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Brain-computer interfaces (BCIs) have emerged as a promising technology for

enhancing communication between the human brain and external devices.

Electroencephalography (EEG) is particularly promising in this regard because it

has high temporal resolution and can be easily worn on the head in everyday

life. However, motion artifacts caused by muscle activity, fasciculation, cable

swings, or magnetic induction pose significant challenges in real-world BCI

applications. In this paper, we present a systematic review of methods for motion

artifact reduction in online BCI experiments. Using the PRISMA filter method,

we conducted a comprehensive literature search on PubMed, focusing on open

access publications from 1966 to 2022. We evaluated 2,333 publications based

on predefined filtering rules to identify existing methods and pipelines for motion

artifact reduction in EEG data. We present a lookup table of all papers that passed

the defined filters, all used methods, and pipelines and compare their overall

performance and suitability for online BCI experiments. We summarize suitable

methods, algorithms, and concepts for motion artifact reduction in online BCI

applications, highlight potential research gaps, and discuss existing community

consensus. This review aims to provide a comprehensive overview of the current

state of the field and guide researchers in selecting appropriate methods for

motion artifact reduction in online BCI experiments.

KEYWORDS

brain-computer interface (BCI), electroencephalography (EEG), artifact removal, motion

artifact, muscle artifact, fasciculation, cable swing

Introduction

Non-invasive brain-computer interface (BCI) research based on electroencephalography
(EEG) has a long scientific history (e.g., Vidal, 1973; Sherman et al., 1984; Wolpaw et al.,
2002; Neuper et al., 2006; Sejnowski et al., 2007; Käbler et al., 2014, to name a view), but only
in recent years research projects started to investigate the effects of more excessive forms of
motion artifacts in EEG, caused by simultaneous execution of disruptive motion tasks like
treadmill walking or passive induction (e.g., Scherer et al., 2014; Seeber et al., 2014; Wagner
et al., 2014; He et al., 2018; Vidaurre et al., 2021, ...).
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Brain-computer interfaces

Brain-computer interfaces enable a direct pathway for
communication between the brain and a technical device. They
allow a user to actively send commands by analyzing complex
signals from detectable human brain patterns. Invasive methods
require surgery so that electrodes can either be implanted on the
brain tissue (usually subdurally) or intracortically (highly invasive).
Invasive methods are primarily applied in the clinical domain
e.g., in patients with limited or no movement or communication
capabilities. Non-invasive BCIs measure the brain activity from
outside the head and can be worn as caps, headsets, helmets or
other wearables. Non-invasive BCIs based on EEG are expected
to make up the biggest proportion of the future market as only
EEG can be applied easily on the intact head to be used in less
static scenarios. While invasive and non-invasive BCIs are already
applied as health devices for therapy in e.g., rehabilitation centers
or as communication tools for people with e.g., spinal cord injury,
there are other application domains where its potential is not yet
fully exploited (e.g., sports with wearables, collaborative industry
with co-working robots, more dynamic rehabilitation exercise
therapies, the gaming industry and several more). One major
reason for this is a high amount of recorded background noise
(artifacts) due to other activities being executed simultaneously to
the neural command interpretation, which leads to a poor overall
signal-to-noise ratio (SNR).

Objectives and research question

In this systematic literature review we publish a comprehensive
table of devices, software tools, methods and algorithms to correct,
reduce, remove or mitigate artifacts caused by motion originating
from muscle activity, fasciculation, cable swings or other whole
body motion effects in the human EEG data. Moreover, through
paper-wise comparisons of different processing pipelines and
similarities between pipelines of different authors, we conclude
additional insights in EEG analysis. Furthermore, potential
research gaps and community consensus in all investigated
literature are presented. In order to be able to investigate
the domain in the lab, first we tried to research all relevant
existing methods and systems publicly listed on Pubmed. We
objectively compared sensor types, system setups, processing
pipelines, software toolkits, mathematical methods and algorithms
for application in a real-world scenario (noise coming from e.g.,
standing, walking, collaborative work, ...).

Other existing systematic reviews

During our search we found existing reviews with different
research questions. We excluded them from the reviewed literature
as we wanted to create a lookup table of existing methods
originating from the literature where they were originally first
introduced to the community. In demarcation to existing reviews
we present a short comparison table of all dismissed literature
reviews (Table 1).

TABLE 1 List of found and reviewed other existing systematic reviews

covering closely related topics.

Publication title Literature review goals

Upper-Body Post-activation
Performance Enhancement for Athletic
Performance: A Systematic Review with
Meta-analysis and Recommendations
for Future Research (Finlay, 2022)

Literature Research on post-activation
performance enhancement (PAPE) in
upper-body movement.

Analysis of Human Gait Using Hybrid
EEG-fNIRS-Based BCI System: A
Review (Khan, 2021)

Literature Research on commonly
used signal processing and machine
learning algorithms on human gait
analysis for hybrid BCIs.

Applications of EEG indices for the
quantification of human cognitive
performance: A systematic review and
bibliometric analysis (Ismail, 2020)

Literature Research on the
applications of EEG indices for
quantifying human performance in a
variety of cognitive tasks (macro and
micro scales).

Technological advancements and
opportunities in Neuromarketing: a
systematic review (Rawnaque, 2020)

Literature Research on technological
advancements in Neuromarketing
over previous 5 years in selected 57
papers.

The Potential of Functional
Near-Infrared Spectroscopy-Based
Neurofeedback—A Systematic Review
and Recommendations for Best Practice
(Kohl, 2020)

Literature Research on fNIRS
neurofeedback studies with a focus on
training protocols, online
signal-processing methods and
evaluation of quality and effectiveness.

Neuroimaging of Human Balance
Control: A Systematic Review
(Wittenberg, 2017)

Literature Research on neural
correlates underlying static and
dynamic human balance control, with
aims to support future mobile
neuroimaging research.

State-of-the-Art Analysis of
High-Frequency (Gamma Range)
Electroencephalography in Humans
(Nottage, 2015)

Literature Research on gamma
oscillations, focus on recent
progress made for artifacts in
power line, saccade-associated
extra-ocular muscle contraction and
blinking, activity of muscles of scalp,
face and neck and screen refresh
artifacts.

High-frequency brain activity and
muscle artifacts in MEG/EEG: a review
and recommendations
(Muthukumaraswamy, 2013)

Literature Research on the spectral,
spatial, and temporal characteristics of
muscle artifacts are compared for
high-frequency neural activity. Several
developed techniques to help suppress
muscle artifacts in MEG/EEG are
reviewed.

Mapping Hemodynamic Correlates of
Seizures Using FMRI: A Review
(Chaudhary, 2011)

Literature Research on the various
fMRI-EEG acquisition and data
analysis methods applied to map
epileptic seizure-related
hemodynamic changes.

Brain Computer Interfaces, a Review
(Nicolas-Alonso, 2012)

Literature Research on the standard
BCI: signal acquisition, preprocessing
or signal enhancement, feature
extraction, classification and control
interface.

The use of electroencephalography in
language production research: a review
(Ganushchak, 2011)

Literature Research on available
results of overt speech production
involving EEG measurements, such as
picture naming, Stroop naming, and
reading aloud.

Electromyogenic Artifacts and
Electroencephalographic Inferences
(Shackman, 2009)

Literature Research on
intra-individual GLM-based methods
to correct artifacts in EMG and EEG.
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From the table above it is possible to derive that there have
not yet been attempts to create a full comprehensive lookup table
containing all used methods that process body motion artifacts in
EEG recordings. Some of the found literature reviews had a much
more specialized focus trying to demonstrate individual methods
for a specific target domain or a more specific research problem
(Shackman, 2009;Muthukumaraswamy, 2013; Nottage, 2015; Kohl,
2020; Khan, 2021), while others had a more broad coverage of
BCIs in general (Nicolas-Alonso, 2012). Other found reviews had
muscle activation and body motion as a focus but did not attempt
to list methods for artifact suppression (Wittenberg, 2017; Finlay,
2022). Chaudhary (2011), Ganushchak (2011), Ismail (2020) and
Rawnaque (2020) had a focus on entirely different topics, but still
showed up in the literature search as they had all required keywords
we searched for.

Methods

To conduct this study we used the PRISMA method (http://
www.prisma-statement.org/) to find publications of interest in a
very large pool of search results. This means we first defined search
terms and a filtering rule set and then applied our definitions
to the found results to reduce the number of papers included in
the review.

Study design

As starting point, we selected the literature database and
defined the search terms and conditions, and finally we defined
filter criteria to select papers to be included into the review.

Search strategy

The basis for our search was the Pubmed database (https://
pubmed.ncbi.nlm.nih.gov/). Into the search we included all papers
published until May, 31st 2022 and which were publicly available.
The following search terms were defined:

• Term A) “EEG Muscle (Artifact OR Artifact)” (390
search results)

• Term B) “EEG Motion (Artifact OR Artifact)” (236
search results)

• Term C) “EEG (Artifact OR Artifact) Reduction” (309
search results)

• Term D) “EEG (Artifact OR Artifact) Removal” (918
search results)

• Term E) “EEG (Artifact OR Artifact) Rejection” (278
search results)

• Term F) “EEG (Artifact OR Artifact) Mitigation” (20
search results)

• Term G) “EEG (Artifact OR Artifact) Detection” (939
search results)

• Term H) “Cable Motion (Artifact OR Artifact)” (36
search results)

• Term I) “Cable Swing” (40 search results)

• Term J) “Electrode pops” (44 search results).

All search terms result in a total number of 3,210 publications.
We removed duplicate results by combining all search terms
with a logical OR and the final result was 2,333 publications.
Additionally, we applied the existing search filters “Abstract” and
“Free full text” of the Pubmed search interface, which left us
with 747 search results total. Yet, even of those 747 publications
there still were 40 papers non accessible for download or full
text view anyways, due to non-available external server links
or other system failures during download time. We continued
with our defined rule set with the remaining unique 707
open access publications. We will discuss this in detail in the
next sections.

Filter criteria

We manually evaluated the 707 found literature results by
applying the following filter rules:

• NO_OPEN_ACCESS: do exclude every search result where
there is no free downloadable or web viewable full text
available (“we only consider publicly available full text
publications—OPEN ACCESS”).

• IS_SYSTEMATIC_REVIEW: do exclude all other systematic
reviews (“we want to evaluate only original methods published
in the individual papers were they have been introduced to
the community”).

• NO_NI_HUMAN_EEG: do exclude all studies using animals,
studying animal brains, using invasive BCI systems, using
non-EEG based BCI systems (“research is based on non-
invasive human EEG”).

• NO_ARTIFACT_FOCUS: do exclude all studies with non-
technical focus; exclude all studies whos main result is not
interested in artifact reduction/removal (“research is primarily
interested in demonstrating technical methods to filter EEG
motion artifacts”).

• NO_MOTION_FOCUS: do exclude all the other artifact
sources like e.g., eye saccades, eye blink, heartbeat, non-
physiological sources, ... (“research focuses onmotion artifacts
originating from muscle artifacts, fasciculation, artifacts
through body motion, or cable swings”).

• NO_REAL_DATASET: do exclude all theoretical studies
without real participants data (“research needs to have
conducted online or offline studies and created data with
real participants or re-used existing data recorded from
real participants”).

• NO_SCIENCE_GRADE: do exclude all studies that did not
use science graded EEG devices (“research needs to have used
science graded EEG systems in their studies”).

These filter rules have been manually applied in the order given
above for every found search result. It should be noted that many
papers failed the above criteria for multiple rules at once. We also
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found multiple papers that would partially fulfill filter criteria e.g.,
through achieving more than one goal in the presented work. In
case of an uncertain fit we made the decision to remove the work. A
total number of 77 papers passed the presented filter rules and were
added to the final pipeline lookup table (detailed information will
follow in Result section).

Information extraction

All extracted information of all papers can be found online in
the corresponding Github repository under https://github.com/
iot-salzburg/SLR_on_motion_artifact_reduction_for_BCI. The
main file which summarizes all extracted information is called
“Systematic Literature Review on Motion Artifact Removal of
EEG Signals.xlsx”. In this paper we refer to this document as “the
lookup table”. In this section we describe the extracted information
of every paper and where to find it within the lookup table.

From each paper, we extracted the following information: (i)
the paper’s objective, (ii) the data acquisition, (iii) the number of
participants and demographics, (iv) the mental strategy utilized
(e.g., “brain-teaser tasks,” “motor imagery tasks,” “non-motor
imagery tasks,” “dynamic visualization tasks,” “attention strategy,”
“motor execution”), (v) the evaluation metrics, (vi) the software
framework for building the pipeline (“Matlab,” “Python,” or
“unknown”), (vii) code availability, (viii) the main innovation, (ix)
and findings and further work suggested. This information can be
found in the “papers_annotated” tab of the lookup table.

For every paper, the pipelines with all pipeline components
and their results were added to the final lookup table into separate
table tabs: The “pipeline” table specifies the pipelines used in each
paper, which is a combination of various methods including data
preprocessing and artifact detection algorithms, applied to the raw
data to get a cleaned EEG signal or perform a task.

The “result” table presents the comparisons of the pipelines
per paper for a specific setup, data, and evaluation metric using a
rank-based approach. With this rank-based approach we tried to
show the comparison results of the original authors themselves. The
ranking shown here, therefore is simply the ranking the original
authors assigned to their pipelines using the performance metric
of their choice (e.g., SNR, sensitivity, specificity, classification
accuracy, correlation coefficients, ERD peak scores, f-scores, visual
inspection, ...). In cases where ties occurred, ranks were assigned
evenly to maintain consistency in the result analysis. For example,
if four pipelines were compared and one was significantly the best,
two were tied for second place, and one was significantly the worst,
the ranks assigned would be “1,” “2.5,” “2.5,” and “4.” This ensured
that the median pipelines had the same distance to the best and
worst pipelines for further analysis of the results.

In the tables “devices,” “software,” “motion artifact removal
methods,” and “classification models” all unique approaches are
summarized and semantically grouped. Note that it was only
possible to add any information here, if it was clearly declared by
the paper authors within the paper itself.

In the “consensus”-table, common understanding of the
investigated papers is presented and similarities of statements made
across authors are being summarized. For the “research gap”-table

individual suggested work or potential research gaps are listed.
This involves found research gaps by paper authors, as well as
potential research gaps assumed by the authors of this systematic
literature review.

In Figure 1, an overview of a generic pipeline for motion
artifact detection, correction, reduction, or removal in EEG data
is presented:

The pipeline is designed to process raw EEG data and produce
artifact-detected, corrected, reduced, or removed EEG data as
output. The methods used within the pipeline are categorized into
six main categories: (1) filters, (2) aggregations such as epoching
and feature generation, (3) decomposition methods such as blind
source separation, (4) artifact detection without correction, (5)
artifact correction methods, and (6) classification models used for
the actual BCI task also known as downstream task. Additionally,
some pipelines contain specialized methods that are only used in
BCI experiments or they reuse previously introduced subpipelines
that don’t fit any specific category. We grouped these cases into the
category “Special algorithms”.

The order of the methods within the pipeline is specified to
allowmore detailed investigations. However, it should be noted that
the order-based approach is not always able to exactly determine
the pipeline, as some pipelines may involve parallel streams,
iterations, and recursions, and moreover might differ in their
parameters. Due to the lack of detailed information in some papers
regarding their pipeline’s architecture and implementation, a more
precise pipeline modeling on the same level of granularity was
not possible.

Comparison of pipelines

As mentioned, a pipeline is represented here by an ordered
application of filters, decomposition methods, artifact detection
algorithms, and other methods on the raw contaminated EEG
data. This method composition of a given pipeline, as well
as the setup of the experiment in each paper, may vary
strongly from other pipelines presented in the list. The presented
pipelines are evaluated and compared by three criteria, which
we defined: “online score,” “fitness score,” and “performance”.
The first two scores are assigned by the authors of this review
for every pipeline listed, while the performance score is a
ranked-based approach to quantitatively compare all implemented
pipelines used by any one reviewed paper (as most evaluated
papers either try to compare their newly introduced pipeline to
previously existing implementations or present different variants of
their pipeline).

Online-score
While some pipelines have small latency requirements in order

to be suitable for online studies and systems, others may require
data batches of several seconds which makes them unusable in
online settings. In order to quantify the suitability of a pipeline for
an online BCI application, we assigned the scores 0, 1, or 2. The
numbers are defined as follows:
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FIGURE 1

Generic pipeline with exemplary methods for each category.

0: The pipeline has been shown to be computationally
inefficient with two or more seconds of delay.

0: The setting is not transferable to an online BCI scenario.
0: The pipeline assumes preconditions that cannot be met by

online scenarios.
1: Is assigned if conditions 0 and 2 do not apply.
2: An online communication has been validated, e.g., sending a

command to a device.
2: The pipeline has been validated with a latency below 1 s in an

online setting.

The above definition was chosen because it was assumed that
at least one needed information from above can be extracted from
any given paper, nomatter the paper structure, goals and focus. The
idea was to assign as little pipelines as possible to category 1.

Fitness-score
Another important criterion, the “fitness score”, is needed to

quantify the pipelines’ fitness for being used in a BCI system.While
motion artifact correction is crucial for a BCI, some pipelines only
remove contaminated channels or time windows, resulting in data
loss or unrealistic assumptions that may not be applicable in real-
world scenarios. To quantitatively assess the suitability of a pipeline
for a BCI application in a realistic context, we assigned scores of 0,
1, or 2 to evaluate the fitness of the pipeline.

The scores are defined as follows:

0: The pipeline has not been demonstrated to work with any
real data.

0: The pipeline assumes preconditions that cannot be met by
real-world scenarios, e.g., the pipeline requires an additional
fNIRS measurement which is not ideal for building a
BCI system.

0: Channels, trials, epochs, or windows that were contaminated
with motion artifacts were removed.

0: The setting is not generalizable to the intended
target population.

0: The pipeline does not filter motion artifacts.
1: Is assigned if conditions 0 and 2 do not apply.
2: The pipeline has been validated in real-world applications.
2: The pipeline corrects motion artifacts as they occur

quantitatively and qualitatively.

The above definition was chosen because it was assumed that
at least one needed information from above can be extracted from

any given paper, nomatter the paper structure, goals and focus. The
idea was to assign as little pipelines as possible to category 1.

Mean rank-score
The third score quantifies how well a pipeline is suited to

correct motion artifacts from EEG data based on the paper’s direct
comparisons (comparison results of the original authors). As the
investigated papers are using different evaluation metrics, data
recordings, and setups, it is not possible to compare the results
from one paper with those from another directly. Results from
different pipelines can only be compared if the same metrics,
data recordings, and experiment setup are used. Moreover, many
evaluations are based on distributions across trials, iterations, or
study participants, which yields distributions for each pipeline’s
rank. In these cases, the significance of the distributions should
be compared.

To address the heterogeneity among the presented pipeline
comparisons, a rank-based approach was utilized. Pipelines with
equal evaluation metrics, data, setup, and paper origin were ranked
and normalized between 0 and 1. When comparing distributions,
ranks were assigned based on the significance of differences, with
the closest significance level to α = 0.05 chosen in case of
multiple levels. Insignificantly different pipelines were regarded as
ties and evenly broken. Subsequently, the ranks were arithmetically
averaged for each unique pipeline within each reviewed paper.
The resulting mean rank score falls within the interval of
[0.0, 1.0]. Only methods from the categories “Filter,” “Aggregation,”
“Decomposition,” “Artifact Detection,” “Artifact Correction,” and
“Special Methods” were considered to identify unique pipelines.
Fine-grained details, such as exact filter cut-off frequency, window
width, or optimization criteria for ICA, were omitted, as they were
not consistently mentioned on the same level of granularity across
all investigated papers.

Quality appraisal and risk of bias

Considering the heterogeneity of the evaluated articles, we
defined the relevant sections for applying the filter rules as:
“Abstract,” “Methods,” and “Results”. Scores were given from 0
(no fit) to 2 (strong fit). Note that we do not rank the quality
of the publication here, but the fit of the work to the defined
goal of finding methods for motion artifact reduction suitable for
online BCI experiments. Our search terms also provided us with
many mismatch results dealing either with completely unrelated
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EEG topics or with artifact removal strategies that did not focus
on motion artifacts, but other types of artifacts instead (e.g., non-
physiological sources, eye saccades, electrocardiogram, stimulation
artifacts, ...). It is important to note that through the open access
filter rule we discarded many of the older papers, in favor of newer
literature, as can be seen from the final search histogram (see
Figure 2):

This review, therefore, contains a bias toward newer
publications, which was intended by the authors.

Results

This section provides an overview of the authors, institutes,
countries, journals, programming languages, used software, open
code policies, and evaluation metrics that had the highest impact
on the research area covered by this paper. Additionally it contains
information on study design, participants, BCI paradigms, used
methods and algorithms, descriptive analysis, method impact,
electrode setups, EEG systems and ground truth sensors. The
section is grouped into the following subsections:

• Demographics metadata (authors, institutes,
countries, journals)

• Technology metadata (programming languages, software,
open code policies and evaluation metrics)

• Study selection and taxonomy (subjects/participants,
BCI paradigms)

• Methods for motion artifact removal (methods, descriptive
analysis, method impact)

• Hardware for motion artifact removal (electrode setups, EEG
systems, ground truth sensors).

Demographics metadata

The author with the highest number of publications was
D.P. Ferris who was an author or co-author of eleven papers.
Following him, W.D. Hairston contributed to seven publications,
while P. König, S. Makeig, and F. Raimondo each had four papers.
Furthermore, 21 authors contributed to three papers, 53 authors to
two papers, and 266 authors to a single contribution.

FIGURE 2

Pubmed search histogram from the year 1966 to 2022.

Figure 3 illustrates an authorship map of all authors that
contributed to at least two reviewed publications, as first or co-
author. The size of the points refers to the number of publications
of the specific author, the connection represents a co-authorship. In
particular, D.P. Ferris and W.D. Hairston have a research network
involving multiple institutes and co-authorships.

In terms of institutions, the US Army Research Laboratory was
associated with eight publications, followed by the University of
Michigan with six, the University of California San Diego with four,
and the University of Florida with three. Several other institutions
contributed to two or one publication. For authors with multiple
affiliations, each institution was counted separately.

The countries with the highest number of first authorship
were the USA (31), Germany (13), China (8), Spain (7), France
(6), Canada (5), UK (4), Italy (3), and India (3). In total,
33 countries contributed to the publications examined in this
systematic literature review.

Lastly, we note that the top journals in terms of the
number of publications included in our review were Frontiers of
Neuroscience (10 publications), Sensors (Basel) (7), Frontiers in
Human Neuroscience (7), Journal of Neuroscience Methods (6),
Psychophysiology (3), Journal of Healthcare Engineering (3), and
PLoS One (3). All other Journals contribute a total of 36 papers.
Figure 4 illustrates the trend of the most common journals in this
systematic literature review over time.

Technology metadata

Several open datasets were used by the authors of the evaluated
articles, including:

• Temple University EEGCorpus (https://isip.piconepress.com/
projects/tuh_eeg/html/downloads.shtml)

• SEED (https://bcmi.sjtu.edu.cn/home/seed/index.html)

• PhysioNet (https://physionet.org/content/?topic=eeg).

Open datasets provide a valuable resource for researchers
to develop and evaluate new algorithms for EEG analysis. Two
crowdsource label platforms were used by the authors:

• ALICE (http://alice.adase.org/)

• ICLabel (https://labeling.ucsd.edu/tutorial).

They aim to improve the labeling of EEG artifacts through the
collective knowledge of several experts. Currently, both platforms
focus on labeling independent components, which are created
from the family of ICA methods (also see Hyvärinen and Oja,
2000; Delorme et al., 2007). These increasing datasets and labeling
platforms can be used to train machine learning models that can
further automate the classification of EEG artifacts.

In Figure 5, the two most common programming languages
for the pipelines are illustrated per year. The boxplot starts from
2009, as only a limited number of three papers were included
in the review from before that year. The Figure depicts a clear
dominance of Matlab (The MathWorks, USA), while three of seven
implementations are in Python (Python Software Foundation,
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FIGURE 3

Reference map of all authors that contributed to at least two publications. Connections between authors correspond to co-authorships.

FIGURE 4

The most common Journals over time. Only four Journals

contribute more than three publications to the subject of interest.

https://www.python.org/) in the year 2021. As the EEGLab software
(Delorme and Makeig, 2004) is based on the Matlab language,
pipelines implemented using EEGLab are also listed as Matlab.
All pipelines for artifact mitigation and correction in the reviewed
publications were implemented in either Matlab or Python.

For statistical analysis, some studies also used SPSS (IBM
SPSS Statistics, 2023), Statistica (StatSoft Inc., 2023), or R
(R Core Team, 2023). Various software tools were used for
modeling the brain, including Neuroscan (Compumedics),
Eevoke (ANT Neuro), BEAPP (Batch EEG Automated Processing
Platform), BESA Dipole Simulator (MEGIS Software GmbH),

FIGURE 5

Programming languages over time, depicting a clear dominance of

Matlab. Publications with no or unknown languages are omitted.

Spike2 (Cambridge Electronic Design), SystemPlus (Micromed),
BrainRecorder (Brain-Products GmbH), and E-Prime application
suite (Psychology Software Tools, Inc).

In addition, VS.NET, Harmonie (Stellate), Persyst v12 (Persyst
GmbH) and TracerDAQ software (National Instruments) were
used for the experimental paradigm design and analysis. For
motion capture systems or similar functionality, the software
Visual-3D, FaceLAB (eye tracking system) and Vicon Nexus
(Oxford, UK) were employed.

Figure 6 illustrates the open code policy in the publications
reviewed in this study. The figure shows the fraction of papers
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FIGURE 6

For each year since 2008, the open code policy of the papers is

depicted.

that make their code publicly available grouped for each year.
Prior to 2016, only some authors shared the details of the pipeline
implementations used in their experiments. However, in 2022,
two out of four publications provide their code. An increase in
open code policy is a positive trend for the scientific community,
as it allows for greater reproducibility and transparency of
research results.

Figure 7 presents a visualization of the most common
evaluation metrics used in the studies included in this review. As
there is currently no widely accepted standard metric for evaluating
EEG artifacts, a high number of different metrics are applied.
Out of the 77 publications analyzed, 22 of them compare their
pipelines based on an accuracy metric. This accuracy metric is
not limited to downstream classification tasks such as mental
gesture classification, but also includes the classification of artifact
presence or type. In the absence of ground truth brain signals,
14 contributions rely on a qualitative visual assessment or a
quantitative signal-to-noise ratio (SNR) for evaluation purposes.
The evaluation metrics that are used less than four times are
aggregated into the “other metrics” category.

Study selection and taxonomy

In Figure 8, the distribution of the number of subjects and
channels used in the pipelines per publication is shown. The mean
number of subjects per analyzed dataset is 16.4, with the majority
of studies not having more than ten subjects. Only 7.6% of datasets
included 30 or more participants. Additionally, half of the studies
use >64 EEG channels. As EEG attempts to become more easily
mountable, many publications investigate settings with only a small
number of channels.

Figure 9 presents an overview of BCI paradigms used in the
investigated cohort of papers. Among the publications analyzed,
motor execution (28) and attention strategies (25) were the most
commonly employed paradigms. Twenty publications focused on
mitigating or correcting artifacts and did not use any specific

paradigms. Additionally, we found that motor imagery (8) and
steady-state visually evoked potentials (SSVEP) (2) were used in
some cases. In 10 cases, a different paradigm was applied, that
occurred only once.

Methods for motion artifact removal

Methods
Within the reviewed publications, a total number of 303

pipelines for artifact treatment, composed by various methods,
were presented. These methods can be categorized into several
categories, such as filters, aggregation methods, decomposition
methods, artifact detection methods and specialized methods and
subpipelines. In addition, classification methods for a downstream
task on cleaned and corrected EEG data were found, that are not
investigated in more detail within the scope of this paper.

Regarding the filters, we found that 261 out of the 303 pipelines
use frequency filters such as high-pass, low-pass, band-pass, band-
restriction, and notch-filters. Adaptive filtering (AF) was used
in 24 pipelines, Moving average (MA) in 10 and 20 pipelines
used other filters such as smoothing algorithms like e.g., the
Savitzkey-Golay filter.

Epoching the measurement into time-constrained batches
(127) and generating features within these windows (104) are
grouped into the category Aggregation methods. Among all
generated features the most common ones were: Kurtosis,
standard deviation, several features of the power density
spectrum, correlations between channels or with artifact templates,
autocorrelation, entropy, fractal dimension, the spatial average
difference (SAD), spatial eye distance (SED), and Myogenic
identification feature (MIF).

The category “Decomposition” also includes several forms
for spectral decomposition as well as spatial blind source
separation algorithms. A Fourier transformation was applied in
31 publications and the Wavelet transform in 50. Independent
component analysis (ICA) was used in 114 out of 303 pipelines,
canonical correlation analysis (CCA) in 25, Principal Component
Analysis (PCA) in 44, empirical mode decomposition (EMD)
in 26, and common spatial patterns (CSP) in 9. We found
other methods that are called Welch power spectral density,
Lomb-Scargle periodogram, Nonnegative Matrix Factorization
(NMF), t-distributed stochastic neighbor embedding (t-SNE),
spatio-spectral decomposition (SSD), joint blind source separation
(JBSS), independent vector analysis (IVA), singular spectrum
analysis (SSA), SOBI, ERICA, AMUSE, Auto-regression, Local and
Weighted Average Reference, Riemann Kernels, SNS and Phase
Lag Indexing.

For the detection of artifacts, Linear Regression was used in
seven pipelines, Discriminant Analysis (DA) in 15, support vector
machines (SVM) in 12, Spatial spherical splines in 16, and Gaussian
Mixture Models (GMM) in four. Additionally, 25 other methods
were used for this purpose. In order to correct artifacts, in only
nine publications an Autoencoder was used, and in four a GAN.
Artifacts were frequently corrected by decomposing the signal,
detecting artifactual components, and removing them during the
signal reconstruction from the components. Some methods and
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FIGURE 7

Number of publications using a specific evaluation metric. The majority of used metrics are used less than four times, while the accuracy, visual

proof, and signal-to-noise ratio (SNR) are the most common ones.

FIGURE 8

Number of subjects for each dataset and number of used EEG channels per publication.

FIGURE 9

Number of used BCI paradigms in publications.
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FIGURE 10

The number of totally proposed pipelines per year since 2011 with fractions of pipelines that are fit for a use case with BCI and are online capable. In

2021, none of the proposed pipelines were online capable.

FIGURE 11

Cuto�-frequencies of all filters, split into low-passes and high-passes (both with band-pass bounds) and plotted on a logarithmic scale.

subpipelines specialized for EEG were grouped into an additional
category, in particular ADJUST (20), FASTER (16), MARA (9),
HAPPE (6), and ERASE (4).

Descriptive analysis
Figure 10 presents the fitness of the proposed pipelines

for BCI application and their online capabilities over time.
The number of pipelines achieving a score of 2 in the
respective scale, as defined in previous sections, was summed

up for each year. As few papers were published before
2010, the timeline starts in 2011. The results suggest that
the fitness of the proposed pipelines are unstable over the
years.

Figure 11 presents the distribution of commonly used cutoff
frequencies for EEG filtering. The upper bound of band-pass filters
is included in the low-pass filter distribution and vice versa. Our
analysis shows that the interquartile range for high-pass filters is
between 0.15 and 1 Hz, indicating the need for drift correction
in the signals. Additionally, many authors filter out frequencies
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higher than the typical electrical powerline frequency using low-
pass filters.

Notably, notch and band-restrict filters, commonly used to
remove specific frequency bands, are not visualized in the boxplot.
These filters serve a specific purpose and do not contribute to the
overall distribution of cutoff frequencies.

Figure 12 depicts the number of papers that use selected
decomposition methods. All bars other than the “total” bar have
applied a specific filter criteria and therefore are a subset of the
“total” bar. The filtered bars show all newly proposed, all since
2020, and pipelines that are noted to be fit for BCI respectively
online capable. The most common decomposition method is ICA
used in 36 publications followed by PCA in 18. A total of 22
publications decomposed the EEG signal within the time domain
using a Wavelet or Fourier transformation. If a method occurs
significantly often, this method is marked with the symbol (>)
indicating that the Null-hypothesis can be rejected to a significance
level of α = 0.05 using the bootstrap resampling method (Efron,
1983). A second bootstrap estimation is performed to test if a
method occurs significantly less in a filtered bar, thus noted with
the symbol >.

Since 2020 canonical correlation analysis (CCA) and the
empirical mode decomposition (EMD) method was significantly
often used. While EMD seems not to be suitable in an online
scenario, the Fourier Transformation or some implementation of
it might be.

For the most common family of decomposition methods,
namely ICA, an investigation of the variants used is of interest.
Figure 13 summarizes the most common variants. Most authors
applied, wICA (wavelet), FastICA, AMICA, and InfomaxICA. In
13 publications, the variant was not specified.

The artifact detection is applied to decomposed components
or views of the original EEG signal. Figure 14 illustrates the
number of papers that are using selected artifact detection
methods. Methods that are not used in more than two
publications are grouped into the “Other”-category. This
category is with 23 publications by far the largest class,
indicating that no standardized artifact detection method has
been established.

Similarly, the total number of artifact detection methods is
filtered whether they are newly proposed, used since 2020, fit for
BCI application, and online capable. Discriminative Analysis (DA)
was not applied in reviewed publications since 2020 but seems
to be online capable. Since 2020, more authors applied spatial
spherical splines.

Many authors rely on the usage of methods and subpipelines
specialized for EEG signals, as illustrated in Figure 15. Eight
publications use the ADJUST algorithm and the FASTER
subpipeline. The method MARA was used in four publications, but
none of the introduced pipelines seems fit for a BCI use case or
online capable. The FASTER method, as the name suggests, seems
to be fit for an online application.

Impact of the methods
Table 2 summarizes the effect of using selected methods within

a pipeline. The table presents the number of authors and pipelines

that used or not used each method respectively, and its impact on
the mean normalized rank across all pipelines and publications.We
also show the absolute difference in rank between pipelines that
used or omitted a particular method. The right column of the table
presents the statistical significance of the improvement in pipeline
rank achieved by using a particular method expressed in terms
of the p-value. To calculate the p-value, we performed an exact
permutation test with 10,000 runs (by using the method described
in Ernst (2004).

Our results suggest that several methods, including Linear
Regression, Adaptive Filtering (AF), ADJUST, CCA, and ICA,
contribute significantly to improving the mean normalized rank.
In contrast, methods like PCA, Pearson Correlation Coefficient
(PCC), and Discriminative Analysis (DA) even had a negative
effect on the pipeline’s performance. One interesting finding is that
Wavelet performed better than Fourier transformation. This effect
may be due to Wavelets’ higher temporal resolution, which may be
more important than the precise frequencies of EEG signals.

Hardware for motion artifact removal

Most authors use the traditional Ag-AgCl electrode setup with
placements according to the typical 10–20 system setup. Electrodes
are either dry, water-tab-based, or gel-based. Typical reoccurring
vendors for electrodes were g.tec, ANT-Neuro, BrainProducts
and Biosemi. More custom untypical electrode setups featured
for example:

• MEMS (dry micro-electromechanical sensors)

• 3D printed PWS electrodes coated with poly polystyrene
sulfonate (PEDOT:PSS)

• 3D Printed dry concentric Electrodes

• Multipin Polyurethane electrodes.

Caps and amplifiers were more heterogenous than used
sensors, but g.tec, ANT-Neuro, BrainProducts and Biosemi
reoccurred often here as well. Additionally, authors used
systems from companies like BrainWave (Medi Factory,
Netherlands), WaveGuard (ANT-Neuro, Netherlands), Cognionics
(USA), Mindo (National Chiao Tung University), Electro-Cap
International Inc (USA), EasyCap (Germany), Neuracle (China),
Neuroelectrics (Spain), Brain-Net EMSA (Brazil), Plexon Inc.
(USA), Electrical Geodesics Inc. (USA), LaMont Medical (USA),
Neuromag (Mexico), Natus Medical (Canada), Nihon-Kohden
(Japan), Spes Medica (Italy).

Especially interesting were two novel device setups from
Snyder et al. (2015) and Nordin et al. (2020). The idea for both
publications was to decouple true brain activity from measured
external motion artifacts by artificially blocking and/or creating
the true brain component part. In Snyder et al. (2015) a novel
3 layer system was proposed: (1) Silicon swim cap, (2) simulated
scalp, and (3) EEG system. In Nordin et al. (2020) a novel 2-
layer EEG system was proposed: (1) 128-scalp EEG electrodes
and (2) a custom conductive fabric cap which approximately
matched the resistivity of human skin. The dual-layer EEG from
Nordin20 simultaneously recorded human electrocortical signals
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FIGURE 12

Number of decomposition methods by the number of publications. The bars refer to all publications (since 2020) and proposed pipelines that are

noted to be fit for BCI rsp. online capable.

FIGURE 13

Number of ICA variants by the number of publications.
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FIGURE 14

Number of artifact detection methods by the number of publications. The bars refer to all publications and proposed, since 2020, and pipelines that

are noted to be fit for BCI rsp. online capable.

FIGURE 15

Number of specialized EEG methods and subpipelines by the number of publications. The bars refer to all publications and proposed, since 2020,

and pipelines that are noted to be fit for BCI rsp. online capable.
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TABLE 2 For each method in a pipeline, the number of papers and

pipelines using or not using it are depicted with their respective mean

normalized rank.

With/without Method di�. p-value

pipelines mean norm. rank

Linear Regr. 3 / 51 45 / 737 0.252/0.613 −0.3606 0.0018

AF 3 / 51 65 / 717 0.331/0.604 −0.2733 0.0002

ADJUST 7 / 51 50 / 732 0.407/0.599 −0.1915 0.0012

CCA 9 / 49 55 / 727 0.459/0.625 −0.1656 0.0042

ICA 28 / 41 283 / 499 0.511/0.673 −0.1624 0.0122

SVM 3 / 51 63 / 719 0.471/0.605 −0.1338 0.0458

Epoching 26 / 33 454 / 328 0.524/0.658 −0.1333 0.0154

EMD 7 / 49 70 / 712 0.497/0.619 −0.122 0.0414

CSP 3 / 50 20 / 762 0.492/0.600 −0.1081 0.1316

Feature Ext. 17 / 39 393 / 389 0.513/0.616 −0.1024 0.0960

Sph. spline 3 / 50 56 / 726 0.524/0.602 −0.0779 0.4638

FASTER 6 / 50 45 / 737 0.527/0.597 −0.0707 0.2658

MARA 4 / 51 12 / 770 0.552/0.597 −0.0446 0.7191

Wavelet Tr. 8 / 48 114 / 668 0.577/0.608 −0.0309 0.6863

PCA 12 / 50 91 / 691 0.660/0.612 0.0484 0.4500

PCC 2 / 51 22 / 760 0.687/0.598 0.0892 0.4761

Fourier Tr. 8 / 44 111 / 671 0.697/0.584 0.1128 0.0924

MA 2 / 50 51 / 731 0.753/0.598 0.155 0.2066

filter 46 / 10 582 / 200 0.629/0.454 0.1749 0.0068

DA 3 / 49 52 / 730 0.836/0.588 0.248 0.0314

Additionally, the p-values show the significance of the impact of using a method in a pipeline.

p-values > 0.05 are marked in bold because it means rejection of null hypotheses (<0.05 for

significance level is an accepted convention).

and isolated motion artifacts using pairs of mechanically coupled
and electrically independent electrodes and a custom conductive
fabric cap.

Additionally, many diverse hardware setups for ground-truth
measurement of the EEG were used, e.g.,:

• Bi-lateral force plates in a treadmill

• SMU (source measure unit)

• IMU (inertial measurement unit)

• EMG (electromyogram)

• EOG (electrooculogram)

• ECG (electrocardiogram)

• Accelerometers

• Gyroscopes

• Camera systems.

Discussion

Study metadata

The results revealed the most prolific authors, institutions,
and countries contributing to the field, with D.P. Ferris and

W.D. Hairston being the authors with the highest number of
publications. The US Army Research Laboratory, University of
Michigan, and University of California San Diego were among the
top institutions. The USA, Germany, and China were the countries
with the highest number of first authorships. The study also
identified the top journals publishing articles in this field, such as
Frontiers of Neuroscience, Frontiers in Human Neuroscience, and
Sensors (Basel). Open datasets and crowdsource label platforms
were introduced as valuable resources for researchers, and Matlab
was found to be the dominant programming language used in the
implementation of artifact mitigation and correction pipelines.

Methods for motion artifact removal

A total of 303 pipelines from the reviewed publications
were analyzed, which included filters, aggregation methods,
decomposition methods, artifact detection methods, and
specialized methods and subpipelines. Frequency filters, such as
high-pass, low-pass, band-pass, and notch filters, were commonly
used for artifact rejection and correction. The distribution of cutoff
frequencies for EEG filtering showed that high-pass filters typically
had cutoff frequencies between 0.15 and 1 Hz, indicating the need
for drift correction, while low-pass filters commonly filtered out
frequencies below the electrical powerline frequency.

Aggregation methods involved epoching the measurement into
time-constrained batches and generating features within these
windows, with common features including kurtosis, standard
deviation, power density spectrum, and spatial correlations.
Decomposition methods included Fourier transformation, wavelet
transform, independent component analysis (ICA), and principal
component analysis (PCA), among others. Methods such as
Linear Regression, Adaptive Filtering, ADJUST, CCA, ICA, SVM,
Epoching, and EMD improved the pipelines significantly while
Moving Average, filters, and Discriminant Analysis decreased it.

Research gaps

Within this subsection, identified consensus and commonly
known research gaps are presented and discussed.

General research gaps
All authors of the reviewed papers emphasize, that motion

artifacts prohibit the usage of mental signals via EEG for BCI
systems in the real world. Muscle artifacts originating from whole-
body movements are more complex to handle than other EEG
artifact types because it impacts the EEG in a broad frequency
spectrum and a high amplitude. This leads to artifacts with
amplitudes that are typically higher than those of the signal and
which are present in a broad spectrum in the frequency domain.
Therefore, the reduction of motion artifacts in an EEG is a
nontrivial task (Gwin et al., 2010; Snyder et al., 2015; Symeonidou
et al., 2018).

There is a lack of standardized preprocessing steps that are
validated and include basic filtering of noise signals. Few theoretical
or practical approaches were conducted that examined the effect of
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filtering methods on the latency and signal form of the mental EEG
signals (Anders et al., 2020; Karpiel et al., 2021).

Within the reviewed papers, we found that many characteristics
of phase-locked EEG signals are often only visible by averaging
across multiple gaits, trials, and even subjects. The authors argue
that these mean characteristics are “typical brain patterns” suited
to be used as commands for BCI systems (Delorme, 2022).
However, their high inter-subject and inter-trial variability shows
that approaches based on averaged characteristic patterns might
not help to build robust BCI systems (Kline et al., 2015; Nathan
and Contreras-Vidal, 2016).

Additionally, many pipelines rely on methods with strong
assumptions that might not be met in real-world conditions,
e.g., a scarcity or homogeneity of artifacts cannot be assumed
for diverse whole-body movements. For instance, Mur et al.
(2019) mentioned that their pipeline requires a time epoch
free of artifacts before and after each artifact as well as no
bad electrode. Similarly, de Cheveigné (2016) mentioned that
their pipeline does not work if an artifact affects multiple
electrodes. In particular, the most present decomposition method
in the review, ICA, has also strong assumptions that we will
further discuss in the subsection “The well known limitations

of ICA”.
Only a minority of the reviewed literature conducted

benchmark testing of new or existing algorithms and pipelines. The
most comprehensive benchmark testing was performed by Jas et al.
(2017) who compared several pipelines on four different databases,
multiple mental strategies, and system setups, for a total of more
than 200 participants.

According to Grosselin et al. (2019) subject-driven
classification performance needs long-lasting individual studies
with longitudinal recordings to reach its full performance potential.
The presented algorithm in Grosselin et al. (2019) is not subject-
driven but the authors noted there could be a great optimization
potential for the classification methods (LDA, SVM, kNN) by
fine-tuning them on individual longitudinal recordings lasting
weeks or months.

Ground truth problem
The field of EEG data analysis faces a significant challenge in

separating non-neuronal motion artifacts from neuronal activity,
as noted in several studies (Gwin et al., 2010; Snyder et al., 2015;
Symeonidou et al., 2018; Delorme, 2022). The primary reason for
this difficulty is the lack of a ground truth measurement of the pure
brain signals, which makes it challenging to create and evaluate
artifact removal methods. Some methods aim to correct simulated
artifacts that were added to clean EEG segments to compensate
this problem, but simulated artifacts do not represent the full range
of real artifacts that can affect EEG recordings (Yong et al., 2012;
Tamburro et al., 2018).

As a result, there is a lack of consensus on benchmarks for
comparing the performance and usability of EEG systems, and no
reliable quantitative metric for evaluating artifact removal methods
has emerged (Delorme, 2022). In practice, many authors rely on
the visual comparison, signal-to-noise ratio (SNR), or correlation
to validate the quality of the artifact reduction method, but these

practices have questionable scrutiny (Oliveira et al., 2016; Mur
et al., 2019; Delorme, 2022). A comprehensive summary of the
most common metrics applied in the reviewed papers is provided
in Figure 7.

One approach to address the challenge of unavailable ground
truth brain signals is to isolate electrodes from the head using a
swimming cap (Kline et al., 2015; Snyder et al., 2015). However,
the artifacts measured in the electrodes (with increased impedance)
solely represent induced voltages, e.g., from cable movements, and
do not include artifacts stemming from muscle activity. Some
studies have shown that placing additional EMG electrodes over
the face and neck muscles can be beneficial (Jas et al., 2017;
San-Martin et al., 2018; Liu et al., 2019; Mucarquer et al., 2020;
Nordin et al., 2020). For example, Mucarquer et al. (2020) validated
the improvement of EEMD-CCA using EMG channels. Adding
measured EMG artifact channels to EEG channels also improves
ICA performance, as it learns and detects EMG contamination
within EEG and forces EMG artifacts into a minimal number of
independent components (Li et al., 2021). Different methods use
different ways of mixing these EMG signals into EEG channels, and
comparing EMG-added removal methods can help determine the
optimal mixture of signals from EMG and EEG.

Single motor unit studies (focusing on one individual muscle
or muscle group) with an attempted ground truth measurement
have a very high value as they add knowledge of individual muscle
contribution to the EEG system. There is a need for more studies
targeting different muscles or muscle groups. In Yilmaz et al. (2014)
we can find information on how the temporalis muscle impacts the
EEG. Understanding EEG contamination on the level of individual
muscle contribution helps identify new ways to detect and mitigate
their effects. We have found very few papers in our research
that try to separate EEG muscle artifact contamination into the
contribution of individual muscles or muscle groups. In almost all
other works, the muscle contamination (with the exception of eye
movement) is seen as a summation of artifacts that get detected and
removed as a whole. This approach, however, might be the wrong
way to do it though, as Yilmaz et al. (2014) argues that the effect
of single muscles on the EEG signal should be further examined,
rather than all muscle contamination getting detected and removed
as a whole. A full-bodymovement can bemodeled as a composition
of multiple individual muscles as part of a larger muscle group, but
the specific artifacts present in each electrode show the summed
up noise of all individual contributions. We have found no other
papers that try to separate EEG muscle artifact contamination into
individual muscles or muscle groups.

Another option for addressing this challenge is to optimize the
parameters of a filter method based on a criterion for a downstream
task, i.e., a task that does not aim to detect artifacts but to solve the
actual problems for an application such as in a BCI system. In our
literature review, 13 publications validated at least two pipelines
with a classification downstream task (see the spreadsheet in the
provided repository for more information). When following such
an approach, it has to be taken into account, that the resulting
parameters of the pipeline’s methods are optimized only for a
specific downstream task and not generically for all brain signals.

It should be mentioned, that in Winkler et al. (2011) the
successful removal of artifacts and correctly detected outliers
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did not lead to better classification accuracy, potentially because
the filtering removed characteristic brain signals essential for
the downstream task. This suggests further investigating whether
correctly detected artifacts can even always lead to better
classification accuracy. Recently, Delorme (2022) showed that
almost none evaluated pipelines for artifact reduction increased the
performance significantly over multiple datasets.

In summary, only little empirical evidence is given, as to
whether the pipelines for artifact reduction and correction only
reduce noise and retain brain signal components required for a BCI
system’s downstream task. Methods for the reduction of motion
artifacts could therefore be too aggressive and also filter mental
signals among myogenic artifacts to a severe and unknown degree.

Method comparison
The reviewed literature lacks rigorous comparisons between

existing methods for reducing motion artifacts in EEG data. Many
papers compare their proposed method with a default pipeline
without any artifact reduction or do not validate it against well-
established and successful artifact reduction techniques. This raises
concerns about the validity of the proposed methods as well as the
state-of-the-art methods.

In particular, ICA or one of its variants is directly compared
to CCA (or its variants) only in Chen et al. (2014) and Dai et al.
(2021), and to PCA (or its variants, mostly ASR) only in Gordon
et al. (2015); Arad et al. (2018), and Rosanne et al. (2021). In 77
investigated publications, there were neither direct comparisons
between the de facto standard method ICA and a variant of EMD
nor CSP. In addition to that, hardly any researcher compared
their proposed pipeline with a more recent pipeline of other
researchers that is successful for a similar use case. Nevertheless,
multiple authors of the reviewed literature mention the importance
of a quantitative comparison of proposed methods with existing
successful methods in order to increase the comparability of the
pipelines (Yong et al., 2012; Frølich and Dowding, 2018; Karpiel
et al., 2021; Saba-Sadiya et al., 2021; Fló et al., 2022).

Based on the reviewed descriptions of methods, the proposed
methods were often elaborately adapted and their parameters
optimized for the same data or at least data from other participants
following the exact same experiment design, on which all pipelines
were later evaluated and compared. This practice is exposed to
the so-called researcher bias. In contrast, other pipelines that are
compared with the proposed method are often not or hardly
adapted for the present use case, which can further introduce a bias
toward the proposed method. As a result, the mean normalized
rank of all proposed methods is 0.4088, while that of all other
methods is 0.6324 (lower is better). Considering the fact that the
latter paper does not necessarily compare their work on existing
successful pipelines, the better score for proposed methods might
not be caused by an improvement of methods but rather by the
advantage of proposed methods due to this researcher bias.

It was shown by Tost et al. (2021) and Fló et al. (2022)
that a parallelization of two or more streams within a pipeline
with different preprocessing could increase the robustness and
performance. Some authors have investigated the incorporation
of accelerometer data into the pipeline and found a phase shift
between the acceleration of the head. This is due to the neck

muscles compensating head movements in full body movements
and therefore the myogenic artifacts in EEG are delayed compared
to the head acceleration (Kline et al., 2015; Nathan and Contreras-
Vidal, 2016). Classical decomposition methods like ICA and ASR
are not suited to model this phase delay, but specialized kernel
methods such as CNN are.

The well known limitations of ICA
Most reviewed work focuses on approaches that optimize

model parameters based on criteria measuring the independence
of components, such as ICA. These methods come with strict
assumptions that should be discussed in detail. Jung et al. (2001)
explained four inherent assumptions of ICA clearly:

• The signal of each source summarizes linearly in the
EEG channels.

• Spatial projections of components are fixed in time
and conditions.

• Temporal independence of the components is given.

• The source signals have to be distributed non-Gaussian (i.e., a
kurtosis not close to zero).

Even though some authors note that some assumptions do
not or only hold to a certain degree, most agree that ICA is still
very effective and stable for EEG data (Jung et al., 2001; Iriarte
et al., 2003; Tamburro et al., 2018). Though, some issues are
noted, for example varying tissue density in the brain affecting
the first assumption (linear summary of each source signal) and
some myogenic activities occurring regularly after the mental
response affecting the third assumption “temporal component
independence” (Kline et al., 2015; Nathan and Contreras-Vidal,
2016). However, it is out of the scope of this literature review to
show whether the assumptions of ICA can be met for BCI systems.

A rather practical problem is discussed frequently in the
reviewed papers: ICA is constrained in the number of independent
components that it can extract from a given signal (Jung et al., 2001;
Iriarte et al., 2003; Chen et al., 2014; Delisle-Rodriguez et al., 2017;
Oliveira et al., 2017; Li et al., 2018; Sebek et al., 2018; Tamburro
et al., 2018; Mur et al., 2019; Beach et al., 2021; Saba-Sadiya
et al., 2021). The upper bound is given by the number of EEG
channels, as a quadratic demixing matrix is used to reconstruct the
source signals (Sebek et al., 2018). Therefore, a BCI system using
the ICA method requires a high number of EEG channels which
might mitigate the comfort of wearing it. In particular, for more
frequent and more heterogeneous muscle activity, an increasing
number of independent components are occupied to extract these
components, thus reducing the IC containing useful mental signals
(Chen et al., 2014; Anders et al., 2020; Kumaravel et al., 2022).
This questions the validity of the ICA method for BCI systems in
real-world applications.

Solutions to this limitation might be applying single-channel
decomposition methods, as implemented by multiple authors
(Chen et al., 2014; Roy et al., 2017; Liu et al., 2019; Mucarquer et al.,
2020; Saini et al., 2020; Dai et al., 2021), who used the EMDmethod
in advance of ICA and CCA. Another solution could be the usage
of the Moore-Penrose Pseudoinverse to address the problem of the
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matrix inversion. This approach is used to calculate the inverse of a
non-quadratic and therefore not fully ranked matrix, which can be
used to reconstruct the brain signals from the EEG channel signals.

Research gaps for system development
Traditionally, BCI experiments are conducted with careful

paradigms to avoid motion artifact contamination, rather than
correcting those artifacts from the signal. By using combined
hardware and signal processing formotion artifact removal, Nordin
et al. (2019) found it is possible to identify human brain activity
even when humans stepped over obstacles during walking and
running. According to Nordin’s research (Nordin et al., 2019), there
were over 2,800 studies on human EEG published in 2017, yet>1%
were on mobile subjects.

The majority of reviewed literature focuses on offline studies
with not fully automated pipelines or on detecting and rejecting
artifacts without any correction of the original EEG signal. More
research in the fully automated correction of motion artifact
contaminated EEG signals is needed (Yong et al., 2012; Zhang et al.,
2015; Anders et al., 2020).

In the reviewed literature, we found no research that
investigated changes in alpha and beta power on motion tasks
other than treadmill walking. Building real BCI systems for real
domains requires more research from other activities and domains
such as collaborative robotics, sports, and working environments.
In the case of treadmill walking, Nordin et al. (2020) found
that the alpha/beta power increased during contra-lateral limb
single support and push-off, and decreased during swing at each
gait speed (Seeber et al., 2014; Wagner et al., 2014). At faster
walking speeds spectral power fluctuations had limited duration
and bandwidth, along with reduced alpha and beta power across
the gait cycle, after muscle artifact removal. According to the
authors, further research is needed that investigates the effects on
the somatosensory cortex and motor cortex at the same time and
the spectral power for tasks that involve greater amounts of sensory
feedback built into motor execution. Reduced sensorimotor
spectral power could be an indicator of greater cortical resources
attuned to sensory feedback at faster locomotion speeds.

For successful practical implementation of real online
BCI systems, more studies are needed to solve the decoding
performance problem from incomplete EEG signals, rather than
fully rejecting heavily contaminated segments (which is a problem
for long-term learning strategies too). Consecutive and smooth
recognition of BCI systems is needed for online and long-term
applications. This requires that the BCI system can continuously
decode brain signals without any interruption. If entire EEG
segments are discarded due to extreme artifacts or data loss,
the BCI system cannot obtain the decoding results during the
corresponding time slice. Hence, it is very important to decode
incomplete EEG in case of extreme artifacts and data loss (Chu
et al., 2018).

Lack of advanced machine learning approaches
Authors of the reviewed literature reported that classifiers

based on features of data decompositions (temporal, spectral,
spatial) show poor generalizability for re-usage in other intended

experimental setups (Lawhern et al., 2012; Frølich and Dowding,
2018; Tamburro et al., 2018). There is a need for more advanced
time series models and the validation of their transferability to
different recordings, hardware, mental strategies, sessions, subjects,
and sensor layouts.

It has to be noted that participant metadata was never
incorporated into models. Classificators could profit from
additional information about the participant and setup such as the
age, sex, EEG electrode type, and BCI paradigm. For example, the
brain signals differ a lot for, e.g., children.

Crowdsourcing platforms for labeling artifacts such as ALICE
(http://alice.adase.org/) and ICLabel (https://labeling.ucsd.edu/
tutorial) emerge, that are suited for robust benchmarking newly
proposed pipelines on a large dataset. However, both of them focus
on the classification of artifacts based on independent components
originating from an ICA. This enables the benchmarking of
methods such as ADJUST, adjusted-ADJUST, RELICA, IClabel,
FASTER, MARA, SASICA, and BeamICA, but are limited to the
analysis of independent components. Crowd-sourcing platforms
should be extended to classify artifacts based on the raw EEG
time series instead of already decomposed signals. Moreover,
indicating the probabilities of artifact labels based on multiple
expert judgments could improve the model training, especially for
rare artifacts (Soghoyan et al., 2021). It is also noteworthy, that the
labels assigned by various experts were found to be more different
than those of any IC-classification algorithm (Delorme, 2022). The
crowdsourcing platforms should therefore also be used to discuss
different opinions of experts such that automated algorithms can
be trained on consistent and reliable labels.

Several authors have noted the lack of deep learning strategies
applied to the detection, removal, and correction of artifacts in
EEG signals (Val-Calvo et al., 2019; Nahmias and Kontson, 2021;
Saba-Sadiya et al., 2021). While most existing work focuses on
approaches that optimize model parameters based on criteria
measuring the independence of components (ICA, PCA, CCA,
etc.), recent advances in deep learning offer promising methods,
which EEG pipelines could benefit from.

For instance, a two-layered perceptron (MLP with 2 layers)
can implement the internal logic of an ICA. By adding more
layers and non-linear mappings between them, the MLP can
additionally correct high amplitude artifacts and select components
useful for decreasing an appropriately chosen error criterion during
training. A convolutional layer (CNN) can model time dependence
between channels and generate time-dependent features from the
input. More advanced deep learning methods such as variational
autoencoder (VAE) and generative adversarial networks (GAN)
can reconstruct artifact-free EEG signals from the original data.
While these methods are already used in state-of-the-art active
noise canceling systems, they have been applied to EEG data in only
one single reviewed publication (Saba-Sadiya et al., 2021).

Furthermore, recent advances in training paradigms such as
curriculum learning and self-supervised learning show promising
results for deep learning models on complex data. Curriculum
learning, for example, presents training examples to the model in
a curriculum, starting with easy examples and gradually increasing
the difficulty over time, allowing the model to learn gradually
from simpler to more complex examples (Bengio et al., 2009).
Self-supervised learning, on the other hand, allows a model to
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learn from input data itself without the need for explicit human
annotation, enabling the training of large amounts of data with only
a small fraction of labeled examples (Tian et al., 2020). None of
these training concepts were found in the investigated publications.

It is important to note that incorporating advanced deep
learning methods and paradigms requires a high degree of
multidisciplinarity among the experts conducting the research.
A deep learning expert must have a solid foundation in theory
and practice to deal with complex time series data, as well as an
understanding of the domain of EEG or electrophysiological data.
Only then deep learning can be effectively applied to address the
challenges posed by EEG artifacts.

Conclusion

In conclusion, this systematic literature review compared and
analyzed a large body of research on motion artifact reduction
in brain-computer interface experiments using the PRISMA
method. We aimed to create a comprehensive lookup table
for the community to facilitate comparison and analysis of
existing architectures and methods and to provide inspiration for
further research.

Our findings revealed a potential publication bias toward newly
introduced pipelines/methods over existing ones and the need
for additional neutral method comparison studies by independent
researchers. We also identified a gap in studies addressing the
ground truth problem beyond measuring activity with additional
sensors, such as separating individual muscle contributions from
general muscle contamination or true brain components from
others using creative hardware setups.

Furthermore, we observed limitations of ICA and similar
methods for further exploitation in the field and recommended
investigating advanced machine learning concepts in addition or
comparison with traditional approaches. Customization and fine-
tuning of BCI systems toward individual participants and users
using machine learning could hold great potential for advancing
the field.

We also noted that sample sizes of BCI studies are often
small, and comparing data across multiple studies and datasets
is challenging due to variations in paradigms, participant
introductions, recording environments, hardware setups, and
preprocessing steps. Addressing these challenges by incorporating
crowdsourcing platforms and achieving a better understanding of
motion artifacts by encouraging discussions between experts on

them is crucial for the advancement of BCI systems that are usable
in daily life settings.

In summary, this literature review highlights the need for
further research in motion artifact reduction in BCI experiments,
including neutral method comparison studies, addressing the
ground truth problem, exploring advanced machine learning
concepts, and overcoming challenges in sample sizes and
data comparison. These findings provide valuable insights for
researchers and practitioners in the field of BCI, and can guide
future research directions for improving the effectiveness of motion
artifact reduction methods in BCI experiments.
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