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Abstract

Three-dimensional (3D) genome architecture is characterized by multi-scale patterns and plays an essential role in gene regulation.
Chromatin conformation capturing experiments have revealed many properties underlying 3D genome architecture, such as the
compartmentalization of chromatin based on transcriptional states. However, they are complex, costly and time consuming, and
therefore only a limited number of cell types have been examined using these techniques. Increasing effort is being directed towards
deriving computational methods that can predict chromatin conformation and associated structures. Here we present DNA-delay
differential analysis (DDA), a purely sequence-based method based on chaos theory to predict genome-wide A and B compartments.
We show that DNA-DDA models derived from a 20 Mb sequence are sufficient to predict genome wide compartmentalization at the
scale of 100 kb in four different cell types. Although this is a proof-of-concept study, our method shows promise in elucidating the
mechanisms responsible for genome folding as well as modeling the impact of genetic variation on 3D genome architecture and the
processes regulated thereby.
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INTRODUCTION
Three-dimensional (3D) genome architecture allows linearly dis-
tal genomic loci to interact with one another, thereby impact-
ing genome function. Chromosome conformation capturing tech-
niques, in particular high-throughput chromosome conformation
capture (Hi-C) [1, 2], have enabled us to systematically catalog
genomic interactions and features of 3D genome architecture in
various cell types.

Hi-C data are typically summarized in a contact map, a matrix
that estimates the probability of interaction between any two
loci in the genome. Such maps are characterized by a plaid
pattern reflecting enrichment or depletion of Hi-C interactions.
This was observed already by early Hi-C studies, which proposed
to segregate the loci into two sets of compartments, and arbi-
trarily termed them “A” and “B” [1]. Loci in A compartments
preferentially interact with other loci in A compartments, while
loci in B compartments tend to interact only with other loci in
B compartments. Additionally, loci in A compartments are asso-
ciated with transcriptionally active euchromatin, are gene-rich,
and are centrally located in the nucleus [3]. In contrast, loci in B
compartments are in transcriptionally inactive heterochromatin,
and tend to be gene-poor and occupy the nuclear periphery [3].
A and B compartments have been shown to be associated with
distinct histone acetylation and methylation patterns that reflect
their transcriptional activity, and more refined subcompartmen-
talizations have been suggested on the basis of the observed
chromatin states [2–5]. Compartmentalization has been found to
be evolutionary conserved across species [6–8]. Nevertheless, it
can differ substantially between cell types [3–5] and sequence

variation between individuals has also been shown to underlie
changes in 3D genome architecture, in many cases with patho-
logical consequences [9–11].

Hi-C assays have revolutionized our understanding of 3D
genome architecture, but they are expensive, time-consuming
and expertise-demanding. Therefore, Hi-C data are only available
for a limited number of human cells, and substantial effort
has been put into deriving predictive computational models.
Here we present DNA-DDA, a computational method that
is based on the principles of chaos, ergodic and embedding
theory to predict A/B compartments from the DNA sequence
alone.

Chaos is widespread in biological systems [12–14]. It mani-
fests itself as the seemingly random behavior of a deterministic
process which is hypersensitive to fluctuations in initial condi-
tions [15]. A deterministic dynamical system can be described
by its current state (i.e. the system variables’ current values)
and a system of differential equations (i.e. rules) that govern the
evolution of the system (i.e. the sequence of states it passes
through) [16, 17]. The set of all possible states, i.e. the solutions
to the system of differential equations for every possible set of
initial conditions, is known as the system’s state space [18, 19]. A
trajectory in the state space is a sequence of states resulting from
a particular set of initial conditions. For most chaotic systems,
there exists an ”attractor” [20, 21], i.e. a point or a set of points
towards which trajectories from almost any set of initial conditions
will approach, and that represents the long-term behavior—the
dynamics—of the underlying system. Two initially infinitesimally
close trajectories of such a system diverge exponentially and yet,
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bounded by their attractors, they will be similar in a topological
sense; i.e. they can be deformed into each other continuously
by stretching and folding [22]. Due to this counterintuitive prop-
erty of ”deterministic chaos,” the global structure of the state
space can be investigated temporally, e.g. by studying the rate
at which neighboring trajectories with similar initial conditions
diverge as the system evolves [23], or spatially, e.g. by deter-
mining a trajectory’s fractal dimension [24]. A bridge between
these two perspectives is ergodic theory [25–27], which studies
the statistical properties of a dynamical system. Trajectories of
an ergodic system will eventually cover the entire state space so
that under certain conditions, the time average of a function along
a trajectory is related to the space average for almost all initial
conditions [18].

The analysis of DNA sequences in the context of nonlinear
dynamics (ergodic theory [28, 29] and chaos theory [14]), infor-
mation theory [30, 31] and time series analysis (signal processing,
spectral analysis [32–34]) has a long standing history and their
concepts and ideas are interconnected [35]. These methods aim
to gain insight into the macroscopic behavior of genomic control
systems without having access to their innumerable variables and
governing equations (states and rules). Variables underlying 3D
genome architecture include, for example, the DNA sequence, his-
tone modifications [36], DNA methylation [37] or the interaction of
the DNA polymer with the surrounding environment [38]. Inspired
by many of the aforementioned concepts and ideas, we adapted a
nonlinear time series classification framework, delay differential
analysis (DDA) [39], for the prediction of A/B compartments from
the DNA sequence.

The fundament of DDA is given by Takens embedding theorem,
which states that under certain conditions, the measurement
of a single variable of a high dimensional dynamical system
providing good or global observability of the system, is sufficient
to reconstruct the system’s state space [40–42]. DDA relates
delay and derivative embeddings of a measured variable in a
(nonlinear) functional form, and uses the fitting coefficients
as classifying features. A particular flavor of DDA, dynamical
ergodicity-DDA (DE-DDA) [43] is used for assessing dynamical
similarity. We hypothesize that the DNA sequence and the
interaction frequencies between genomic loci obtained from
a Hi-C assay, are variables which are highly observable of 3D
genome architecture, and that sequences in close proximity in 3D
space will share certain dynamical properties. In accordance with
the ergodic hypothesis [25], we compare the ensemble and time
averages of dynamical information inherent in the numerical
representation of the DNA sequences as described by DE-DDA,
to infer their proximity in 3D space and, in turn, to predict A/B
compartments.

A Hi-C map can be understood as a 2D projection of the n-
dimensional state space of the system, i.e. a recurrence plot [44]. A
recurrence plot is a method from nonlinear data analysis obtained
by recording the instances t, when a trajectory visits the imme-
diate proximity of a state it has visited in the past. Analogously,
a Hi-C map visualizes how often the genomic locus at position
t is involved in interactions with a subsequent locus in the DNA
sequence (i.e. how often it is revisited). The patterns which arise in
Hi-C maps are a hallmark for an underlying chaotic process, and
DNA-DDA sifts out its dynamical signatures by mapping the DNA
sequence onto an embedding space. DDA has been applied most
extensively in epilepsy research [45–47] and our study confirms
its potential to be extended to the field of genomics.

METHODS
Pre-processing of Hi-C data sequencing data
Raw FASTQ files from Hi-C experiments involving four cell lines
were downloaded from the Gene Expression Omnibus database
(Table 1; [2, 48, 51]) and mapped to the human reference genome
(GRCh38/hg38) using bowtie 2 (v.2.4.1; [53]) with options –

reorder and –very-sensitive-local. The deepest sequenced
data set which we considered was the “primary” GM12878 Hi-C
data set comprising 3.6 billion sequence reads followed by the the
K526 Hi-C data set with a library of 1.4 billion sequence reads.
The older hESC and IMR90 data sets comprised 0.3 and 0.4 billion
reads respectively.

Hi-C contact maps
The contact map of each autosome was generated from the
mapped reads using the HiCExplorer pipeline (v.3.7.2; [54–56]).
“hicBuildMatrix” was called with parameters “–binSize
5000 –minMappingQuality 10 –restrictionSequence RS

–danglingSequence DS,” where DS and RS are the restriction
and dangling sequences listed in Table 1. The resulting Hi-
C matrix was balanced with the algorithm introduced by
Knight and Ruiz [57] using “hicCorrectMatrix correct”;
the “–filterThreshold” parameter was chosen based on the
histogram produced by “hicCorrectMatrix diagnostic_plot”
(Supplementary Table S1). From this matrix, a contact map at the
resolution of 100 kb was derived using “hicMergeMatrixBins”
with parameter “–numBins 20.”

For comparability, the contact map obtained in this manner
was scaled to the 0 to 1 range with “hicNormalize –normalize

norm_range”. An entry in the resulting matrix H = (hi,j) represents
the contact frequency between genomic bins i and j. Bins enclos-
ing contromere locations (obtained from the UCSC table browser
[50]) as well as low coverage bins (below 10% of overall contact
probability) were excluded from analyses (Supplementary Tables
S5 -S8 ).

DNA-DDA
Delay differential analysis in general
Let x(t) be a dynamical sequence of length L where t represents
increments in time or space. A nonlinear DDA model has the
following general functional form ([43] and citations therein):

ẋ =
K∑

k=1

ak

N∏
n=1

xmn,k
τn + ρ (1)

where ẋ = ẋ(t) is the derivative of the original time (or space)
series x = x(t) and x(t − τ) is the value of the series shifted by
τ steps ()xτn = x(t − τn). The model parameters are: K, the number
of monomials; N, the number of delay embeddings xτn contained
in each monomial; mn,k ∈ N0, the order of nonlinearity of the nth
delay embedding in the kth monomial. Finally a1, a2, a3 are the
fitting coefficients, and ρ is the least-square error of the model:

ρ =

√√√√√ 1
L

L∑
l=1

(
ẋ(tl) −

K∑
k=1

ak

N∏
n=1

x(tl)
mn,k
τn

)2

(2)

A full list of all possible three term DDA models up to cubic
nonlinearity and two delay pairs (K ∈ {1, 2, 3}, m ∈ {1, 2, 3}, n ∈
{1, 2}) can be found in Supplementary Table S4.
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Table 1. DNA-DDA structure selection and testing data sets

Cell type Hi-C data ChIP-seq RS DS

GM12878 GSE63525 (primary) [2], [48] GSE29611; GSM733772 [49] GATC GATC
K562 GSE63525 [2], [48] GSE31755; GSM788085 [50] GATC GATC
hESC GSE35156 [51] GSE29611; GSM733687 [49] AAGCTT GATC
IMR90 GSE35156 [51] GSE103589; GSM2775001 [52] AAGCTT GATC

ChIP-seq: of histone mark H3K4me1 (GM12878, K562, IMR90) or H4K20me1 (hESC); RS: restriction sequence; DS: dangling sequence.

For a dynamical sequence x(t), Equation 1 can be written as the
over-determined system of equations

�̇x = M�α (3)

where each element in �̇x is the center derivative at each time/
space point (ẋ(t), ẋ(t + 1), . . . , ẋ(t + L)), M a matrix where each
column represents a monomial (delay embedding xmn,k

τn ) at a cer-
tain time/space point (row), and �α = (a1, . . . , aK) are the fitting
coefficients of the model which are estimated for the input data
using singular value decomposition (SVD), and together with the
least square error (Equation 2) make up the classifying feature set
F = (�α, ρ). Furthermore, Equation 1 can be solved for I dynamical
input sequences �x(t) = (x1(t), x2(t), . . . , xI(t)) either individually
(single trial (ST) DDA) or simultaneously (cross trial (CT) DDA)
(Figure 1) by extending the over-determined system of equations
of Equation 3 to

⎛
⎜⎜⎜⎜⎝

�̇x1

�̇x2

...
�̇xI

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

M1

M2

...
MI

⎞
⎟⎟⎟⎟⎠ �α. (4)

ST and CT DDA features have recently been combined by
Lainscsek et. al [43] in a way which allows testing for dynamical
similarity between two dynamical input sequences xi(t) and xj(t).
Here the mean of the ST error is representative of the temporal
average, and the CT error is representative of the ensemble aver-
age. In accordance with the ergodic hypothesis [25], if xi(t) and

xj(t) are dynamically similar, the mean of the ST errors
(
ρsi , ρsj

)
=

ρsi
+ρsj

2 and the CT error
(
ρci,j

)
will also be similar and therefore,

their quotient close to one. DE-DDA Ei,j is defined as

Ei,j =

∣∣∣∣∣∣∣
(
ρsi , ρsj

)
(
ρci,j

) − 1

∣∣∣∣∣∣∣ . (5)

The smaller is Ei,j, the more similar are the dynamics of the two
signals under investigation, i and j.

DDA for genomic sequence data
Numeric representation of DNA sequences

For DNA-DDA, t corresponds to the genomic position of a
nucleotide and L is the resolution or number of nucleotides in
each bin. We modeled the DNA sequence as a 1D random walk
(DNA walk). Specifically, for every genomic bin, the walker starts
at x(t = 1) = 0 and progresses along the DNA sequence taking a
step upwards (x(t + 1) = x(t) + 1) if the nucleotide at position t + 1
is C or G and down (x(t + 1) = x(t) − 1) if the nucleotide at position
t+1 is A or T [58]. The DNA walk of five exemplary nonempty bins
covering the genomic region chr1:800001-1300001 is depicted in
Supplementary Figure S1. A time delay in a DNA-DDA model is

a shift in genomic coordinates. A delay embedding of the DNA
sequence relates the value of the DNA walk at the genomic
coordinate t to its ”previous” value at x(t − τ). We are trying
to gain access to (1) the interaction frequency of two genomic
loci by considering only (2) the DNA nucleotide sequence within
these loci. We achieve this by exploiting the concept of embedding
theory, which suggests that certain variables of nonlinear systems
are coupled and entail information about one another.

DE-DDA classifying feature set computation

The sequence of the GRCh38/hg38 assembly of the human
genome was partitioned into 100 kb non-overlapping bins, and
the sequence of each bin was represented as a 1D DNA walk. For
a pair of bins i, j, we computed the ST- and CT-errors ρsi , ρsj and
ρci,j using a C implementation of DDA provided by the author [43].
This executable takes as input a time series and parameters listed
in Supplementary Table S2 and outputs ST- and CT- classifying
feature set (a1,a2,a3,ρ). We combined the errors ρsi , ρsj and ρci,j into
Ei,j (Equation 5), which we propose as an estimation of the contact
probability between the two pairs of genomic bins. We repeated
this process for all bin pairs to obtain the DNA-DDA contact map
D = (di,j) of a given chromosome.

Matrix post-processing

We hypothesize that bins with higher contact probability will
have similar certain dynamical properties. Thus, we inverted D so
that the highest values are mapped to the lowest and vice versa.
The logarithm of each non-zero value in D was taken. The matri-
ces were saved in the file format of HOMER [59] and then converted
to h5 with HiCExplorer’s “hicConvertFormat” function. The
resulting matrices were normalized to the 0 to 1 range with “hic-
Normalize –normalize norm_range”. Bins that were excluded
in the Hi-C contact maps H were also excluded in the DNA-DDA
contact
maps D.

Compartment calling
To call compartments, we first derived the Pearson correlation
matrix CH = (cHi,j ) from the normalized Hi-C matrix H as described
by Lieberman, and then applied principal component analysis
(PCA) to CH using MATLAB�’s “pca” function. For each principal
component (PC), values larger than three scaled median abso-
lute deviations (MAD) from the median were considered extreme
outliers and replaced with nearest value that was not an out-
lier using MATLAB�’s “filloutliers(PC,’nearest’)” function.
The PCs were then normalized to zero mean and unit variance.
Lastly, values greater than 0 were assigned to the A compartment
and scaled to [0, 0.5]; values below 0 were assigned to the B
compartment and scaled to [0.5, 1]. We used ChIP-seq data for
H3K4me1 or H4K20me1, two epigenetic modifications associated
with open chromatin [60], to determine which PC defines com-
partments (Table 1). More specifically, among the first four PCs,
we selected the one with the largest absolute Pearson correlation
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Figure 1. Steps taken to derive the entries of a DNA-DDA contact matrix D. (A) The DNA sequences of two exemplary bins i and j located on one
chromosome are represented as DNA walks xi(t) and xj(t). Each walk starts at x(t = 1) = 0 and takes a step up (+1) if the nucleotide at position t + 1 is C
or G and down (-1) if the nucleotide at position t+1 is A or T. (B) The DNA-DDA model and visualization of one DNA walk x(t) and its respective derivative
ẋ(t) and delay embeddings x(t − τ1) and x(t − τ2). The yellow window indicates the data points used in estimation of the DDA features (a1, a2, a3, ρ). (C)
Overdetermined system of equations for ST and CT DDA. The coefficients (a1, a2, a3) are determined by singular value decomposition (SVD) separately
for bin i and j in ST DDA and in a single step in CT DDA. Least square errors are computed for ST DDA (ρsi , ρsj ) and CT DDA (ρci,j ). (D) The ST DDA least
square errors (ρsi , ρsj ) and CT DDA least square error (ρci,j ) are combined to dynamical ergodicity E [43]. Note this figure is a detailed description of how
the DNA-DDA matrix is determined in the workflow of DNA-DDA (see Supplementary Figure S3).

coefficient with the ChIP-seq profile to be representative of A/B
compartments (Supplementary Table S9). ChIP-seq profiles were
generated from the corresponding bed files; an empty vector of
the same length as the PC was generated and +1 was added
to each bin for each called peak falling into the bin’s respective
genomic region. If the Pearson correlation coefficient was nega-
tive, the PC was multiplied by −1. In two exceptional instances
(chr1 for Hi-C contact maps of GM12878 and IMR90), a different
PC with approximately the same Pearson correlation coefficient
was deemed more likely to be associated with the compartments
upon inspection, and used instead. From here on, we refer to the
PC obtained from CH as PCHi-C.

Computationally derived DNA-DDA matrices D were processed
in the same manner with one exception, their corresponding PC’s
were smoothed with a sliding window of 5 using MATLAB�’s
“movmean()” function before computing the Pearson correlation
coefficients with the ChIP-seq profiles. We further refer to the
resulting DNA-DDA Pearson correlation matrices as CD = (cDi,j )

and to the corresponding PCs defining A/B compartments as
PCDNA-DDA.

Saddle plot analysis
We performed saddle plot analysis on the contact maps predicted
by DNA-DDA and Hi-C respectively in the K562 and IMR90 cell
lines. For each chromosome, values of PCHi-C and PCDNA-DDA were

split into 30 equisized bins (PCHi-C-S and PCDNA-DDA-S). The expected
interaction value at distance d of the balanced [57] Hi-C contact
map H was computed as the sum of its dth diagonal diagd(H),
divided by the number of elements in diagonal d, n(diagd(H)). Then
we sorted the values of the expected/observed Hi-C matrix Hoe and
the DNA-DDA matrices D according to PCHi-C-S and PCDNA-DDA-S

respectively. Finally, we quantified compartment strength from
the interaction values that were allocated to the highest 25% of
the PC values (implying AA and BB interactions) and lowest 25%
of PC values (implying AB or BA interactions) as S = AA+BB

AB+BA . Note
that all PC values were scaled to the interval [−1, 1], as often done
(e.g. in [4]), and not as explained in the Compartment calling section,
as this would have resulted in a large number of bins with no
allocated PC values.

Correlation with CG content
We compared DNA-DDA’s performance to predict compartments
with a baseline of AT/CG percentage over 100 kb windows in all
four cell types.

Structure selection and testing
A key difference to traditional machine learning-based approaches
is that DDA models are not updated iteratively (i.e. they do not
learn). Instead, an exhaustive sweep is performed over a list of
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putative models to search for those best suited to discriminate
the dynamics of interest; this step is called structure selection.

The functional form of a DDA model is dictated by the overall
system and obtained data type. The data type most extensively
studied using DDA is EEG, for which a particular functional form
has been established [45–47, 61, 62]. Typically, most terms in
Equation 1 are set to zero to reduce the chances of overfitting (e.g.
K ∈ {1, 2, 3}, m ∈ {1, 2, 3} n ∈ {1, 2}). This work is a proof of concept
to explore the feasibility of applying DDA to genomics data. Thus,
we decided to use a simple, symmetric model with only quadratic
degree of nonlinearity (DDA model number 2 in Supplementary
Table S4):

ẋ = a1xτ1 + a2xτ2 + a3xτ1 xτ2 + ρ (6)

Symmetric models require half the computational effort of
non-symmetric ones to compute the classifying feature set
{a1, a2, a3, ρ} for a range of delays between r1 and r2; τ1, τ2 ∈ (r1, r2)

(ri ∈ [1 : 50] in this study).
Next, we searched for the delay pair τ1, τ2 that best captured

A/B compartments in each of the four cell types. Specifically,
this was done using a 20 Mb region on chr22 (chr22:16200000-
36200001, Supplementary Figure S2). The chromosome was cho-
sen arbitrarily and the region thereon corresponded to the one
with the lowest compartment agreement between the four cell
types considered in this study. The performance of each delay
pair was measured as the Pearson correlation coefficient between
PCHi-C and PCDNA-DDA in this region.

The four obtained DNA-DDA models were tested on all 100 kb
genomic loci of all human autosomes with various performance
measures (Pearson correlation coefficient rPC between PCHi-C and
PCDNA-DDA, area under the receiver operating characteristic (ROC)
curve AUC, accuracy ACC and F1-score F1 for classifying A/B com-
partments). We would like to emphasize that once we determined
the DNA-DDA model for each cell type (Supplementary Table S3),
all subsequent analyses and results were performed on never
before seen data (with the small exception of chr22:16200000-
36200001).

Comparison to other methods
We compared DNA-DDA to three other methods that can pre-
dict A/B compartments from sequence-based features or the
sequence directly (Table 2). The “Sequence-based Annotator of
chromosomal compartments by Stacked Artificial Neural Net-
works” (SACSANN [8]) predicts A/B compartments based on fea-
tures derived from GC content, transposable elements (TE), and
putative transcription factor binding sites (TFBS). It identifies
the 100 most important species/cell-type specific features with
a random forest predictor and then trains two stacked artificial
neural networks (ANN) to classify 100 kb-long genomic bins into
either the A or the B compartment.

The “A/B Compartment Network” (ABCNet [63]) is a deep con-
volutional artificial neural network (CNN) that takes a one-hot
encoding of the sequence within 100 kb-long bins and extracts
features by passing them through two-layer convolutional ker-
nels, an average pooling layer, and a fully connected dense layer to
output a single value representing the predicted PC value of each
bin, classifying it either as an A or B compartment.

Finally, “Orca” [64] is a multiscale prediction model composed
of two CNNs, a hierarchial multi-resolution sequence encoder
and a cascading series of sequence decoders. The encoder takes
up to 256 Mb one-hot-encoded sequence as input, and gener-
ates a series of decreasing resolution sequence representations, Ta

b
le

2.
C

om
p

ar
is

on
of

D
N

A
-D

D
A

m
od

el
s

to
ot

h
er

m
et

h
od

s

N
am

e
M

et
h

od
In

p
u

t
Ta

rg
et

Tr
ai

n
in

g/
st

ru
ct

u
re

se
le

ct
io

n
d

at
a

va
li

d
at

io
n

d
at

a
te

st
d

at
a

n
r.

of
d

at
a-

se
ts

(m
od

el
s)

SA
C

SA
N

N
R

an
d

om
fo

re
st

,A
N

N
N

u
m

b
er

of
T

Es
,T

FB
Ss

,G
C

co
n

te
n

t
C

om
p

ar
tm

en
ts

21
ch

ro
m

os
om

es
†

21
ch

ro
m

os
om

es
†

1
ch

ro
m

os
om

e
8

A
B

C
N

et
C

N
N

Se
q

u
en

ce
C

om
p

ar
tm

en
ts

90
%

of
21

ch
ro

m
os

om
es

10
%

of
21

ch
ro

m
os

om
es

1
ch

ro
m

os
om

e
28

O
rc

a
C

N
N

Se
q

u
en

ce
G

en
om

e-
w

id
e

co
n

ta
ct

s,
co

m
p

ar
tm

en
ts

ch
r1

-7
ch

r1
1-

22
ch

r8
ch

r9
-1

0
3

D
N

A
-D

D
A

D
D

A
Se

q
u

en
ce

G
en

om
e-

w
id

e
co

n
ta

ct
s,

co
m

p
ar

tm
en

ts
20

M
b

on
ch

r2
2

20
M

b
on

ch
r2

2
ch

r1
-2

2
4

A
N

N
:a

rt
if

ic
ia

ln
eu

ra
ln

et
w

or
k;

C
N

N
:c

on
vo

lu
ti

on
al

n
eu

ra
ln

et
w

or
k;

N
r.

of
d

at
a

se
ts

:n
u

m
be

r
of

H
i-

C
d

at
a

se
ts

u
se

d
to

ge
n

er
at

e
m

od
el

s.
†
:T

ra
in

in
g/

va
li

d
at

io
n

sp
li

t
n

ot
st

at
ed

.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/4/bbad198/7188041 by TU

 G
raz user on 01 D

ecem
ber 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad198#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad198#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad198#supplementary-data


6 | Lainscsek et al.

centered around the input, with a convolutional architecture. The
decoders then each predict interactions of up to 256 Mb at 1024
kb resolution at the top level and interactions within 1 Mb at 4 kb
resolution at the bottom level.

Both SACSANN and ABCNet model architecture were applied
to numerous data sets (Table 2) in terms of feature selection,
training/testing procedures. Resulting models were evaluated
using a chromosome-wise leave-one-out cross validation. We
compared the performance of DNA-DDA on the hESC data
set (GSE35156) to that reported by SACSANN’s and ABCNet’s
authors on the same data set. In addition, we compared the
overall performance of the methods, i.e. the average AUC or ACC
across various data sets and models. In the case of SACSANN, we
considered all examined data sets (“Summary (ROC AUC score)
SACSANN” in supplemental_file_S3.xls at https://github.com/
BlanchetteLab/SACSANN/tree/master/supplemental_files/, last
accessed in July 2022). For ABCNet, we restricted the comparison
to the ACC reported for human data sets (i.e., average μ across all
“secondary” data sets in Table III in Kirchof [63].

Orca was trained on two of the highest resolution micro-C
(an improvement of Hi-C) data sets available for the H1 human
embryonic stem cell line (H1-ESC) and Human foreskin fibroblast
cell line (HFF) [65]. We compared to Orca models which predict
interactions at the closest resolution that DNA-DDA currently
operates on (128 kb and 100 kb respectively). To increase com-
parability, we considered an Orca model trained on the same
cell line (H1-ESC 4DNES21D8SP8); it takes 32 Mb as input and
predicts 128 kb interactions within this region. Therefore, we split
one of the Orca hold-out chromosomes, chr9, into three 32 Mb
regions (Supplementary Table S11), derived a Pearson correlation
matrix from the predicted Orca contact maps, performed a PCA in
MATLAB� and computed the Pearson correlation coefficient rPC

of the resulting PCs to those identified by the HiC-data for hESC
GSE35156 at 128 kb.

RESULTS
DNA-DDA is a statistical approach derived from DDA, a method
based on nonlinear dynamics and traditionally used for time
series data, which predicts A/B compartments from the reference
sequence (Figure 1). DDA models relate the numerical derivatives
of the input data to their time-delayed versions in a nonlinear
functional form, of which the fitting coefficients and model error
{a1, a2, a3, ρ} are used to access information about the underlying
dynamical system. With simplicity and efficiency in mind, we
chose the functional form given in Equation 6. In principle the
analysis can be summarized in three steps: (1) segment the refer-
ence sequence into 100 kb long bins and represent the sequence
in each bin as a 1D DNA walk, (2) determine the best suited
model parameters (delay pair τ1, τ2) in each cell type by supervised
structure selection with Hi-C derived compartment labels and
(3) apply the model to the rest of the genome to predict A/B
compartments.

Structure selection
To find the delay pairs τ1, τ2 in Equation 6 that best capture A/B
compartments in each cell type, we tested model performances
for all possible combinations of values for τ1, τ2 on a 20 Mb-long
region of chr22 (Methods). Briefly, we partitioned this region into
200 100 kb-long bins, estimated the contact probability between
each pair of bins i and j as Ei,j (Equation 5), built a DNA-DDA
contact map D, and applied PCA to the respective DNA-DDA
Pearson correlation matrix CD to call A/B compartments. For

each cell type, we then chose the delay pair that resulted in
the highest absolute Pearson correlation coefficient rPC between
PCDNA-DDA and PCHi-C (Supplementary Figure S4). This resulted in
four different delay pairs, one for each cell type (Supplementary
Table S3). Pearson correlation coefficients between PCDNA-DDA and
PCHi-C ranged between 0.21 (hESC) and 0.49 (GM12878) and AUCs
ranged between 0.61 (hESC) and 0.77 (GM12878).

Testing
The DNA-DDA Pearson correlation matrices CD exhibited strik-
ingly similar global patterns to the experimentally obtained Hi-
C Pearson correlation matrices CH (Figure 2 and Supplementary
Figures S9 to S11). In general, supervised methods are limited by
the uncertainty of the labels derived from the experimental data.
It is known that identifying A and B compartments by PCA of
the Pearson correlation matrix derived from the contact map is
suboptimal and misses many features, especially at higher reso-
lutions. This is particularly apparent in the IMR90 data set (Sup-
plementary Figure S7) or particular chromosomes (e.g., chr22).
Nevertheless, DNA-DDA achieves exceptional performances on
never before seen genome, with AUC = 0.81, ACC = 0.74, F1 =
0.72, rPC = 0.54 over all chromosomes and cell lines (Table 3),
especially considering the mere 20 Mb region that was used to
determine the model/delay pair combination. The model/delay
pair combination achieves the highest performance in the K562
cell line (AUC = 0.84, ACC = 0.76, F1 = 0.75 and rPC = 0.60),
and the lowest performance in the IMR90 cell line (AUC = 0.75,
ACC = 0.70, F1 = 0.67 and rPC = 0.45).

Saddle plot analysis
Saddle plot analysis revealed that DNA-DDA derived matrices had
overall stronger saddle strengths strengths S than those derived
from the expected/observed Hi-C matrix Hoe (Supplementary Fig-
ure S15). The mean saddle strength across all chromosomes for
each cell line was SDDA = 6.28 and SHiC = 2.27 for K652, SDDA = 4.69
and SHiC = 1.95 for IMR90 and SDDA = 5.91 and SHiC = 1.53 for hESC.
However, this analysis should be interpreted with caution as the
Hi-C and DNA-DDA contact maps are of very different origins.

Correlation with CG content
CG content is known to correlate with the compartment signal.
Nonetheless, DNA-DDA predicted compartments better for 100 kb
windows than the corresponding percentage of AT/CG content in
each window. The mean Pearson correlation coefficients across all
chromosomes was between 0.45 and 0.60 as opposed to the means
between 0.45 and 0.56 observed for the GC-content-based predic-
tion. Specifically, when examining individual chromosomes, DNA-
DDA performed significantly better for GM12878, K562 and hESC
(p < 0.05; Wilcoxon signed-rank test) and exhibited no difference
for IMR90, the cell line for which DNA-DDA performed the worst
overall. These results suggest that DNA-DDA and GC content are
complementary methods.

Comparison to other methods
We compared DNA-DDA to SACSANN [8], ABCNet [63] and Orca
[64]. To our knowledge, these are the only methods that are
directly comparable to DNA-DDA, as they rely only on the DNA
sequence or sequence-based features to predict A/B compart-
ments. DNA-DDA competes well with other methods predictive
of A/B compartments when assessed on the same Hi-C data
set (hESC GSE35156) as well as overall (Table 4). Indeed, all four
methods showed similar scores measured by AUC, ACC or rPC.
Note the vast difference in the size of the “training“ (pendant to
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Table 3. Performance of DNA-DDA

chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 μ σ 2

GM12878
rPC 0.68 0.52 0.72 0.63 0.53 0.69 0.45 0.54 0.62 0.41 0.70 0.61 0.60 0.69 0.42 0.66 0.52 0.65 0.64 0.66 0.58 0.49 0.59 0.01
AUC 0.88 0.81 0.91 0.85 0.82 0.90 0.79 0.80 0.82 0.76 0.86 0.87 0.84 0.87 0.76 0.85 0.76 0.88 0.83 0.85 0.86 0.76 0.83 0.00
ACC 0.79 0.73 0.82 0.79 0.73 0.81 0.69 0.75 0.77 0.68 0.82 0.75 0.77 0.81 0.67 0.80 0.73 0.79 0.80 0.80 0.73 0.70 0.76 0.00
F1 0.76 0.70 0.79 0.75 0.69 0.80 0.64 0.70 0.78 0.64 0.82 0.73 0.74 0.82 0.66 0.79 0.77 0.77 0.83 0.80 0.72 0.75 0.75 0.00
K562
rPC 0.66 0.67 0.69 0.53 0.45 0.74 0.60 0.67 0.52 0.58 0.56 0.69 0.74 0.72 0.47 0.59 0.38 0.75 0.54 0.76 0.66 0.32 0.60 0.02
AUC 0.89 0.89 0.90 0.82 0.74 0.91 0.86 0.87 0.74 0.85 0.86 0.89 0.90 0.92 0.79 0.85 0.72 0.93 0.80 0.92 0.86 0.66 0.84 0.01
ACC 0.79 0.79 0.80 0.75 0.65 0.83 0.77 0.80 0.68 0.74 0.75 0.80 0.84 0.80 0.68 0.76 0.65 0.83 0.74 0.85 0.79 0.59 0.76 0.00
F1 0.75 0.77 0.77 0.70 0.65 0.82 0.74 0.78 0.69 0.73 0.72 0.78 0.83 0.79 0.66 0.75 0.67 0.83 0.76 0.85 0.77 0.65 0.75 0.00
IMR90
rPC 0.63 0.39 0.53 0.50 0.42 0.22 0.30 0.29 0.49 0.32 0.56 0.24 0.68 0.56 0.31 0.62 0.36 0.51 0.44 0.60 0.55 0.30 0.45 0.02
AUC 0.86 0.75 0.78 0.81 0.76 0.64 0.67 0.67 0.78 0.72 0.80 0.64 0.86 0.83 0.67 0.85 0.70 0.77 0.73 0.81 0.80 0.69 0.75 0.00
ACC 0.78 0.66 0.75 0.73 0.69 0.60 0.65 0.64 0.70 0.65 0.74 0.61 0.80 0.74 0.63 0.77 0.66 0.72 0.70 0.76 0.74 0.64 0.70 0.00
F1 0.72 0.61 0.68 0.69 0.60 0.60 0.54 0.58 0.68 0.68 0.74 0.62 0.79 0.72 0.59 0.75 0.69 0.70 0.70 0.73 0.69 0.69 0.67 0.00
hESC
rPC 0.42 0.40 0.77 0.59 0.42 0.41 0.67 0.36 0.73 0.34 0.66 0.80 0.54 0.41 0.46 0.51 0.45 0.47 0.47 0.42 0.71 0.54 0.53 0.02
AUC 0.83 0.73 0.93 0.80 0.72 0.75 0.84 0.66 0.92 0.64 0.85 0.95 0.82 0.77 0.79 0.79 0.75 0.76 0.78 0.76 0.92 0.84 0.80 0.01
ACC 0.71 0.68 0.85 0.74 0.68 0.69 0.81 0.64 0.84 0.61 0.79 0.88 0.76 0.68 0.68 0.72 0.68 0.71 0.71 0.68 0.82 0.72 0.73 0.01
F1 0.74 0.66 0.82 0.73 0.63 0.65 0.77 0.60 0.81 0.60 0.76 0.85 0.74 0.64 0.64 0.69 0.66 0.71 0.75 0.68 0.80 0.72 0.71 0.01

μ: mean performance measure over all autosomes; σ 2: variance of performance measure over all autosomes.

Table 4. Comparison of DNA-DDA performance to other methods

Performance measure hESC (GSE35156) μ1

SACSANN AUC 0.81 0.83
DNA-DDA AUC 0.82 0.81
ABCNet ACC 0.75 0.80
DNA-DDA ACC 0.75 0.76

Performance measure hESC (GSE35156) regions 1–3 μ2

Orca rPC 0.86, 0.87, 0.90 0.89
DNA-DDA rPC 0.76, 0.71, 0.74 0.74

hESC (GSE35156): average performance across all chromosomes on the hESC GSE35156 Hi-C data set. μ1: average performance across multiple human Hi-C
data sets (see Methods and Supplementary Table S10). hESC (GSE35156) regions 1–3: Pearson correlation rPC of predicted PCs of DNA-DDA and Orca contact
maps at 100 kb and 128 kb respectively with three 32 Mb regions on chr9 in hESC. μ2: mean prediction performance across the three 32 Mb regions.

structure selection in DNA-DDA) and test data sets between the
methods in Table 2. Furthermore it should be noted that although
the Orca model we compared to was trained on the same cell line,
a far more deeply sequenced HiC library was used in the train-
ing/validation procedure (0.3 billion vs 5.6 billion (4DNES21D8SP8)
total reads).

DISCUSSION AND CONCLUSION
DNA-DDA is a nonlinear dynamics method for predicting A/B
compartments based on the DNA sequence alone. We derived
DNA-DDA models for four human cell types using only a 20
Mb-long region on chr22 and corresponding compartment labels
defined by Hi-C data. DNA-DDA achieved mean AUCs across
all held-out chromosomes between 0.75 and 0.84. The achieved
performances on never-before-seen testing data demonstrate the
potential of DDA, a method which has been shown to accurately
classify time series data, in the field of genomics.

Many computational methods for predicting genome architec-
ture have been developed in recent years [66], but only a few are
able to predict A/B compartments from the sequence alone. ABC-
Net [63] and SACSANN [8] are both convolutional neural network
(CNN) based models that can predict A/B compartments. While
ABCNet relies only on the sequence, SACSANN [8] uses counts
of sequence-derived features (e.g. TEs, TFBSs). Both achieve AUC

scores close to 80%, but while ABCNet does not require any previ-
ous knowledge about the genome of interest, SACSANN derives its
input features from annotation data sets that are not available for
every species. The currently most comprehensive sequence-based
approach for modeling 3D genome architecture is Orca [64]. Orca
is also the first sequence based model able to predict truly long-
range interactions (> 1 Mb). Orca models have been trained on
two of the highest resolution microC data sets to date, and predict
interactions simultaneously at different resolutions. The models’
ability to capture sequence dependencies of 3D genome architec-
ture has been experimentally validated. DNA-DDA competes well
with these state-of-the-art methods which use a larger portion of
the genome for training and/or input features other than solely
the sequence (Table 4).

This study is a proof of concept meant to illustrate the poten-
tial in applying DDA-based approaches in the field of structural
genomics. We want to emphasize that the DNA-DDA models pre-
sented here highly unlikely represent an optimum. Many aspects
of our analysis could be evaluated and modified, including the
use of a different numerical DNA sequence representation, other
functional forms for the DDA models, and alternative targets to
assess model performance.

We encoded the DNA sequence as a 1D DNA walk [58, 67], which
is a common representation for analysis of DNA sequences in time
series frameworks and has been the basis for numerous studies
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Figure 2. DNA-DDA predicts A/B compartments from the DNA sequence
alone. (A) Hi-C (CH) and (B) DNA-DDA (CD) Pearson correlation matrices of
the K562 cell line for an example hold out chr18 exhibit strikingly similar
patterns. The color scale of the DNA-DDA Pearson matrix goes from its
mean minus its variance (CDμ−CDσ2 ) to its maximum. (C) Resulting PCHi-C
(black) and PCDNA-DDA (magenta) used to define A/B compartments are in
very strong correlation to one another (rPC = 0.73).

that applied spectral analysis and signal processing methods such
as discrete or Ramanujan fourier transform and, wavelet or fractal
analysis for revealing high-level periodicities and patterns with
biological significance [33, 34, 68, 69].

In the 1D DNA walk using the hydrogen bond energy (SW) rule [58,
70], the walker starts at zero and continues along the linear chain
of nucleotides taking a step up for strongly bonded pairs (C or G)
and down for weakly bonded pairs (A or T). Thus, DNA-DDA mod-
els capture dynamical properties based mainly on GC-content. Of
course, more complex representations of the DNA sequence have
been proposed as well, some of which take all four nucleotides
into account (overview and comparison in [68, 71, 72]). We initially
considered the alternative and equally simple 1D mapping integer
representation (T = 0, C = 1, A = 2, G = 3). However this method
implies biologically irrelevant properties on the bases such that
purines are weighted more than pyrimidines ((A, G) > (C, T)). In

future work, we plan to resort to DNA representations that include
information of all nucleotides and do not have such a bias such
as the 2D DNA walk [73]. Naturally, the ergodicity measure has to
be substantially modified to achieve this.

The functional form of the DNA-DDA model was chosen based
only on simplicity and computational efficiency. Previous work
has shown that the overall functional form of a DDA model tends
to be specific to the data type used to measure the system of
interest (e.g. EEG, ECG, DNA sequence), while the delay pairs are
sensitive to the question we ask about the system [62]. A large-
scale exhaustive sweep of model-delay-pair combinations such as
described in Lainscsek et al. [45] could be implemented to optimize
model-delay pair combinations.

To predict A/B compartments, DNA-DDA first constructs a
(DNA-DDA) contact matrix. This matrix is then post-processed
(e.g. filtering, logarithmic transformation, etc.) before being sub-
jected to PCA, as proposed by Lieberman et al [1]. Although com-
partments are routinely identified using PCA, the binary classifi-
cation into A and B compartments is most likely an oversimplifi-
cation of 3D genome architecture [5]. In fact, Rao et al [2] showed
that genomes segregate into at least six subcompartments, each
exhibiting a distinctive pattern of genomic and epigenetic fea-
tures. Furthermore, we chose the PC to be most representative
of compartments based on its correlation with a histone mark
associated with open chromatin in the respective cell type and
genomic region of interest, as suggested by [4]. However, the
chosen PC is clearly dependent on the region being considered
and often, two or more PCs will often exhibit very similar cor-
relation coefficients to the ChIP-seq signal. Naturally, this is not
a limitation exclusive to DNA-DDA, but rather, of all methods
calling compartments based on PCA. A large improvement in the
structure selection step would be to select delay-pairs based on
an alternative mutli-variate compartment classification method
or the similarity of the DNA-DDA and Hi-C contact matrices
directly. Since all relevant 3D structures could be extracted from
interaction matrices (at various resolutions), we strongly believe
that choosing the delay-pairs with a better suited target label will
substantially boost cell-type specificity.

It is important to remember that a Hi-C contact map rep-
resents the average 3D genome architecture of a cell popula-
tion – a multitude of systems (different cell types) at various
initial conditions. DNA-DDA models were trained using a small
portion of the reference genome under the assumption that the
sequence-based mechanisms contributing to chromatin folding
are location-independent and cell-type invariant. Recent studies
comparing bulk RNA-Seq and single-cell RNA-Seq transcriptomic
profiles have demonstrated the existence of distinct expression
clusters corresponding to cell types sharing similar functions [74].
Thus, despite the hypersensitivity of chaotic systems to initial
conditions, the state spaces of two cells of the same type can be
assumed to be more similar than those of two different types, in
the topological sense. Since in the present study the target labels
were compartment calls derived from bulk Hi-C data, DNA-DDA is
also expected to predict the compartments that reflect the most
common 3D chromatin structures in a hypothetical cell pool.

DDA models are sparse and comprise a small number of fea-
tures (typically 1-4), making them robust to overfitting and well
generalizable to new data [39]. Large models such as deep learning
networks run the risk of capturing irrelevant patterns or ”noise”
in the data. In contrast, small and simple models typically fail
to capture dominant signatures in the data. Since DDA does not
look for the most predictive, but rather the most discriminative
model, most terms in Equation 1 are set to zero. This is the power
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Figure 3. Comparison of DNA-DDA and Orca for the hESC cell line. (A) hESC Hi-C contact map of chr9 at 100 kb resolution and three highlighted regions
(1, 2 and 3), which were used for comparison. The PC with the highest correlation to the H3K4me1 is PC2. (B) PCA on the entire Hi-C contact map in (A).
(C) Orca and DNA-DDA Pearson correlation matrices for regions 1, 2 and 3. The regions were slightly increased to accommodate the Orca model, which
predicts contacts at 128 kb resolution. (D) PCA analysis on regions 1, 2 and 3 individually for 128 kb resolution (left) and 100 kb resolution (right) for
Hi-C data (black), Orca (orange) and DNA-DDA (magenta). In all cases and for all regions, the PC with the highest correlation to H3K4me1 was PC1. The
correlation coefficients for different PCs (here, PC1 and PC2) are often very similar.

of DDA, it does not aim to model but rather capture dominant
dynamical signatures in the data and 3-term DDA models have
been proven sufficient for classifying complex biological data sets
(eg. [45, 62, 75]). Still, one caveat of DNA-DDA concerns feature
interpretability. Although models with fewer parameters are often
more interpretable than the immense feature spaces that are
typical of deep learning, this is not the case with DDA due to its
foundation and motivation in embedding theory [40]. DDA has be
related to spectral analysis: The estimated coefficients and delays
of linear DDA models relate to the frequencies of a signal, and
the estimated coefficients of nonlinear DDA models are connected
to higher-order statistical moments [39]. In general, the delays of
nonlinear DDA models are characterized by complex phase and
frequency couplings which are not attributable to one particular
system property. Nevertheless, due to the extremely low compu-
tational load of DNA-DDA, sequence-based mechanisms and the
impact of genetic variants, such mutations in known or putative
binding sites for regulatory proteins or genomic rearrangements,
could easily be tested.

The power of methods like DNA-DDA and Orca lies in their
intermediate step of predicting the contact matrix before calling
A/B compartments, since all relevant 3D structures could be
extracted from them in the same manner as Hi-C maps. Although
Orca currently predicts contact maps for higher resolutions, DNA-
DDA shows promising results whilst tackling the problem from a
different angle and requiring far less ”training data.” We chose a
relatively low resolution (100 kb) for this proof-of-concept study
to (1) efficiently test the many possible parameters and aspects

of our approach; and (2) allow for a better comparison with
SACSANN and ABCNet, which both operate at 100 kb, and together
with Orca are the only other purely sequence based methods
to predict compartments of which we are aware. We acknowl-
edge that our current DNA-DDA contact maps capture global
large-scale patterns rather than subtle cell-type specific changes.
Nevertheless, we believe that the use of a different numerical
DNA sequence representation and/or other DDA model forms,
and alternative targets to assess model performance will greatly
improve cell-type specificity and result in more diverse DNA-DDA
contact maps (Figure 4). Moreover, our results show that DDA
models can be derived from a small amount of supervised data,
which would enable the prediction of genome-wide interactions
in other cell types from a very limited amount of chromosome
conformation capturing data (e.g. generated with 5C). With some
optimization, we are convinced that the method might be able
to do this as well as deep learning algorithms, but using just
a miniscule fraction of the volume of data required by such
approaches.

The DNA sequence plays a fundamental role in the formation
and maintenance of 3D genome architecture, which in turn is a
central orchestrator of the gene regulatory network. It is indis-
putable that the sequence contains key underlying features con-
tributing to genome folding, however, to what extent it alone can
be used to gain access to all 3D interactions and relevant struc-
tures remains an open question. Our findings strongly support the
hypothesis that the DNA sequence represents a highly observ-
able variable of chromatin architecture and that chromosomal
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Figure 4. Comparison of DNA-DDA models in for four cell types. Principal components PCDNA-DDA(magenta) and PCHi-C (black) are shown for chr10 of
each cell line (K562, GM12878, IMR90, hESC). The overall Pearson correlation coefficient between the PCHi-Cs across all cell lines is rHiC = 0.24 where
GM12878 and K562 are the most similar (rGK

HiC = 0.69), and K562 and hESC are the most different (rKh
HiC = −0.19). The overall Pearson correlation coefficient

between the PCDNA-DDAs across all cell lines is rDDA = 0.81 where GM12878 and hESC are the most similar (rGh
DDA = 0.99), and IMR90 and GM12878 are

the most different (rIG
DDA = 0.62).
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compartments can be predicted solely from the DNA sequence.
This opens up a variety of possibilities such as discovering novel
sequence signatures imperative to structural genome function
and how disruption of 3D genome architecture relates to human
disease.

Key Points

• Substantial information about 3D genome architecture
can be uncovered from from solely the DNA sequence.

• DNA-DDA models derived from a fraction of the typical
amount of required target labels, already show high
predictive power in classifying A/B compartments.

• Delay differential analysis, a technique with founda-
tions in chaos theory, is suited for analyzing genomic
sequence data in the context of structural genomics.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjournals.
org/.
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