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Despite the existence of computationally efficient tools, the effort for parametric
investigations is currently high in industry. In this paper, within the context of Li-
Ion batteries, an efficient meta-modelling approach based on the Proper
Generalized Decomposition (PGD) is considered. From a suitable design of
experiments, a parametric model is trained and then exploited to predict, in
real time, the system response to a specific parameter combination. In
particular, two different methods are considered, the sparse PGD (sPGD) and
the anchored-ANOVA based one (ANOVA-PGD). As a use case for themethod the
dynamic indentation test of a commercial lithium-ion pouch cell with a cylindrical
impactor is selected. The cell model considers a homogenised macroscopic
structure suitably calibrated for explicit finite element simulations. Four
parameters concerning the impactor are varied, both non-geometric (mass
and initial velocity) and geometric (diameter and orientation). The study
focuses on multi-dimensional outputs, such as curves and contour plots.
Inspired by earlier studies, the sPGD is used to predict the force-displacement
curves. As a further development, the impactor kinetic energy curve and the
displacement contours are both predicted using its recently developed variant
ANOVA-PGD. Moreover, a novel curve alignment technique based on the Gappy
Proper Orthogonal Decomposition (Gappy-POD) is suggested here. The meta-
model is compared to the results of an FE simulation and the resulting deviations
are then discussed.
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1 Motivation

Electric vehicles involved in crashes can pose hazards to all persons involved in the
accident. The installed energy storage devices (mostly lithium-ion cells) mainly cause these.
The hazards can be electrical, thermal and chemical in character (Geisbauer et al., 2021). The
so-called thermal runaway can be caused by mechanical, thermal or electrical abuse (Essl
et al., 2020). Both, experiments (Cannarella et al., 2014) and simulations (Wierzbicki and
Sahraei, 2013) are used to assess the mechanical behaviour of these cells and their
components.
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In addition to considerations of purely mechanical behaviour,
there are also mutiphysical models that depict the coupled influence
of mechanical and thermal loading (Li et al., 2020; Yue et al., 2022)
or mechanical and electrochemical behaviour (Zhou et al., 2013;
Zhou, 2015).

There are different approaches for modelling the mechanical
behaviour of lithium-ion cells, which can be roughly divided into
three categories. Macroscopic models neglect the heterogeneous
layer structure consisting of anodes, cathodes and separators.
Here, the cell is modelled as a homogeneous structure. This is
usually done for efficiency reasons. However, a large number of cell
experiments are required for characterisation. (Sahraei et al., 2012a;
Raffler et al., 2017; Beaumont et al., 2021).

In so-called RVE models, a unit cell of the cell structure is
modelled heterogeneously in detail. The entire mechanical
behaviour is determined with the help of homogenisation
theories. The results are then used to calibrate the material
models of homogeneous battery models. Thus, only a few cell
tests are required for the characterisation of these models, as
mainly component properties are used via the unit cell (Sahraei
et al., 2016; AriefBudiman et al., 2022).

Only with detailed models, the behaviour of the individual
components (anodes, cathodes and separators) can also be
analysed. In these approaches, the structure of the cell is
modelled heterogeneously. However, the representation of the
individual component layers increases not only the level of detail
but also the computational effort. This can be justified by the large
number of small elements used for the discretisation (Breitfuss et al.,
2013; Gilaki and Avdeev, 2016; Wang et al., 2019).

There is also no standardised procedure for the experiments. In
the case of cell tests alone, there are a large number of experimental
set-ups in the literature. These usually differ in the dominant load
type that is attempted to be applied, such as in-plane compression,
bending or penetration (Liu et al., 2020).

These mechanical loads are applied at different rates to
determine the quasi-static (Sahraei et al., 2012b) and dynamic
behaviour (Xu et al., 2015; Kisters et al., 2022) of the cell.
Indentation tests differ w.r.t. shape and size of the impactor.
Dixon et al. investigated, among other parameters, the influence
of size in hemispherical impactors with a diameter-range of
12.6–44 mm (Dixon et al., 2018). Raffler et al. used a cylindrical
impactor with a diameter of 30 mm with full overlap to investigate
the effect of loading speed and impactor orientation on mechanical
behaviour and intrusion to internal short circuit (Raffler et al., 2022).

Many other factors influence the behaviour of lithium-ion cells
under mechanical load: strength, ductility and anisotropy of the
individual plies, interlaminar friction, liquid electrolyte content, to
name but a few. On the other hand, many cell-models require
calibration, e.g., the models described by Schaufelberger et al. where
interlaminar shear stiffness (Schaufelberger et al., 2021) is iteratively
approximated. To analyse the influence of the individual parameters
and their combination, a numerical parametric study can be carried.
A certain number of simulations covering the parameter space is
performed. The Design of Experiments (DoE) defines the parameter
combinations. Such results can be combined with Machine Learning
techniques to build a parametric model.

Comprehensive DoEs with conventional FEM, require huge
computational efforts, even when using efficient macroscopic

models. This is exactly the problem the authors tried to solve. In
this work, a way to generate a parametric model with a limited
number of training simulations is proposed. This model is able to
reproduce the result of a certain parameter combination in real time.
This concerns not only the contour plot but also the time history
curves that are used for the evaluation of the simulation result.

First, the structure of the lithium-ion cell used in this work is
discussed. A macroscopic cell model of this cell was created for
explicit finite element simulations. The main focus was on the
representation of the transverse compression behaviour under
quasi-static and dynamic loads. The simulation of a dynamic
indentation test with a cylindrical impactor was chosen as an
application for the creation of a meta-model.

Since this is a model for assessing the mechanical behaviour of
the lithium ion cell, the force-displacement curve was predicted.
This was chosen because it is an essential quantity for the evaluation
of experiments (Zhu et al., 2016; Ratner et al., 2020) as well as for the
calibration (Beaumont et al., 2021) and validation (Sahraei et al.,
2016; Kermani et al., 2021) of mechanical models. Since it is a
dynamic load case, the kinetic energy over time is also predicted.
Assuming constant mass over time, this quantity is representative of
the degree of dynamic loading equivalent to the loading velocity,
which also has a significant influence on the behaviour of the cell
(Kisters et al., 2017; Kisters et al., 2022). The deformation pattern is
also used to evaluate the dynamic behaviour, so this is also predicted
in the form of the contour plot (Qin et al., 2023).

Afterwards the Proper Generalized Decomposition (PGD)
methods, which are used in this work, are described. Within the
context of parametric models, many works see the application of the
sPGD method. Literature on sPGD methods mostly concerns scalar
quantities and contours, but recent works have shown its
effectiveness also for curves metamodeling (Champaney et al.,
2022a), in particular when combined with curves dilatation and
alignment techniques. For the prediction of force-displacement
curves, benefitting from these past studies outcomes, we also
employ the sPGD. However, to go a step further, the prediction
of both the impactor kinetic energy curve and the contours are

FIGURE 1
Cell under study.
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performed using its newly proposed variant ANOVA-PGD (el
FallakiIdrissi et al., 2022). Subsequently, the varied parameters,
the resulting design of experiments and the data preparation are
presented.

2 Methods

2.1 Cell under study

In this work, a macroscopic model of a commercial lithium-ion
cell in pouch format is used. The cell weighs around 0.9 kg and has
dimensions of 260 × 216 × 7.8 mm (Figure 1); Kovachev et al. (2019)
carried out a detailed analysis of the cell. The structure essentially
consists of a stack of 42 separators, 21 cathodes and 22 anodes,
which is enclosed, in the pouch. The anodes are copper foils coated
on both sides with graphite. The core of the cathodes is made of
aluminium and the active material on both sides is LiNiMnCoO2

(NMC). The porous separators, positioned between the electrodes,
consist mainly of polypropylene. Due to the porous structure, the
separator is permeated with the electrolyte, which enables the flow of
ions. The pouch, the anode, the cathode and the separator have a
thickness of 190 μm, 140 μm, 170 µm and 20 μm, respectively.

This cell was modelled in the software LS-DYNA version 9.3.1.
The basic concept is shown in Figure 2A. It is based on the model
described by Raffler et al. (2017) where beam elements also play a
central role (Raffler et al., 2017). However, instead of a cylindrical
cell, a cell in pouch format is modelled here. The basic concept can
be divided into four essential components, which are highlighted in
Figure 2A. The model was calibrated to fit the experimental data
described by Raffler et al. (2022); Schmid et al. (2022). The
macroscopic model is shown in Figure 2B.

The outer layers ① represent the pouch shell. This is modelled
by shell elements. An isotropic elastic-plastic material model
(*MAT_PLASTICITY_COMPRESSION_TENSION) is used for
this. The required parameters can be determined by tensile tests
of samples of the pouch. As with the other components, samples of
15 × 5 mm are tested at 20 and 600 mm/min. The samples are taken
in different directions to assess the anisotropy in addition to the
strain-rate influence. All samples were saturated with substitute
electrolyte to test them as realistic as possible. For statistical
validation, each test configuration was repeated 5 times. In order

to increase flexibility during calibration, a non-symmetrical material
behaviour is used (different tensile and compressive behaviour).
Thus, for example, the buckling of the shell under compressive load
can also be represented in a simple way. The parameters for the
compression behaviour are calibrated by a quasi-static three-point
bending test of the cell (Figure 3A). The velocity of the impactor is
1 mm/s, as in all quasi-static cell tests.

The quasi-static behaviour in thickness direction is reflected by
beam elements ②. To avoid decreasing time step (explicit
simulation) upon transverse compression, a discrete element
formulation is used. The required load curves for the non-linear
behaviour are calibrated by a quasi-static indentation test with
cylindrical impactor (Figure 3B).

The middle layer, employing shell elements,③ replicates the in-
plane behaviour of the jelly stack. The same isotropic elastic-plastic
material model was used for this as for the outer layers. For the
parameterisation of the tensile behaviour, the results of the tensile
tests of the individual components are used. According to Eq. 1, the
total stress σML

(ε) results from the sum of the three components
(C � 3), taking into account the cross-section of the middle layer
SML. Sc is the cross-section of the components, nc the number of
components in the jelly stack and σc(ε) the tensile behaviour of the
corresponding component.

σML
ε( ) S

ML � ∑C
c�1
Scncσ

ε( )
c (1)

The last characteristic component of this modelling approach are
the solid elements ④, which are used to replicate strain-rate
dependency and incompressibility of the electrolyte. Cells show a
considerable strain-rate dependency, both w.r.t. Initial stiffness and
displacement to failure, particularly upon out-of-plane compression
(Tancogne-Dejean et al., 2022). The solid elements provide the
dynamic over-stress, i.e., the difference between the dynamic and
quasi-static behaviour. For this purpose, a strain-rate dependent
honeycomb material model (*MAT_MODIFIED_HONEYCOMB)
is used. The same test configuration as shown in Figure 3B is used
for the calibration. However, the impactor velocity is 3 m/s, which is
significantly higher than the quasi-static level (1 mm/s). (Remark:
Clearly, this could have been modelled through rate-dependent
dampening of the beam elements, too. However, it turned out, that
the stable time-step chosen by the solver drops massively once
dampening is enabled in the non-linear 6 DoF beam material model).

FIGURE 2
(A) Basic concept of the cell model and its essential components:①Outer shell layers② Beam elements③Middle shell layer④ Volume elements
(B) Macroscopic cell model in cylindrical indentation test configuration.
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To summarize, the macroscopic model is calibrated through
tensile tests of the four components anode, cathode, separator and
pouch. In addition, the data from two quasi-static and one dynamic
cell tests are used to calibrate the model.

The quasi-static experiments were performed with a hydraulic
press. The system had a maximum force of 420 kN and allowed
displacements of up to 400 mm. The possible load velocities were
between 0.5 and 6 mm/s. To measure the indentation force, a load
cell type K 500 kN fromGTM in Bickenbach, Germany, was utilized.
For displacement measurement, a linear glass scale with a 1 µm
resolution and an accuracy of ± 0.01 mm/m was used. The dynamic
experiments were carried out with the sled test rig. Ellersdorfer et al.
described its construction and function in detail (Ellersdorfer et al.,
2023).

2.2 Proper Generalized Decomposition

For the prediction of the time history curves, as well as for the
contours, the Proper Generalized Decomposition–PGD–method is
used (Chinesta et al., 2013), in particular two of its non-intrusive
variants, the sparse PGD–sPGD–and the ANOVA-PGD, both
presented in (Sancarlos et al., 2021). This choice is mostly
motivated by two reasons. The first reason is the capability of
these regression tools to address the high-dimensionality (i.e., a
high number of parameters involved in the model) at the low-data
limit (i.e., a small number of data points to build the model). Indeed,

when dealing with complex models and problems, sample data
points (numerical simulations) may be expensive to gather, so that
we would like to reduce their number as much as possible. Second,
non-intrusive PGD techniques have demonstrated good efficiency in
industrial settings involving various engineering applications
(Champaney et al., 2022a; el FallakiIdrissi et al., 2022;
Champaney et al., 2022b; Chinesta et al., 2022; Champaney et al.,
2021; Pasquale et al., 2022). Such techniques are developed by ESI
Group Chair teams at ENSAM ParisTech and industrialized by the
ESI Group Research and Innovation teams (Scientific Department)
through the Hybrid-Twin AdMoRe platform, whose workflow and
roadmap can be found in (Champaney et al., 2021; Chinesta et al.,
2022).

The non-intrusive PGD techniques (Sancarlos et al., 2021;
Champaney et al., 2022a; Pasquale et al., 2022) are nonlinear
regression methods inspired by the separation of variables, which
is at the heart of the PGD (Chinesta et al., 2013). This means that a
generic function of space x, time t and Np parameters μ is
approximated as a sum of M products of functions depending
only on space X, time T and parameters M, respectively (Eq. 2).

u x, t, μ1, μ2, μ3, . . . , μNp
( ) ≈ ∑M

i�1
Ti t( )Xi x( ) ∏Q�Np

j�1
Mj

i μj( ) (2)

Even though in this work we are interested in the prediction of
curves and contours (vector-valued functions), for the sake of
simplicity, we will present the algorithm in the simplest form of

FIGURE 3
Types of cell tests used for calibration: (A) Three-point bending test (B) Cylindrical indentation test.
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a scalar quantity prediction. The reader will find all the
generalizations concerning vector-valued quantities in
(Champaney et al., 2022a).

Moreover, it shall be noticed that in this work we aim at building
a parametric model, which also involves geometric parameters, such
as the diameter of the impactor and its orientation. This feature is
handled directly by AdMoRe platform. To be able to interpolate the
snapshots, all the contours are mapped onto a common reference
mesh where the regression is performed (usually the one
corresponding to the last run of the DoE). This mapping is
executed as a data pre-processing prior to the execution of all the
Model Order Reduction algorithms.

2.2.1 sPGD
Here we just give a quick overview of the methodology when

building a model for a scalar output quantity and refer to
(Champaney et al., 2022a) for generalizations to vector-valued
ones, as well as to the integration within a PODI (Proper
Orthogonal Decomposition with Interpolation) based Model
Reduction framework.

If d denotes the number of parameters s (features), we are
interested to find an approximation of the function in Eq. 3.

f s1, . . . , sd( ): Ω ⊂ Rd → R (3)

Following the standard PGD rationale, we seek a low rank
separated approximation of it. This means that the function f is
approximated by a reduced one ~f

M
, which reads as in Eq. 4.

f s1, . . . , sd( ) ≈ ~f
M

s1, . . . , sd( ) � ∑M
m�1

∏d
k�1

ψk
m sk( ) (4)

Where M is the rank of the approximation (also known as
number of modes) and ψk

m(sk) are univariate functions of the
parameters.

Denoting with ns the number of samples (i.e., the number of data
points) where the output is known (from experiments or numerical
simulations), then the sought function is obtained from the standard
minimization in Eq. 5.

~f
M � argmin

f*
∑ns
i�1

f �s( ) − f* �s( )���� ����22 (5)

Such problem is solved by sequential enrichment of modes, up
to a given stagnation of the solution. This means that at the
enrichment step M, the previous M − 1 modes are known and
we are looking for the ψk

M(sk), as in Eq. 6.

~f
M � ∑M−1

m�1
∏d
k�1

ψk
m sk( ) +∏d

k�1
ψk
M sk( ) (6)

A suitable approximation basis (such as the polynomial one) is
chosen to express the univariate functions ψk

m(sk), through some
weights (coefficients) as in Eq. 7.

ψk
m sk( ) � ∑D

j�1
Ψk

j,m sk( )akj,m � �Ψk

m( )T

�akm (7)

Where D denotes the number of discretization points along the
direction sk used for the approximation, ( �Ψk

m)T is the vector

containing the evaluations of the shape functions and �akm the
associated coefficients.

These unknown coefficients are found by solving the
minimization problem iteratively by means of the Alternating
Direction Strategy (ADS), which conducts to the solution of
small algebraic systems in each direction sk (Kisters et al., 2017).

An important point regarding the method is the collection of
data points. The algorithm is called sparse PGD because it fits the
data from a sparse sampling. In general, the Design of Experiments
for the sPGD is built from a Latin Hypercube Sampling.

The implementation of the sPGD is performed in Python 3.8.

2.2.2 ANOVA PGD
The ANOVA-PGD algorithm (el FallakiIdrissi et al., 2022;

Sancarlos et al., 2021) is inspired by the ANOVA-based variance
decomposition widely used in statistics. The high-dimensional
function of the parameters is decomposed in the interaction of
many (univariate and multivariate) functions as shown in Eq. 8.
Where the functions of the last sum satisfy Eq. 9.

f �s( ) � f0 +∑d
i�1
fi si( ) +∑d

i�1
∑d
j�i
fi,j si, sj( ) + . . .

+ f1,2,...,d s1, s2, . . . , sd( ) (8)
Ei fi1 ,...,ik si1 , . . . , sik( )( ) � 0 (9)

Here Ei is the expectation (as in probability) with respect to any
coordinate i, in the set (i1, . . . ik), 1≤ k≤ d, which guarantees the
orthogonality of functions involved in the decomposition. Denoting
with E(f( �s|si)) the integral with respect to all the variables except si,
the functions involved in Eq. 8 can be written in terms of the
expectations as in Eq. 10

E f �s( )( ) � f0

E f �s
∣∣∣∣∣si( )( ) � fi si( ) + f0

E f �s
∣∣∣∣∣si, sj( )( ) � fi,j si, sj( ) + fj sj( ) + fi si( ) + f0

..

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(10)

Due to the computational drawbacks of computing all the
integrals involved in the ANOVA decomposition, as suggested by
the so-called anchored-ANOVA, an anchor point satisfying f( �c) �
f0 is introduced and then the expectations inside Eq. 10 are replaced
as by f( �c| �sn).

As a first step, a specific sampling (multidimensional cross
centered in �c) is established and sPGD (or another suitable
regression algorithm) is used to fit the functions fi(si).
Afterwards, the residual f′( �s), which takes the correlations into
account, is estimated. This is done by transforming Equation 8–11.
Subsequently, this is again fitted with the sPGD, for instance.

f′ �s( ) � f �s( ) − f0 −∑d
i�1
fi si( ) (11)

Also, for the ANOVA case, the generalization to vector-valued
functions is done following (Champaney et al., 2022a).

In addition, the implementation of the ANOVA-PGD is
performed in Python 3.8 and integrated in some beta versions of
AdMoRe (being one of the latest developed algorithms).
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2.3 Design of experiments

An indentation test with a cylindrical impactor, as shown in
Figure 3B, is used as an application. Here, however, a dynamic case
is examined. Four different parameters are varied. All four are
related to the impactor but can be divided into geometric and non-
geometric. The geometric parameters include the diameter and
orientation of the impactor. For orientation, the impactor is
positioned over the centre of the cell. The rotation occurs
around the w-axis. The initial position refers to the
configuration shown in Figure 3B. Because of the change in
diameter, the position in the w-direction is adjusted such that
there is always an initial distance of 0.2 mm between the cell and
the impactor. The non-geometric parameters are the initial
velocity and the mass of the impactor. The value ranges of the
individual parameters are listed in Table 1.

To generate a data basis, 100 simulations with different
parameter combinations are carried out. The corresponding
combinations were determined using Latin Hypercube
Sampling (LHS) for the first regression model based on the
sPGD. This sampling method is an alternative to the classical
random distribution (Monte Carlo Strategy). For the second
regression method (ANOVA-PGD) another enhanced LHS
sampling strategy is used. For each parameter, a nominal,
which corresponds to mean value, is used. Those nominal
values of all parameters are listed in Table 1. For the first run,
all the parameters are set to the nominal value. The following
runs are then defined by changing only one parameter while the
others remain at the nominal value, until all the line segments
around the nominal point are discretized, creating a sort of multi-
dimensional cross in the parametric domain. These runs will be
used by the model to study the effect of each parameter on the
output independently of the others. Additional runs are
generated from an LHS to allow the method to capture
interactions between the parameters.

All runs are carried out with the same simulation duration.
From all simulations, both the visual result in the form of the
contour plot and the time history curves are available. In addition
to impactor force over penetration depth, the kinetic energy of the
impactor over time is also considered. For the prediction of the
force-displacement curve the sPGD method is used. The kinetic
energy over time as well as the contour plot is predicted using
ANOVA-PGD.

Finally, the data basis is divided into training data and test data
in a ratio of 80/20. The training data is used to create the meta-
model. The quality can then be checked with the help of the test data,
as these are not used for training.

2.4 Data pre-processing

Before the data can be used for the training of the meta-model,
some physics-informed data pre-processing can help to improve
regression results and is sometimes necessary. This mainly concerns
the regression on time history curves since those data do not have
the same end-points or may exhibit clearly some localizations
(Champaney et al., 2022a). An example of the former are the
force-displacement curves, while the latter is observed in the case
of the kinetic energy curves due to the classical evolution of this
quantity (localization at shifted minimum points).

A curve alignment and dilatation strategy based on Gappy POD
is proposed for the pre-processing of the force-displacement curves,
while the kinetic energy evolution curves are aligned with respect to
the minimum point, as suggested in (Champaney et al., 2022a).
Since the maximum points of the force-displacement curves are not
uniform, these curves have different lengths. To achieve a better
prediction, all curves are extended to the range d max. This parameter
is the maximum value of all m simulations with respect to their
penetrations d (Eq. 12).

d max � max
m

dm( ) (12)

Thus, a prediction of two aspects with respect to the force-
displacement curve is required: the path of the curve and its end
point. To extend all curves, missing data points must be added.
These points should be chosen in such a way that the course fit the
overall characteristic. The Gappy POD method is used for this.

This method is based on the Proper Orthogonal Decomposition
approach. The approach assumes that a high-dimensional system
can be approximated by a linear combination of low-dimensional
basis functions (eigenmodes). This does not require a-priori
knowledge of the system itself, as it is a method of data analysis.
This is shown in Eq. 13, where f (x,t) is the collected data and ~f(x,t) its
approximation. The data was measured at N points. The
approximation is calculated as a finite sum of the temporal
coefficients αi and the spatial modes φi (x). Therefore, only those
P eigenmodes with the biggest energetic proportion are used (Liang
et al., 2002).

f x,tk( ) ≈ ~f x,tk( ) � ∑P
i�1
αki φi x( ) k ∈ 1, N[ ] (13)

There are different methods for calculating the coefficients and
modes. The snapshot method is very well known (Sirovich, 1987).
As shown in Eq. 14, the spatial modes φi (x) consist of a linear
combination of the temporal coefficients αi and the snapshots f(x,tk).

φi x( ) � ∑N
i�1
αki f x,tk( ) (14)

Thus, the temporal coefficients αi are the last remaining
unknowns. These can be calculated by solving the eigenvalue
problem shown in Eq. 15 Therein K is the correlation matrix
according to Eq. 16 and Λ is a diagonal matrix consisting of the
eigenvalues λ which are ordered in descending order of energy
content.

Kα � Λα (15)

TABLE 1 Parameters and their range of values.

Parameter Unit Min. Value Max. Value Mean Value

Diameter [mm] 20 40 30

Orientation [ ° ] 0 180 90

Initial Velocity [m/s] 0.5 3 1.75

Mass [kg] 10 120 65
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K � f fT

N
(16)

The Gappy Proper Orthogonal Decomposition (GPOD) is an
extension of the classical POD method. It is used for data
preparation. Data gaps can be filled, incorrect entries can be
replaced and data sets can be completed. Several GPOD methods
are well known in literature, such as the Everson Sirovich Method
(Everson and Sirovich, 1995), Gunes Method (Gunes et al., 2006) or
Field Smoothness Method (Raben et al., 2012). In this work, the
Gunes Method is used to bring all force-displacement curves to the
length d max.

This is an addition of missing data points, which is done
iteratively in several steps. In the first step of this method, all
missing entries are replaced by an initial guess. This is shown in
Eq. 17. If there is a valid entry (x ∈ xa) for any value tk it is taken
over. Otherwise (x ∈ xm), the mean value 〈f (x)〉 of all data records at
this value tk is taken as the initial value.

�f
n�0
x,tk( ) � f x,tk( ) x ∈ xa

〈f x( )〉 x ∈ xm
{ (17)

In the next step, a POD analysis is performed on this prepared
data set, see Eq. 18 By solving the problem as described in Eqs 14–16,
a new approximated data set �̃f

n

(x,tk) is computed.

�̃f
n

x,tk( ) � ∑P
i�1
αki φi x( ) (18)

The newly calculated values are now taken over for those places
where the data set is to be extended (x ∈ xm), see Eq. 19 This is now
the starting point for the next iteration n + 1.

�f
n

x,tk( ) �
f x,tk( ) x ∈ xa
�̃f
n

x,tk( ) x ∈ xm
{ (19)

This routine is carried out until convergence occurs. To assess
this, the parameter ε is introduced, see Eq. 20 This describes the
change between the individual iteration steps. The Frobenius norm
is used for this. The iteration is carried out until the value falls below
a limit value.

ε � (∑ �f
n

x,t( ) − �f
n−1
x,t( )|2)1/2∣∣∣∣∣∣∣ (20)

This procedure is used to bring all n force-displacement curves
to the same final length. This is necessary because they have been
capped at their respective maximum penetration point, once kinetic
energy is zero and has been fully converted to internal energy. For
the kinetic energy over time this is not needed.

3 Results

3.1 Results of calibration process

For anode, cathode and pouch, both anisotropy and strain-rate
dependency were extremely low. As a result, both effects were
neglected in the modelling for the components mentioned.
Accordingly, only the mean values of all curves are shown for
the results in Figures 4A–C.

With separators, both anisotropy and strain-rate effect cannot
be neglected. The corresponding mean value curves are shown in
Figure 4D. However, if Eq. 1 is considered and the ratio of the
component thicknesses is added, it is noticeable that the separator
has a minor influence on the behaviour of the entire jelly stack. This
justifies the assumption of an isotropic material for the middle layer.

In addition to the component data, data from cell experiments
are required for calibration. The comparison between the
experiments and the simulation of the three-point bending test is
shown in Figure 4E. The maximum impactor travel thereby is
30 mm. The resulting force is about 1.2 kN.

The comparison of experiment and simulation of the
indentation test with cylindrical impactor is shown for both the
dynamic (3 m/s) and the quasi-static (1 mm/s) case in Figure 4F.
The maximum force in the quasi-static test is around 220 kN. The
impactor penetrates the cell by about 2.4 mm. In the dynamic case, a
penetration of about 1.6 mm is already sufficient to cause the cell
to fail.

3.2 Data generation

To create the database, 100 simulations were carried out with
different parameter combinations. The results are shown in Figure 5.
The left subplot shows the contact force between impactor and cell
over the penetration depth. The maximum force reached around
340 kN. The respective parameter combination also gives the largest
penetration depth of around 2.8 mm. It can be seen that all force-
displacement curves have a similar characteristic shape. The force
increases up to the maximum and then the contact force decreases.

The right subplot of the figure shows the kinetic energy of the
impactor over time. The time range that was simulated was the same
for all 100 runs. The termination time was 5 m. However, the initial
value varies between the individual parameter combinations. It lies
in the range of 4.6 and 465 kNmm. Furthermore, it can be seen that
the assumption is confirmed that all curves with a minimum value
have the same characteristic shape. Please note that different
sampling strategies were used for the results shown in Figure 5.

In order to improve the meta-model quality, as suggested in
(Champaney et al., 2022a), a suitable data pre-processing based on
curves alignment was performed. The force-displacement curves in
Figure 5A were first clipped at the maximum point as shown in
Figure 6A. Then, within the data set, the curve showing maximum
displacement (abscissa) is taken as reference and all the others are
filled up to this displacement using the Gappy POD strategy. In such
a way, we obtain the aligned curves in Figure 6C. A value of 10−2 was
chosen as the limit value for the convergence control in Gappy POD
algorithm, see Eq. 20 In Figure 6D it is clearly visible that the
algorithm leads to convergence. To reach the limit, 609 iterations
were required.

For what concerns the kinetic energy curves in Figure 5B, the
alignment and expansion with respect to the minimum point was
performed, following the procedure explained in (Champaney et al.,
2022a). This leads to the curves of Figure 6B.

Of course, after the regression is performed on the pre-processed
data, the original curves are reconstructed through inverse mapping
(Champaney et al., 2022a).
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3.3 Data prediction

The database consists of 100 runs for both methods, sPGD and
ANOVA-PGD. Of these, 80 are used for the training phase. The

remaining 20 runs are available for validation. Here, five
comparisons between HD model and meta-model are discussed
as examples. This is the case for the prediction of the force-
displacement curve, the kinetic energy over time and the contour

FIGURE 4
Results of tensile tests of components (A)Cathode (B) Anode (C) Pouch (D) Separator—Results of quasi-static and dynamic cell tests: (E) Three-point
bending (F) Indentation test with cyl. Impactor.

FIGURE 5
Result curves of all 100 runs: (A) Force over displacement (B) Kinetic energy over time.
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plot. These combinations were picked randomly out of the
validation data of the sPGD DoE. The corresponding parameter
combinations are listed in Table 2.

3.3.1 Force over displacement (sPGD)
The force-displacement predictions are obtained coupling a

newly suggested pre-processing (Gappy-POD based) with a
consolidated regression technique (sPGD).

The corresponding force-displacement curves are shown in
Figure 7. The blue curves represent the results of the HD model
(FE simulation). The corresponding results of the meta-model are
shown in red. To evaluate the quality of the meta-model, both the
maximum deviation between the curves and the deviation with
respect to the end of the curves are considered.

The corresponding values of all five load cases are listed in
Table 3. The values for the FE model and the meta-model, as well as

the respective relative deviations are listed. The maximum intrusion
(d max/ ~dmax) and the force (Fmax/ ~Fmax) at this maximum intrusion
are compared. From the relative deviations it can be seen that the
errors of the prediction range from 0% to 7.95%. For load case IV,
the maximum intrusion depth is accurately predicted. In load case II,
the largest deviation for the prediction of the penetration occurs
with 4.76%. Load case III has the lowest deviation in terms of force
with 0.18%, while load case I has the highest deviation of all five
validation cases with 7.95%.

3.3.2 Kinetic energy over time (ANOVA-PGD)
The kinetic energy curves are pre-processed considering the

minimum point location, as suggested in (Xu et al., 2015), but the
regression is based on the recently developed ANOVA-PGD.

For the validation, the same parameter combinations as for the
force over displacement (Table 2) are used. For this purpose, the

FIGURE 6
Pre-processing of the data basis: (A) Force over displacement (B) Kinetic energy over time (C) Force over displacement with Gappy POD (D)
Convergence of Gappy POD algorithm.

TABLE 2 Parameter combinations for validation (sPGD).

Validation Case Diameter [mm] Orientation [°] Init. Vel. [m/s] Mass [kg]

I 37.9 89.1 2.7125 55.65

II 33.9 74.7 0.9625 96.35

III 32.5 96.3 2.5375 89.75

IV 28.5 150.3 1.8625 25.95

V 36.3 152.1 2.0875 102.95
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FIGURE 7
Comparison of force—displacement curves of meta-model and HD model.

TABLE 3 Comparison results Force - Displacement HD Model vs. Meta-Model (sPGD).

FE Model Meta-Model Relative Deviation

Load Case d max [mm] Fmax [kN] ~dmax [mm] ~Fmax [kN] |~dmax−d max
dmax

| · 100[%] |~Fmax−Fmax
F max

| · 100[%]

I 1.99 245.4 1.91 264.9 4.02 7.95

II 1.05 88.3 1 87.6 4.76 0.79

III 2.34 283.8 2.3 284.3 1.71 0.18

IV 1.11 91.7 1.11 91.3 0 0.44

V 2.07 256.8 2.03 255.8 1.93 0.39
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curves of the FE simulation are taken as reference and the results
with ANOVA-PGD are compared with them. The corresponding
five comparisons are shown in Figure 8.

Equivalent to the evaluation of the prediction of the force
displacement curves, the results for the kinetic energy over time are
listed in Table 4. Here, too, the results of the FE model and the
meta-model are shown with the corresponding relative deviations.
The values for t min/ ~tmin describe the point in time at which the
kinetic energy of the impactor is 0. At this point the maximum
penetration depth is reached. The values Enmax/ Ẽnmax describe
the kinetic energy of the impactor at the beginning of the
simulation. From the relative deviations it can be seen that the
errors of the prediction lie between 0% and 1.23%. The time of
maximum intrusion is accurately predicted in load case IV, while
in load case III the maximum deviation is 1.23%. The kinetic
energy at the beginning of the simulation is accurately exactly in

load case II. Load case V has the worst prediction of all five load
cases with 0.84%.

3.3.3 Contour plot (ANOVA-PGD)
The ANOVA variant of the Proper Generalised Decomposition

was also used to predict the contour plot. To validate the meta-
model, the results of selected parameter combinations were
compared with the results of the high-dimensional model. The
comparisons of these five parameter combinations, which were
also used for the validation of the result curves, are shown in
Figure 9. On the left are the results of the high-dimensional
model. The results generated with the meta-model are shown on
the right. The field variable displacement norm is illustrated here at
different times. The explanation of the colour scheme is given in
Figure 9-bottom. It can be seen that a range between 0 and 2 mm is
represented. For better representation, both the impactor and the

FIGURE 8
Comparison of kinetic energy—time curves of meta-model and HD model.

Frontiers in Materials frontiersin.org11

Schmid et al. 10.3389/fmats.2023.1245347

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org.10.3389/fmats.2023.1245347


TABLE 4 Comparison results Kinetic Energy–Time HD Model vs. Meta-Model (ANOVA-PGD).

FE Model Meta-Model Relative Deviation

Load Case t min [ms] En max [kNmm] ~tmin [ms] Ẽnmax [kNmm] |~tmin−t min
t min

| · 100[%] |Ẽnmax−En max
En max

| · 100[%]

I 1.31 204.7 1.32 204.98 0.76 0.14

II 2.36 44.63 2.35 44.63 0.42 0

III 1.62 289.82 1.60 290.16 1.23 0.12

IV 1.20 45 1.20 44.92 0 0.18

V 1.76 225.1 1.74 223.2 1.14 0.84

FIGURE 9
Comparison of contour plot: left) HD model right) meta-model.
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rigid bearing have been hidden. For the first comparison the
deformation pattern is shown for a simulation time of 1.2 ms. It
can be seen that both the position and the penetration depth are
predicted correctly. Only the width of the deformation area differs.
In the second validation case, the field variable at 2.2 ms is shown. In
this case, the orientation, contact situation and penetration depth
are accurately predicted. The third comparison shows the
displacement norm of the cell at a simulation time of 2.8 ms. In
this validation case there are slight deviations with respect to the
contact situation. This is because the maximum penetration depth is
predicted correctly, but this value varies slightly over the length of
the impactor. In the fourth case, the prediction of the displacement
field at 1.2 ms can be considered sufficiently good. Both the
orientation of the deformation and the penetration depth are well
predicted. However, deformations are predicted at a few
concentrated locations where the cell is not in contact with the
impactor. This occurs also in the last validation case. Therefore, the
deformation after 1.8 ms is shown. Themaximum penetration depth
is predicted correctly. However, the intrusion decreases towards the
edges of the cell. From the last two load cases it is obvious that
especially the rotation of the impactor can lead to problems in
predicting the deformation pattern. Here, indentations in the
longitudinal direction are displayed although this does not
correspond to the actual orientation of the impactor.

4 Conclusion

This work presented some new machine learning techniques to
accelerate the numerical simulation in the framework of battery
systems.

The meta-model was built in a non-intrusive manner using as
data the high-fidelity finite element simulations of a lithium-ion
battery. The machine learning algorithms consist of non-linear
regressions based on the Proper Generalized Decomposition
(PGD) rationale. This choice has several motivations: a) due to
its ability of dealing with high-dimensional parametric spaces and
within the low data limit, the PGD is particularly attractive for
industrial applications (Champaney et al., 2022a; el FallakiIdrissi
et al., 2022; Champaney et al., 2022b; Chinesta et al., 2022;
Champaney et al., 2021; Pasquale et al., 2022), b) recent advances
combine the PGD regression with physics-informed pre-processing
steps to predict curves as model outputs (Champaney et al., 2022a),
which perfectly meets the needs of this study (prediction of force
over displacement and of kinetic energy over time), c) the anchored-
ANOVA variant of PGD-based regressions (ANOVA-PGD) is a
really recent development and, so far, not much investigated in
industrial contexts (el FallakiIdrissi et al., 2022).

The just mentioned motivations were successfully accomplished
within the present work. Indeed, a) the paper extended the usage of the
PGD in the industrial setting of lithium-ion batteries, b) a new physics-
informed pre-processing step was here developed using the Gappy-
POD method, enriching the existing literature, c) the ANOVA-PGD
has been applied for the prediction of curves and contours, also
including geometrical parameters, being an additional point of novelty.

The kinetic-energy curves (Section 3.3.2) are instead aligned with
respect to the location of theminimumpoint, following (Xu et al., 2015),
but predicted using a novel strategy, which is the ANOVA-PGD.

Moreover, also the contours (Section 3.3.3) consider the ANOVA-
PGD, being another point of novelty with respect to previous studies.

With an error range of 0%–7.95% (force over displacement) and
0%–1.23% (kinetic energy over time), both time history variables
were well predicted.

5 Discussion

The deviations between the FE model and the meta-model are
due to the approximation of the results as described in Section 2.2.
Since the approximation is based on data generated in an offline
phase (training simulations), a further minimisation of the errors
can be achieved by adapting the DoE. Either this means the
increasing of the number of training simulations or the reduction
of parameter ranges. Both measures result in an increase in the
density of the training data and thus have a positive influence on the
quality of the prediction model.

Another possible improvement in the prediction of the contours
can be achieved using parametric optimal transport (Torregrosa
et al., 2022a; Torregrosa et al., 2022b) as an interpolation technique
to better account for localisations.

Apart from the great advantage of this method that results of
certain parameter combinations can be predicted without having to
carry out the corresponding simulation, the method presented here
also has limitations that should not go unmentioned. For example, the
possible parameters are limited to scalar values. The specification of a
velocity curve over time (vector) instead of the initial velocity is not
possible. For this, the curve would have to be approximated by an
analytical function, whose scalar parameters can, however, be used.

Another limitation is that, in this study, all the snapshots (FE
simulations) were performed over the same mesh, to avoid a
projection of the fields over a common mesh prior to interpolation.

Despite the limitations, another possible application of the
method presented here would be the calibration of cell models.
Especially in modelling approaches where several parameters have
to be determined that have an influence on several load scenarios.
Thus, an application to the parameterisation of multi-physical
models would be conceivable. This method could increase the
efficiency of these calibration processes.
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Glossary

Variables

σ Stress

ε Strain

n Number of plies

S Cross section

d Penetration

f Snapshot of data

~f Approximation of data

x Space

t Time

P Number of eigenmodes

α Temporal coefficient

φ Spatial mode

N Number of measurement points

K Correlation matrix

Λ diagonal matrix of eigenvalues

λ eigenvalue

ε Error GPOD iteration

f Multivariate function

s Parameter

Ω Parametric domain

~f Separated approximation

f* Approximation function

ψ Univariate function

ns Number of samples

D Number of discretization points

Ψ Shape functions

a Coefficients

E Expectation

F Force

~F Predicted force

~d Predicted penetration

En Kinetic energy

Ẽn Predicted kinetic energy

~t Predicted time

Superscripts

ML Middle Layer

C Component

m Number of run (GPOD), enrichment mode (sPGD)

n Number of GPOD iteration

d Maximum number of parameters (sPGD)

M PGD modes

ML Middle Layer

C Component

Subscripts

max Maximum value

min Minimal value

a Valid entry (GPOD)

m Missing entry (GPOD)

max Maximum value

min Minimal value

a Valid entry (GPOD)

m Missing entry (GPOD)
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