then the adaptor 
measures the (integer valued) time delay n between the timeout event from state r and the timeout event from state 
r′ . It sets τ (q, i) = n and adds q′ to set Q on . Note that in this case the timer is on in r′ , as required for a refinement 
function.

2. If i �= timeout then, after timed input word tiw(w) and a subsequent delay of 1
2 , an i-event will occur in w ′ with some 

output o, leading to a configuration with state r′ in M. The adaptor sets λ(q, i) = o. In this case, the refinement maps 
state q′ to state r′ . If w ′ contains no timeout event following the input i, the adaptor concludes the timer is off in state 
r′ . It sets τ (q, i) ↑ and adds q′ to set Q off . If w ′ does contain a subsequent timeout event, then the adaptor concludes 
the timer is on in r′ and adds q′ to set Q on . The adaptor measures the time delay d between the i-event from state r
and the subsequent timeout event from state r′ . Either d will be equal to tk+1 − 1

2 and it sets τ (q, i) ↑ (this is the case 
where the timer remains on after the i-transition and is not reset), or d will be integer valued and the adaptor sets 
τ (q, i) = d (this is the case where the timer is reset after the i-transition). �

Theorem 3. Assume there is a teacher who answers timed membership queries for some MM1T M posed by the adaptor. Assume the 
adaptor knows an upper bound � on the maximal timer value occurring in M. Then the adaptor may answer membership queries for 
Mealy(M).

Proof. Suppose the adaptor needs to answer a membership query σ ∈ I∗ . The adaptor uses an observation tree T for M to 
accomplish this task, which is extended whenever needed. It may start from any observation tree, in particular the trivial 
observation tree with a single state and no transitions. The adaptor records: (1) the current state q, initialized to the initial 
state of T , (2) the remaining suffix ρ , initialized to σ , and (3) the computed answer w , initialized to the empty sequence ε . 
Now basically, the adaptor may read out the value of mqMealy(M)(σ ) from the observation tree. Since T is an observation 
tree for M, there exists a refinement from T to M. The refinement ensures that the answer to the membership query 
extracted from T will be the same as the answer obtained from M:

• If the remaining suffix ρ is ε then it returns the computed answer w .
• Otherwise, if ρ = timeout ρ ′ and the timer is off in q, then it sets ρ to ρ ′ and appends nil to w .
• Otherwise, if ρ = i ρ ′ then the adaptor first ensures, using Lemma 3, that state q has an outgoing i-transition. Next it 

sets ρ to ρ ′ , appends the pair (λ(q, i), τ (q, i)) to w , and updates the current state q to δ(q, i).

The corresponding pseudocode is displayed in Algorithm 1. �

Algorithm 1 Answering a membership query for Mealy(M).
1: function mq(σ )
2: q ← qT

0 � initialize current state in T
3: ρ ← σ � initialize remaining suffix
4: w ← ε � initialize computed outputs
5: while ρ �= ε do
6: i ← Head(ρ)

7: ρ ← Tail(ρ)

8: if i = timeout and q ∈ Q T
off then

9: w ← append(w, nil)

10: else
11: if δT (q, i) ↑ then
12: Extend(T , q, i) � procedure from the proof of Lemma 3
13: w ← append(w, (λT (q, i), τT (q, i)))
14: q ← δT (q, i)
15: return w

Query complexity In order to add a new state to the observation tree, our algorithm needs one timed membership query 
on the MM1T. Thus, starting from the trivial observation tree, it will need at most m timed membership queries on the 
MM1T to answer a single membership query with m input symbols from a Mealy machine learner. The fastest existing 
12



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
q′
0start l0 q′

1

q′
2l1q′

3

?in, [0,∞),� !send0, [0,0],�

?ack0, [0,3),⊥

!send0, [3,3],�

?ack1, [0,3),⊥

?in, [0,∞),�!send1, [0,0],�

?ack1, [0,3),⊥

!send1, [3,3],�

?ack0, [0,3),⊥

Fig. 5. DOTA model of alternating-bit protocol sender.

learning algorithms for Mealy machines (e.g. TTT [20] and L# [26]) have a query complexity of O (kn2 + n log m), where k
is the number of inputs, n the number of states, and m bounds the length of the longest counterexample and the number 
of symbols in each query. This means that our algorithm needs O (kmn2 + mn log m) timed membership queries to learn 
an MM1T with n states, k inputs, and up to m symbols in the longest counterexample. Thus, learning MM1Ts has a higher 
query complexity than learning Mealy machines, but the total number of input symbols required is still polynomial. If the 
number of states where the timer is on is low, the query complexity will be comparable in practice. It is interesting to 
compare the complexity of our algorithm with the complexity of the algorithm of An et al. [3] for learning DOTAs. The 
DOTA algorithm of An et al. [3] is exponential due to the need of guessing for each transition whether it resets the clock. In 
contrast, in the slightly more restrictive setting of MM1Ts, learning is polynomial because a single timed membership query 
suffices to determine whether a transition sets a timer.

Learning the maximum timer value In case the adaptor does not know a bound � to the maximal timer value occurring in 
M, � can be assigned some arbitrary value in N>0. If this initial estimate is greater than or equal than the maximum 
timer value in M, no timeout event will be missed during learning a hypothesis. Otherwise, the equivalence oracle will at 
some point return a counterexample containing a timeout event that is not present in the observation tree. Based on this 
counterexample, the adaptor then updates � and start learning from scratch.

4. From MM1T to DOTA learning

In order to compare our approach to those of [2,3], we translate MM1Ts to Deterministic One-Clock Timed Automata 
(DOTAs). DOTAs are an extension of deterministic finite automata (DFAs) in which transitions are labeled with an action, a 
clock guard that is an interval on allowed clock values, and a Boolean that indicates whether or not the clock is reset to 
zero. In order to ensure determinism, for each state q and action a, the guards of the outgoing a-transitions of q must be 
disjoint. For the formal definition of DOTAs we refer to [3]. Here we illustrate our translation from MM1Ts to DOTAs with 
an example; for the full translation see Appendix A, where we also compare the expressiveness of MM1Ts and DOTAs. Fig. 5
shows an example of a DOTA, obtained as the translation of the alternating-bit protocol MM1T from Fig. 1.

In our translation, we split all transitions of the MM1T into an input and an output transition in the DOTA, except for 
the transitions with input timeout or output void, which are encoded by a single transition. For instance, we encode the 
transition q0 → q1 into transitions q′

0 → l0 and l0 → q′
1. The guard [0, ∞) indicates that the input transition can be taken 

at any time, and the � specifies that the clock is reset, which is needed to enforce that the output transition is taken right 
after the input transition.

Transitions of the MM1T with a void output, are translated to a single transition in the DOTA. The self loop on q1 labeled 
ack1/void, for instance, is represented by a self-loop labeled ack1 on q′

1 in the DOTA.
An MM1T transition that sets the timer corresponds to a DOTA transition that resets the clock and has appropriate clock 

guards on subsequent states where the timer is active. For instance, the transition q0 → q1 sets the timer to 3. In the DOTA, 
this is reflected by a clock reset on the transition l0 → q′

1. Next, a timeout event will occur in q1 at time 3, causing a send. 
The timeout-transition in the MM1T corresponds to a self loop on q′

1 in the DOTA with clock guard [3, 3] and action !send.

5. Case studies

Through an adapter that maintains an observation tree, we reduced learning MM1Ts to learning Mealy machines; please 
see Fig. 3 and Sect. 3.4. We implemented an adaptor that interacts with LearnLib [24] so we can benefit from all opti-
mizations already integrated into this well maintained tool for learning Mealy machines.1 In this section, we first apply our 
implementation of MM1T learners on a real-world case study. Next, we compare the performance of MM1T learners against 
algorithms introduced in [2,3] in the context of DOTA learning.

1 It is available at https://extgit .iaik.tugraz .at /scos /scos .sources /LearningMMTs.
13

https://extgit.iaik.tugraz.at/scos/scos.sources/LearningMMTs


F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
q0 q1 q2

q3

{D
ea

ut
h(

le
av

in
g)

/v
oi

d,
Pr

ob
eR

eq
/P

ro
be

Re
sp

,
A

ss
oR

eq
/D

ea
ut

h(
no

t-
au

th
)}

Auth(Open)/Auth(success)
set-timer(500ms)

{ProbeReq/ProbeResp,
Deauth(leaving)/void,

timeout/Deauth(expired)}

Auth(Open)/Auth(success)
set-timer(500ms)

AssoReq/AssoResp(success)+
EAPOL(KD=WPA2|CS=SHA1)

set-timer(2.5s)

Auth(Open)/Auth(success)
set-timer(1s)

A
ssoReq/A

ssoResp(success)+
E1(K

D
=W

PA
2|CS=SH

A
1)

set-tim
er(2.5s)

Disas(leaving)/void

Disas(leaving)/void
Auth(Open)/Auth(success)

set-timer(500ms)

{Deauth(leaving)/void, Disas(leaving)/void, ProbeReq/ProbeResp,
AssoReq/Deauth(class3-nonass)+Deauth(not-auth)}

Disas(leaving)/void

{ProbeReq/ProbeResp, Deauth(leaving)/void} timeout/Disas(inactivity)

Fig. 6. MM1T of a Huawei Mate10-lite that captures granting uncontrolled port. Double and triple edges represent a set of transitions. We rounded timer 
values to the nearest 500 ms and marked specification violations with dashed red lines.

5.1. Android authentication and key management

To show that our algorithm can learn realistic Mealy machines with timers, we used our algorithm to learn the Authen-
tication and Key Management of the WiFi implementation of a Huawei Mate10-lite running Android 8.0.0 (Kernel 4.4.23+) 
with a security patch dated July 5, 2019. The IEEE 802.11 standard gives an abstract automaton of an Authentication and 
Key Management (AKM) service in [27, p. 1643]. The automaton has a state that encapsulates a 4-way handshake mech-
anism granting access to the controlled port. Since learning the 4-way handshake mechanisms is already addressed in 
[28], we focus on learning the AKM service using the following management frames: Auth(Open), AssoReq, Deauth(leaving), 
Disas(leaving), ProbeReq, and timeout [27, p. 45–49].

5.1.1. Learning setup
We instantiated our learner with L∗

M [19] using the MM1T membership oracle. For counterexample processing we used 
Rivest & Schapire’s method [29]. We close tables using close shortest strategy. Finally, for equivalence oracle, we use Random-
Word with 1000 words of variable length in [4, 11].

Our learning experiments resulted in the MM1T shown in Fig. 6. The SUL deviates from the specified standards in the 
following ways.

Disassociation The reference prescribes that a disassociation (Disas) terminates an established association but maintains 
authentication. In the learned model (state q2), a disassociation instead drops both the established association and the 
authentication. To correct this, the access point should transit to q1 when disassociating in q2 (red transitions from q2 must 
go to q1).

Association timeout Along the red transition from q1 to q2, SUL does not include BSS Max Idle Period element in AssoResp
frames. Yet, it implements an association timeout event, which violates the specification. To confirm this, we manually 
inspected the Android 8.0.0 (r39) source code, which excludes the element mentioned above except for access points of 
Wireless Mesh Networks.

5.2. Performance comparison against DOTA learners

We apply our learning method for MM1Ts to a set of real-world benchmarks. This demonstrates the expressiveness of 
MM1Ts, and shows the practicality of our implementation.

5.2.1. Learning setup
We used the MM1T membership oracle and for counterexample processing we used Rivest & Schapire’s method [29]. We 

closed the tables using close shortest strategy. For a more thorough study, we considered two different Mealy learners and 
two different equivalence oracles. For the Mealy learners we chose L∗

M [19] and TTT [20]. Finally, for equivalence oracles, we 
used RandomWord with 1000 words of variable length in [4, 11] and Wp-Method with depth 1 [30].

5.2.2. Benchmarks
Our benchmark set consists of the AKM (Section 5.1), the TCP Connection State Diagram ([31, p. 23]), a car alarm system 

(CAS) [2], and a particle counter (PC) [2]. For the TCP benchmark, we used the one timeout on the transmission control 
block indicated in the diagram in the RFC. See Table 1 for statistics on the size of the benchmarks.
14



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
Table 1
Benchmarks in terms of state-space (|S|) and input size (|�|).

Model AKM TCP CAS PC Light Train

|S| |�| |S| |�| |S| |�| |S| |�| |S| |�| |S| |�|
MM1T 4 5 11 8 8 4 8 8 4 2 6 3
DOTA 15 12 20 13 14 10 26 14 5 5 6 6

Table 2
Total number of SUL resets; best performance per experiment.

Learner Eq. Oracle AKM TCP CAS PC Light Train

MM1T-L∗
M RandomWord 5418 403 498 377 112 38

MM1T-L∗
M Wp-Method 461 257 161 530 28 34

MM1T-TTT RandomWord 5418 580 490 325 118 41
MM1T-TTT Wp-Method 461 340 209 604 31 35
gtalearn Random Walk 3147 1866 1500 2146 1044 1287
gtalearn* Random Walk 3147 384 351 2146 32 83
otalearn* n/a 2103 2924 1448 10003 167 325
otalearn n/a ——————————————— timeout ———————————————

5.2.3. Algorithms
Tables 2 and 3 show benchmark results for MM1T and DOTA learners. Following is the list of DOTA learners with which 

we compare:

• gtalearn represents the learning algorithm by Aichernig et al. [2] with a maximum of 1000 tests while performing 
equivalence checks.

• gtalearn∗ is the previous algorithm with the following optimizations:
1. Performs minimal number of tests for equivalence checks.2

2. Remembers an optimal set of counterexamples after each generation.
• otalearn represents the learning algorithm by An et al. [3] using a normal teacher and timed out on all benchmarks.
• otalearn∗ is the previous algorithm using a “smart” teacher that provides the clock reset information.

Equivalence oracles The choice of an equivalence oracle has a direct effect on the learner’s performance. To show there is not 
much contrast between a naïve oracle and one that implements structural testing, we chose RandomWord and Wp-Method. 
Since otalearn implements its own equivalence oracle, we do not report the metrics for equivalence check. gtalearn uses a 
RandomWalk method. For a fair comparison with the RandomWord equivalence oracle used by MM1T learners, we asked the 
authors of gtalearn to configure their equivalence oracle to perform 1000 words of desired length for each hypothesis.

Maximum timer value otalearn∗ is provided with the exact clock reset values. gtalearn only requires a maximum clock 
value that is greater or equal to the SUL’s maximal clock value. Meanwhile, MM1T learners can infer the maximum timer 
value aposteriori, but we provide the MM1T learners with a maximum timer value for fair comparison against the gtalearn 
algorithms.

5.2.4. Performance metrics
Since otalearn implements its own equivalence oracle and gtalearn is not an Angluin style algorithm, we study the 

numbers of resets and inputs performed rather than the number of membership and equivalence queries. From a prac-
tical perspective, it is clear that the time required for realizing a query on the SUL grows at least linearly in its length. 
We therefore believe that the numbers of resets and inputs provide the best performance metric for comparing learning 
algorithms.

Table 2 reports the total number of SUL resets. We dedicated a row to each learning setup. The first column gives the 
learning algorithm, the second column the equivalence oracle it used, and we dedicated a column to each experiment in 
our benchmark. Note that, we ran gtalearn and MM1T experiments that use RandomWord equivalence oracle 10 times and 
report the average case instead. Table 3 has a similar layout and reports the total number of performed inputs.

Tables 4 to 9 show an in-depth performance breakdown for learning setups.3 The number of membership queries posed 
by the learner (the equivalence oracle) is reported in the Hypothesis Learning (resp. Equivalence Checking) half of the table. 
The total number of membership queries is less than the number of SUL reset for MM1T learners. This is due to maintaining 
an observation tree; see the discussion on query complexity in Sect. 1. The observation tree can act as a caching mechanism, 

2 Once learned a correct hypothesis, gtalearn∗ halts and will not pose the last equivalence query requiring 1000 tests; hence, we compare against
gtalearn.

3 These tables denote by n/a and n/r, respectively, where performance criteria do not apply to an algorithm or are not reported.
15



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
Table 3
Total number of performed inputs; best performance per experiment.

Learner Eq. Oracle AKM TCP CAS PC Light Train

MM1T-L∗
M RandomWord 30072 1874 2599 1790 529 107

MM1T-L∗
M Wp-Method 1620 1096 672 2709 85 95

MM1T-TTT RandomWord 30127 2987 2561 1538 560 129
MM1T-TTT Wp-Method 1620 1535 883 3125 96 98
gtalearn RandomWalk 94735 28382 40273 23118 19887 18808
gtalearn* RandomWalk 94735 13554 9564 23118 940 2338
otalearn* n/a 356762 86880 3791091 3540458 26545 29872
otalearn n/a ————————————————— timeout —————————————————

Table 4
Performance breakdown for the AKM experiment.

Learning Algorithm L∗
M L∗

M TTT TTT gtalearn gtalearn* otalearn

Equivalence Oracle Random Word Wp-Method Random Word Wp-Method Random Walk Random Walk n/a

Hypothesis Learning
MQs 174 174 60 66 n/r n/r 2806
− Tree Queries 53 53 15 29 n/a n/a n/a

= SUL Queries 121 121 45 37 72 72 n/a

Equivalence Checking
MQs 1000 227 1015 295 n/r n/r n/a

− Tree Queries 180 109 180 161 n/a n/a n/a

= SUL Queries 820 118 835 134 3147 3147 n/a

EQs 1 1 3 3 16 16 52
SUL Resets 5418 461 5418 461 3147 3147 2103
SUL Inputs 30072 1620 30127 1620 94735 94735 356762

Table 5
Performance breakdown for the TCP experiment.

Learning Algorithm L∗
M L∗

M TTT TTT gtalearn gtalearn* otalearn

Equivalence Oracle Random Word Wp-Method Random Word Wp-Method Random Walk Random Walk n/a

Hypothesis Learning
MQs 999 999 516 585 n/r n/r 4753
− Tree Queries 837 837 418 495 n/a n/a n/a

= SUL Queries 162 162 98 90 78 87 n/a

Equivalence Checking
MQs 1000 3361 1735 6600 n/r n/r n/r

− Tree Queries 918 3313 1578 6458 n/a n/a n/a

= SUL Queries 82 48 157 142 1857 380 n/a

EQs 1 1 8 9 20 45 24
SUL Resets 403 257 580 340 1866 384 2924
SUL Inputs 1847 1096 2987 1535 28382 13554 86880

row Tree Queries reports the number of queries cached in the tree. SUL Queries reports on the actual number of effective 
queries performed on the SUL. Membership queries are not relevant for gtalearn, we instead considered them as SUL 
Queries.

AKM has a more sophisticated timed behavior than the other benchmarks, which explains the higher number of resets 
for MM1T learners. Meanwhile, if considering number of inputs, otalearn∗ straggles by an order of magnitude. The TTT 
learner performs the best in the number of required queries to learn a correct hypothesis. The gtalearn remembers 72 out 
of 3147 SUL queries it asks; meanwhile, the gtalearn∗ could not find a better setup for this experiment.

TCP has only one timeout transition; thus, the MM1T learners do not need to reset the SUL as often. L∗
M learns the MM1T 

for TCP in one round, while TTT requires 8 rounds, which justifies the better performance of L∗
M. MM1T learners outperform 

those for DOTAs by nearly an order of magnitude when considering the number of inputs performed. (With the exception 
of gtalearn∗ .) Table 5 shows that MM1T learners hugely benefit maintaining an observation tree.

CAS and PC show a slightly more sophisticated timed behavior than TCP. For both, the MM1T learners also significantly 
outperform the DOTA learners. Once more, gtalearn∗ failed to find a more optimal setup for PC experiment. Similarly, if 
considering the inputs performed, otalearn∗ straggles by three orders of magnitude. Tables 6 and 7 show a similar pattern 
to that of TCP.

Light and Train are simpler systems with similar timed behavior. Tables 8 and 9 show that the MM1T learners again 
hugely benefit from maintaining an observation tree. In these experiments we see that both gtalearn and otalearn∗ perform 
16



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
Table 6
Performance breakdown for the CAS experiment.

Learning Algorithm L∗
M L∗

M TTT TTT gtalearn gtalearn* otalearn

Equivalence Oracle Random Word Wp-Method Random Word Wp-Method Random Walk Random Walk n/a

Hypothesis Learning
MQs 245 245 159 186 n/r n/r 2340
− Tree Queries 169 169 113 139 n/a n/a n/a

= SUL Queries 76 76 46 47 49 55 n/a

Equivalence Checking
MQs 1000 526 1012 734 n/r n/r n/a

− Tree Queries 866 489 866 655 n/a n/a n/a

= SUL Queries 134 37 146 79 1477 311 n/a

EQs 1 1 3 4 13 9 26
SUL Resets 498 161 490 209 1500 351 1448
SUL Inputs 2599 672 2561 883 40273 9564 3791091

Table 7
Performance breakdown for the PC experiment.

Learning Algorithm L∗
M L∗

M TTT TTT gtalearn gtalearn* otalearn

Equivalence Oracle Random Word Wp-Method Random Word Wp-Method Random Walk Random Walk n/a

Hypothesis Learning
MQs 890 890 323 399 n/r n/r 16973
− Tree 660 660 214 317 n/a n/a n/a

= SUL Queries 230 230 109 82 59 59 n/a

Equivalence Checking
MQs 1000 2750 1389 6219 n/r n/r n/a

− Tree 970 2579 1320 5935 n/a n/a n/a

= SUL Queries 30 171 69 284 2146 2146 n/a

EQs 1 1 5 6 16 16 36
SUL Resets 377 530 325 604 2146 2146 10003
SUL Inputs 1790 2709 1538 3125 23118 23118 3540458

Table 8
Performance breakdown for the Light experiment.

Learning Algorithm L∗
M L∗

M TTT TTT gtalearn gtalearn* otalearn

Equivalence Oracle Random Word Wp-Method Random Word Wp-Method Random Walk Random Walk n/a

Hypothesis Learning
MQs 51 51 34 37 n/r n/r 182
− Tree 35 35 25 27 n/a n/a n/a

= SUL Queries 16 16 9 10 18 9 n/a

Equivalence Checking
MQs 1000 85 1003 118 n/r n/r n/a

− Tree 961 79 960 105 n/a n/a n/a

= SUL 39 6 43 13 1039 31 n/a

EQs 1 1 3 3 5 9 8
SUL Resets 112 28 118 31 1044 32 167
SUL Inputs 529 85 560 96 19887 940 26545

considerably better than they did in previous experiments; yet, otalearn∗ is still behind by two orders of magnitude in the 
number of inputs.

Finally, in the context of learning DOTAs, the MM1T learners are faster than the DOTA learners often by orders of 
magnitude. We primarily attribute the performance of MM1T learners to the underlying observation tree and the compact 
formalism of MM1Ts compared to DOTAs. We backed this, by comparing MM1T learners with otalearn∗ . Our benchmark 
revealed the potentials of gtalearn, especially when compared to otalearn∗; since both target TAs.4

4 According to its authors, “gtalearn does not implement any caching mechanism, but its random walk equivalence can benefit from it. Optimizing the 
interaction with the SUL was not a primary objective while implementing gtalearn, therefore the learner re-executes all conformance queries on the SUL 
for each equivalence check”.
17



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
Table 9
Performance breakdown for the Train experiment.

Learning Algorithm L∗
M L∗

M TTT TTT gtalearn gtalearn* otalearn

Equivalence Oracle Random Word Wp-Method Random Word Wp-Method Random Walk Random Walk n/a

Hypothesis Learning
MQs 124 124 111 116 n/r n/r 408
− Tree Queries 95 95 92 97 n/a n/a n/a

= SUL Queries 29 29 19 19 16 7 n/a

Equivalence Checking
MQs 1000 337 1012 657 n/r n/r n/a

− Tree Queries 994 332 1002 644 n/a n/a n/a

= SUL Queries 6 5 10 13 1279 80 n/a

EQs 1 1 3 5 5 7 12
SUL Resets 38 34 40 35 1287 83 325
SUL Inputs 107 95 125 98 18808 2338 29872

6. Conclusion & future work

Timers are commonly used in software to enforce real-time behavior, and so it is natural to use them in formal models. 
We presented a framework of Mealy machines with a single timer and showed how a learning algorithm can be obtained via 
reduction to the problem of learning Mealy machines. Our approach assumes that timers are set when input events occur, 
and timeouts trigger instantaneous outputs. While these assumptions do not always hold, there are many real-time systems 
for which the delays between timer events and observable inputs and outputs are negligible, and the assumptions are 
justified. We evaluated our approach on a number of realistic applications, and showed that it outperforms the approaches 
of Aichernig [2] et al. and An et al. [3].

For our experiments we did not need to implement a timed equivalence oracle for MM1Ts, since we could use the ap-
proximation of an equivalence oracle for Mealy machines as implemented in LearnLib. It would be interesting to implement 
a timed equivalence oracle for MM1Ts directly, for instance using the timed testing tool Uppaal TRON [32], and compare its 
performance with the indirect implementation using LearnLib.

An obvious direction for future research is to extend our work to Mealy machines with multiple timers. In this setting, 
a challenge for the learner is to figure out which specific timers are started in a transition, as this information cannot be 
observed directly. We believe that a learning algorithm can be developed, but a simple reduction to Mealy machine learning 
is no longer possible.

It would be interesting to apply the genetic programming approach of [2] in a setting of Mealy machines with timers. 
Since it no longer needs to learn transition guards, one may expect that a genetic algorithm will converge faster.

Of course, as noted by [3], we may resort to gray-box techniques for model learning [33] to obtain efficient learning 
algorithms for real-time software. However, this forces us to deal with numerous programming language specific details. 
Black-box techniques can be applied without knowledge of the underlying hardware and software, which makes it important 
to push these techniques to their limits.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgment

We would like to thank Bernhard Aichernig, Andrea Pferscher and Miaomiao Zhang for their constructive comments and 
their help with running the benchmarks on their tools [2,3].

Appendix A. Translation from MM1Ts to DOTAs

Our translation only works for MM1Ts that satisfy a technical restriction (met by all benchmarks that we consider): if 
q 

i/o,⊥−−−→ q′ is a transition between two states q, q′ ∈ Q on then o = void. Thus any transition between states in which the timer 
is on either resets the timer or has no observable output. We need this restriction to exclude MM1Ts such as the one from 
Fig. A.7, for which no equivalent DOTA exists. In this MM1T an event begin is followed by an event end after exactly 3 time 
18



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
q0start q1 q2

q3 q4

begin/void
set-timer(3) i/o

timeout/end timeout/end

Fig. A.7. MM1T for which no equivalent DOTA exists.

units, and in between there may be an event i that is instantly followed by an event o. Such a behavior cannot be encoded 
in a DOTA: the only way to ensure that event i is instantly followed by event o is to reset the clock when i occurs and 
to add a guard [0, 0] on the subsequent o-transition. But then the DOTA can no longer enforce that the end event occurs 
exactly 3 time units after the begin event.

Let M = (I, O , Q , q0, δ, λ, τ ) be an MM1T that satisfies the above restriction. Then, generalizing the example of Fig. 5, 
we construct a corresponding DOTA A as follows:

1. The set 
 of actions of A consists of all inputs of M (except timeout) prefixed with ‘?’ and all outputs of M (except 
void) prefixed with ‘!’:


 = {?i | i ∈ I \ {timeout}} ∪ {!o | o ∈ O \ {void}}
2. Let T be the set of all values that can be assigned to the timer by some transition of M:

T = {n ∈N>0 | ∃q ∈ Q ∃i ∈ I : τ (q, i) = n}
DOTA A has three types of states:
(a) States from Q off .
(b) States from Q on × T (when the timer is on, we remember the latest value that has been assigned to it as part of 

the state).
(c) Intermediate states between an input and an observable output, needed as we split transitions of M into an input 

and an output part:

(Q off × (I \ {timeout})) ∪ (Q on × T × I)

3. All states of A are accepting states.

4. In the definition of the transitions of A we need to consider many cases, for any transition q 
i/o,n−−→ q′ of M, depend-

ing on whether or not q ∈ Q off , i = timeout, o = void, q′ ∈ Q off , and n =⊥. Altogether DOTA A has thirteen types of 
transitions:

(a) For each q ∈ Q off and i ∈ I \ {timeout} with λ(q, i) �= void, a transition q 
i,[0,∞),�−−−−−→ (q, i)

(b) For each q ∈ Q off and i ∈ I \ {timeout} with λ(q, i) = o �= void and δ(q, i) = q′ ∈ Q off , a transition (q, i) o,[0,0],⊥−−−−−→ q′
(c) For each q ∈ Q off and i ∈ I \ {timeout} with λ(q, i) = o �= void, δ(q, i) = q′ ∈ Q on and τ (q, i) = n, a transition 

(q, i) o,[0,0],�−−−−−→ (q′, n)

(d) For each q ∈ Q off and i ∈ I \ {timeout} with λ(q, i) = void and δ(q, i) = q′ ∈ Q off , a transition q 
i,[0,∞),⊥−−−−−→ q′

(e) For each q ∈ Q off and i ∈ I \ {timeout} with λ(q, i) = void, δ(q, i) = q′ ∈ Q on and τ (q, i) = n, a transition q 
i,[0,∞),�−−−−−→

(q′, n)

(f) For each (q, n) ∈ Q on × T and i ∈ I \ {timeout} with λ(q, i) �= void, a transition (q, n) 
i,[0,n),�−−−−−→ (q, n, i)

(g) For each (q, n) ∈ Q on × T and i ∈ I \ {timeout} with λ(q, i) = o �= void and δ(q, i) = q′ ∈ Q off , a transition 

(q, n, i) o,[0,0],⊥−−−−−→ q′
(h) For each (q, n) ∈ Q on × T and i ∈ I \ {timeout} with λ(q, i) = o �= void, δ(q, i) = q′ ∈ Q on and τ (q, i) = n′ , a transition 

(q, n, i) o,[0,0],�−−−−−→ (q′, n′)
(i) For each (q, n) ∈ Q on × T with λ(q, timeout) = o and δ(q, timeout) = q′ ∈ Q off , a transition (q, n) o,[n,n],⊥−−−−−→ q′
(j) For each (q, n) ∈ Q on × T with λ(q, timeout) = o, δ(q, timeout) = q′ ∈ Q on and τ (q, timeout) = n′ , a transition 

(q, n) o,[n,n],�−−−−−→ (q′, n′)
(k) For each (q, n) ∈ Q on × T and i ∈ I \ {timeout} with λ(q, i) = void and δ(q, i) = q′ ∈ Q off , a transition (q, n) 

i,[0,n),⊥−−−−−→ q′
(l) For each (q, n) ∈ Q on × T and i ∈ I \ {timeout} with λ(q, i) = void, δ(q, i) = q′ ∈ Q on and τ (q, i) ↑, a transition 

(q, n) 
i,[0,n),⊥−−−−−→ (q′, n)
19



F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
q0start q1 q2

q3 q4

a, [0,1), �

a, [1,2], �

b, [1,2], ⊥

c, [3,4], ⊥

Fig. A.8. DOTA for which no equivalent MM1T exists.

(m) For each (q, n) ∈ Q on × T and i ∈ I \ {timeout} with λ(q, i) = void, δ(q, i) = q′ ∈ Q on and τ (q, i) = n′ , a transition 
(q, n) 

i,[0,n),�−−−−−→ (q′, n′)

Subtle differences between MM1Ts and DOTAs make it difficult to define a translation that fully preserves the semantics. 
For instance, due to race conditions an MM1T does not always have a unique timed run for a given timed input word. In 
contrast, a DOTA is deterministic by definition in the sense that for each timed input word (called delay-timed word in [3]) 
there is a unique (timed) run. In order to rule out nondeterminism, the guards of the ack transitions of the DOTA in Fig. 5
are right-open. As a result, this DOTA does not have a run corresponding to the following timed run of the MM1T of Fig. 1:

(q0,∞)
0−→ (q0,∞)

in/send0−−−−→ (q1,3)
3−→ (q1,0)

ack0/void−−−−−→ (q1,0)

When we exclude race conditions and only consider timed runs of M in which inputs (except timeout) never occur when 
the value of the timer is 0 then, for each of these timed runs, the DOTA A has a run (in the sense of [3]) with exactly the 
same observable events and exactly the same time delays between events.

There are also DOTAs for which no equivalent MM1Ts exists. In the initial state of an MM1T there is no timer running, 
and thus we cannot prevent an MM1T from staying in its initial state indefinitely. In DOTAs, however, guards may appear 
on the outgoing transitions of the initial state, enforcing real-time behavior. Also, an MM1T cannot express that an event 
will occur in an interval [t1, t2] after arriving in a state when 0 < t1 < t2. Thus for instance, unless we consider equivalences 
that abstract from internal transitions [34], it is not possible to translate the DOTA of Fig. A.8 to an equivalent MM1T.

References

[1] F. Vaandrager, R. Bloem, M. Ebrahimi, Learning Mealy machines with one timer, in: A. Leporati, C. Martín-Vide, D. Shapira, C. Zandron (Eds.), Language 
and Automata Theory and Applications - 15th International Conference, LATA 2021, Milan, Italy, March 1-5, 2021, Proceedings, in: Lecture Notes in 
Computer Science, vol. 12638, Springer, 2021, pp. 157–170.

[2] B.K. Aichernig, A. Pferscher, M. Tappler, From passive to active: learning timed automata efficiently, in: R. Lee, S. Jha, A. Mavridou (Eds.), NFM’20, in: 
LNCS, vol. 12229, Springer, 2020, pp. 1–19.

[3] J. An, M. Chen, B. Zhan, N. Zhan, M. Zhang, Learning one-clock timed automata, in: A. Biere, D. Parker (Eds.), TACAS’20, in: LNCS, vol. 12078, Springer, 
2020, pp. 444–462.

[4] J.d. Ruiter, E. Poll, Protocol state fuzzing of TLS implementations, in: USENIX Security Symp., USENIX, 2015, pp. 193–206.
[5] P. Fiterău-Broştean, R. Janssen, F. Vaandrager, Combining model learning and model checking to analyze TCP implementations, in: S. Chaudhuri, A. 

Farzan (Eds.), Proceedings 28th International Conference on Computer Aided Verification (CAV’16), Toronto, Ontario, Canada, in: Lecture Notes in 
Computer Science, vol. 9780, Springer, 2016, pp. 454–471.

[6] P. Fiterău-Broştean, T. Lenaerts, E. Poll, J. de Ruiter, F. Vaandrager, P. Verleg, Model learning and model checking of SSH implementations, in: Proceedings 
of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software, SPIN 2017, ACM, New York, NY, USA, 2017, pp. 142–151.

[7] P. Fiterău-Broştean, F. Howar, Learning-based testing the sliding window behavior of TCP implementations, in: FMICS, in: LNCS, vol. 10471, 2017, 
pp. 185–200.

[8] P. Fiterău-Broştean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas, J. Somorovsky, Analysis of DTLS implementations using protocol state fuzzing, in: 
29th USENIX Security Symposium (USENIX Security 20), USENIX Association, 2020, pp. 2523–2540.

[9] T. Ferreira, H. Brewton, L. D’Antoni, A. Silva, Prognosis: closed-box analysis of network protocol implementations, in: F.A. Kuipers, M.C. Caesar (Eds.), 
ACM SIGCOMM 2021 Conference, Virtual Event, USA, August 23-27, 2021, ACM, 2021, pp. 762–774.

[10] F. Vaandrager, Model learning, Commun. ACM 60 (2) (2017) 86–95, https://doi .org /10 .1145 /2967606.
[11] F. Howar, B. Steffen, Active automata learning in practice, in: A. Bennaceur, R. Hähnle, K. Meinke (Eds.), Machine Learning for Dynamic Software Anal-

ysis: Potentials and Limits: International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24–27, 2016, Revised Papers, Springer International 
Publishing, 2018, pp. 123–148.

[12] R. Alur, D. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (1994) 183–235.
[13] O. Grinchtein, B. Jonsson, P. Pettersson, Inference of event-recording automata using timed decision trees, in: CONCUR, in: LNCS, vol. 4137, 2006, 

pp. 435–449.
[14] O. Grinchtein, B. Jonsson, M. Leucker, Learning of event-recording automata, Theor. Comput. Sci. 411 (47) (2010) 4029–4054.
20

http://refhub.elsevier.com/S0890-5401(23)00014-7/bibDE2E0371B0975B3E864DED83AFA1F99Es1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibDE2E0371B0975B3E864DED83AFA1F99Es1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibDE2E0371B0975B3E864DED83AFA1F99Es1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib7705E70DE6FB07B0FCCF68384AFEE3ADs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib7705E70DE6FB07B0FCCF68384AFEE3ADs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib8C9B290D3E8E78B1E12C93F1CC90BBBCs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib8C9B290D3E8E78B1E12C93F1CC90BBBCs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib328489778D8E03CFCBDFB4896B41CD74s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib095057188DD538346D36DCD7177E52A0s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib095057188DD538346D36DCD7177E52A0s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib095057188DD538346D36DCD7177E52A0s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibF3AF6DFB06B4DE260CC028F097F460E2s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibF3AF6DFB06B4DE260CC028F097F460E2s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib8941D07FDBCE0F464929CF1FBC1DF08Fs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib8941D07FDBCE0F464929CF1FBC1DF08Fs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib0709217827C846F6B66E4FD7CFD05AD0s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib0709217827C846F6B66E4FD7CFD05AD0s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibEA4705C39642DBD3F2CD7DFA089E16D1s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibEA4705C39642DBD3F2CD7DFA089E16D1s1
https://doi.org/10.1145/2967606
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib86E82D6DF39DBEE0C2BF8DEF57791CA8s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib86E82D6DF39DBEE0C2BF8DEF57791CA8s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib86E82D6DF39DBEE0C2BF8DEF57791CA8s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib750C0D90E02605DABAA6B954CDBB5A52s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib41E0F63DBF522A38DF14C6A77EFB1957s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib41E0F63DBF522A38DF14C6A77EFB1957s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibFFA94EB1D0828E06CFBAD9EC70E51AE7s1


F. Vaandrager, M. Ebrahimi and R. Bloem Information and Computation 295 (2023) 105013
[15] L. Henry, T. Jéron, N. Markey, Active learning of timed automata with unobservable resets, in: N. Bertrand, N. Jansen (Eds.), Formal Modeling and 
Analysis of Timed Systems - 18th International Conference, FORMATS 2020, Vienna, Austria, September 1-3, 2020, Proceedings, in: Lecture Notes in 
Computer Science, vol. 12288, Springer, 2020, pp. 144–160.

[16] M. Tappler, B.K. Aichernig, K.G. Larsen, F. Lorber, Time to learn - learning timed automata from tests, in: É. André, M. Stoelinga (Eds.), FORMATS’19, in: 
Lecture Notes in Computer Science, vol. 11750, Springer, 2019, pp. 216–235.

[17] J.F. Kurose, K.W. Ross, Computer Networking: a Top-Down Approach, sixth edition, Pearson, 2013.
[18] B. Caldwell, R. Cardell-Oliver, T. French, Learning time delay Mealy machines from programmable logic controllers, IEEE Trans. Autom. Sci. Eng. 13 (2) 

(2016) 1155–1164.
[19] M. Shahbaz, R. Groz, Inferring Mealy machines, in: A. Cavalcanti, D. Dams (Eds.), FM 2009: Formal Methods, Second World Congress, Eindhoven, the 

Netherlands, November 2-6, 2009, Proceedings, in: Lecture Notes in Computer Science, vol. 5850, Springer, 2009, pp. 207–222.
[20] M. Isberner, F. Howar, B. Steffen, The ttt algorithm: a redundancy-free approach to active automata learning, in: B. Bonakdarpour, S.A. Smolka (Eds.), 

Runtime Verification: 5th International Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014, Proceedings, Springer International Pub-
lishing, Cham, 2014, pp. 307–322.

[21] H. Raffelt, B. Steffen, T. Berg, LearnLib: a library for automata learning and experimentation, in: FMICS ’05: Proceedings of the 10th International 
Workshop on Formal Methods for Industrial Critical Systems, ACM Press, New York, NY, USA, 2005, pp. 62–71.

[22] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen (Ed.), 5th GI Conference, in: Lecture Notes in Computer Science, vol. 104, 
Springer-Verlag, 1981, pp. 167–183.

[23] D. Angluin, Learning regular sets from queries and counterexamples, Inf. Comput. 75 (2) (1987) 87–106.
[24] H. Raffelt, B. Steffen, T. Berg, T. Margaria, LearnLib: a framework for extrapolating behavioral models, Int. J. Softw. Tools Technol. Transf. 11 (5) (2009) 

393–407.
[25] B. Steffen, F. Howar, M. Merten, Introduction to active automata learning from a practical perspective, in: M. Bernardo, V. Issarny (Eds.), Formal Methods 

for Eternal Networked Software Systems - 11th International School on Formal Methods for the Design of Computer, Communication and Software 
Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011, Advanced Lectures, in: Lecture Notes in Computer Science, vol. 6659, Springer, 2011, pp. 256–296.

[26] F.W. Vaandrager, B. Garhewal, J. Rot, T. Wißmann, A new approach for active automata learning based on apartness, in: D. Fisman, G. Rosu (Eds.), 
Tools and Algorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint 
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I, in: Lecture Notes in Computer 
Science, vol. 13243, Springer, 2022, pp. 223–243.

[27] IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—
Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-2016 (Revision 
of IEEE Std 802.11-2012). 2016, pp. 1–3534.

[28] C.M. Stone, T. Chothia, J. de Ruiter, Extending automated protocol state learning for the 802.11 4-way handshake, in: ESORICS’18, 2018.
[29] R. Rivest, R. Schapire, Inference of finite automata using homing sequences (extended abstract), in: Proceedings of the Twenty-First Annual ACM 

Symposium on Theory of Computing, 15-17 May 1989, Seattle, Washington, USA, ACM, 1989, pp. 411–420.
[30] S. Fujiwara, G.v. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi, Test selection based on finite state models, IEEE Trans. Softw. Eng. 17 (6) (1991) 

591–603.
[31] J.E. Postel, Transmission Control Protocol, RFC 793. Sep. 1981, https://rfc -editor.org /rfc /rfc793 .txt.
[32] A. Hessel, K.G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, A. Skou, Testing real-time systems using UPPAAL, in: R.M. Hierons, J.P. Bowen, M. 

Harman (Eds.), Formal Methods and Testing, an Outcome of the FORTEST Network, Revised Selected Papers, in: Lecture Notes in Computer Science, 
vol. 4949, Springer, 2008, pp. 77–117.

[33] F. Howar, B. Jonsson, F.W. Vaandrager, Combining black-box and white-box techniques for learning register automata, in: B. Steffen, G.J. Woegin-
ger (Eds.), Computing and Software Science - State of the Art and Perspectives, in: Lecture Notes in Computer Science, vol. 10000, Springer, 2019, 
pp. 563–588.

[34] R.J. van Glabbeek, The linear time - branching time spectrum II, in: E. Best (Ed.), CONCUR ’93, 4th International Conference on Concurrency Theory, 
Hildesheim, Germany, August 23-26, 1993, Proceedings, in: Lecture Notes in Computer Science, vol. 715, Springer, 1993, pp. 66–81.
21

http://refhub.elsevier.com/S0890-5401(23)00014-7/bib8FCF5F0397B4B5A15D4FB5986F023EACs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib8FCF5F0397B4B5A15D4FB5986F023EACs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib8FCF5F0397B4B5A15D4FB5986F023EACs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib68FE5700421C07D7C0C727B0B39F46ADs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib68FE5700421C07D7C0C727B0B39F46ADs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib28A16BA58D1ABF3CE4CD3E39A7A59C95s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib17092E9349BC59C9D62ED9D7DF053407s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib17092E9349BC59C9D62ED9D7DF053407s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibDCC2D3E1DA3D017A6995BC497EAB577Fs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibDCC2D3E1DA3D017A6995BC497EAB577Fs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibB7B7F566F1D624C91DA6419D1A3FAAA8s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibB7B7F566F1D624C91DA6419D1A3FAAA8s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibB7B7F566F1D624C91DA6419D1A3FAAA8s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib8BC2034A20A183910ADF2A441654D0AFs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib8BC2034A20A183910ADF2A441654D0AFs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibFF7669992B3734B273F309A39433C3D6s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibFF7669992B3734B273F309A39433C3D6s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib378C5B733934DC74922F78427A655097s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib090BC0A7B257DDD2E2FF14324BDFBC17s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib090BC0A7B257DDD2E2FF14324BDFBC17s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib9EABF5CEFFFE6D7B112D355F81F706D5s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib9EABF5CEFFFE6D7B112D355F81F706D5s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib9EABF5CEFFFE6D7B112D355F81F706D5s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib0CF975084434EE5037BC084F0B062FA6s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib0CF975084434EE5037BC084F0B062FA6s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib0CF975084434EE5037BC084F0B062FA6s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib0CF975084434EE5037BC084F0B062FA6s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib48B17F3214470D48E5D6E4E6FF5CF714s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib48B17F3214470D48E5D6E4E6FF5CF714s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib48B17F3214470D48E5D6E4E6FF5CF714s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibD999D4A36AABD0C8FCBEACB508560690s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibC60CF15D8F87A944B26457CE9E0210BEs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibC60CF15D8F87A944B26457CE9E0210BEs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib559EC95C15043EB9CD7F74D30EB19FCFs1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib559EC95C15043EB9CD7F74D30EB19FCFs1
https://rfc-editor.org/rfc/rfc793.txt
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibDD48F2C21016915BA6C795F320A4CF83s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibDD48F2C21016915BA6C795F320A4CF83s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bibDD48F2C21016915BA6C795F320A4CF83s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib6D6C5112FFABFBBED54327080BBE3662s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib6D6C5112FFABFBBED54327080BBE3662s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib6D6C5112FFABFBBED54327080BBE3662s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib7762FF8384338ABB7210E05E1F37E4E7s1
http://refhub.elsevier.com/S0890-5401(23)00014-7/bib7762FF8384338ABB7210E05E1F37E4E7s1

	Learning Mealy machines with one timer
	1 Introduction
	2 Mealy machines with a single timer
	3 Learning MM1Ts
	3.1 A MAT framework for MM1Ts
	3.2 From MM1Ts to Mealy machines and back
	3.3 Using a Mealy machine learner to build an MM1T learner
	3.4 Implementing membership queries

	4 From MM1T to DOTA learning
	5 Case studies
	5.1 Android authentication and key management
	5.1.1 Learning setup
	Disassociation
	Association timeout


	5.2 Performance comparison against DOTA learners
	5.2.1 Learning setup
	5.2.2 Benchmarks
	5.2.3 Algorithms
	Equivalence oracles
	Maximum timer value

	5.2.4 Performance metrics


	6 Conclusion & future work
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A Translation from MM1Ts to DOTAs
	References


