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ABSTRACT
The development and maintenance of feature models is often an
error-prone activity requiring different types of analysis operations
that help developers to restore required feature model properties.
Fulfilling such properties helps to assure compliance between fea-
ture model and corresponding domain variability properties and –
at the same time – helps to increase feature model maintainability.
In this paper, we propose a set of additional analysis operations
that provide insights regarding potential impacts of applying fea-
ture models in constraint-based recommendation scenarios where
feature models are used to define user preference spaces. Our pro-
posed analysis operations provide a.o. insights into aspects such as
feature restrictiveness and product accessibility when applying a
constraint-based recommender system. We analyze usage scenarios
of the operations on the basis of an example implementation with
a digital camera feature model and discuss open research issues.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
Social and professional topics → Quality assurance.
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1 INTRODUCTION
Feature models (FMs) are used for the representation of variability
aspects of software systems and other types of configurable systems
such as cars and financial services [1, 4, 13, 18]. Developing feature
models (FMs) is often an error-prone process due to cognitive over-
loads of model engineers (i.e., feature model developers), missing
domain knowledge, and outdated feature model elements. In order
to deal with such situations, intelligent techniques are needed that
help to identify feature model anomalies [6].

Feature model analysis approaches [5, 6, 14, 24] can be differenti-
ated with regard to their need of a solver support (e.g., a SAT solver
or constraint solver). Examples of analysis operations without solver
support are counting operations such as #features in a feature model
and statistics about type-specific numbers of constraints (e.g., how
many requires cross-tree constraints are part of the feature model?).
Examples of analysis operations with solver support are the checking
if a configuration is valid, if a feature is a dead one (i.e., cannot be
included in any configuration), if an FM constraint is redundant,
and if two feature models are equivalent or one is a generalization
of another one. Beyond basic properties of feature models defined
in terms of analysis operations, feature model understandability
and maintainability can also be analyzed on the basis of different
structural metrics such as branching factors of parent features and
cycles created by cross-tree constraints [3].

Existing analysis operations analyze specific structural and logi-
cal properties of FMs but often do not take into account the impacts
on the application level. In this paper, we focus on constraint-based
recommender applications [7–9, 32] where feature models are used
to define user preference (requirement) spaces [2]. Following the
idea of distinguishing between internal and external variability
[23], we define allowed combinations of user preferences as feature
models representing the customer (feature) view on a given product
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assortment (i.e., the external variability). For example, digital cam-
eras can be described by features such as goal (i.e., primary usage,
e.g., landscape photography) and lightweight (i.e., ease of trans-
portation). A corresponding product catalog defines the complete
set of available digital cameras at a specific point of time (which
can be regarded as a specific type of internal variability). Finally, a
set of constraints defines relationships between features requested
(preferred) by the user and corresponding cameras.

Such scenarios show a need for analysis operations which are
of specific importance, for example, for marketing and sales de-
partments responsible for strategic decisions regarding the feature
space of the offered product assortment. For a digital camera, we
are interested in its accessibility, i.e., how "easy" it is for a camera
to get recommended. If the accessibility of such a camera is low,
this could have an impact on sales since the camera is rarely or
never presented to a user (customer). Furthermore, we could be
interested in the restrictiveness of a feature. For example, if many
customers are interested in digital cameras that support a water-
proof feature, but only a minority of the offered products supports
this feature, there could be a need to adapt the offered assortment
or at least include new upgrade products that support this feature.
On a global level, i.e., not feature-specific level, we need to assure
that the preferences of customer communities are satisfied by the
provided product assortment. Thus, our scenario is related to a
specific type of scoping [16, 20, 29] where analysis operations are
needed that help to decide which features and also corresponding
products should be provided to cover the preferences of customers.

The contributions of our paper are the following. (1) We extend
the scope of feature model analysis operations to the impact of
variability model use specifically in recommendation scenarios. (2)
We propose a set of basic analysis operations (metrics) intended to
support the development of constraint-based (feature model based)
recommender systems. (3) We demonstrate the application of these
analysis operations on the basis of a working example from the
domain of digital camera recommendation.

The remainder of this paper is organized as follows. In Section 2,
we introduce the concept of feature model based recommendation
and a corresponding working example (recommendation of digital
cameras). In Section 3, we introduce analysis operations specifically
relevant in the mentioned recommendation scenarios. Thereafter,
in Section 4, we discuss threats to validity. Finally, we conclude the
paper with Section 5.

2 FEATURE MODEL BASED
RECOMMENDATION

In the context of this paper, we regard feature model based recom-
mendation as a typical constraint-based recommendation scenario
[8] where features are used to represent user preference spaces and
constraints are used to describe feature model relationships (and
cross-tree constraints) and relationships between user preferences
and corresponding products (see Figure 1).

In this scenario, feature models take over the role of represent-
ing an external variability [23] representing features that can be
selected by users (customers). In contrast, internal variability is
represented by a predefined product assortment (product table)
in our example setting represented by a set of predefined digital

cameras. Such product assortments are not fully configurable but
rather specified in an explicit fashion in terms of a corresponding
product table specifying the available item types at a specific point
of time. If we assume that our example recommender system sup-
ports users with limited technical background in photography, the
product properties will not be visible or at least selectable in the
corresponding recommender application.

A feature model based recommendation task (FMR-task) can be
defined as a specific type of Constraint Satisfaction Problem [11,
25, 28] (CSP) (see Definition 1).

Definition 1 (FMR-task). A feature model based recommen-
dation task is a tuple (𝐹,𝐶, 𝑃, 𝑃𝐹, 𝑃𝐶, 𝑅) where 𝐹 = {𝑓1 ..𝑓𝑛} is a set
of Boolean-domain type features describing user preferences and
𝐶 = 𝐹𝐶 ∪ 𝐹𝐼𝐿𝑇 where 𝐹𝐶 = {𝑐1 ..𝑐𝑙 } is a set of relationships and
cross-tree constraints in the feature model and 𝐹𝐼𝐿𝑇 = {𝑐𝑙+1 ..𝑐𝑚}
defines constraints between features and corresponding product
properties.1 Furthermore, 𝑃 is the set of available products (the
product assortment), 𝑃𝐹 = {𝑝 𝑓1 ..𝑝 𝑓𝑟 } the set of finite domain type
product properties, and 𝑃𝐶 a constraint in disjunctive normal form
describing the product assortment. Finally, 𝑅 = {𝑟𝑒𝑞1 ..𝑟𝑒𝑞𝑞} is a
set of customer requirements defining intended feature inclusions.

For demonstration purposes, we introduce a feature model (see
Figure 2) representing the customer preference space with regard
to an assortment of digital cameras (see Table 1).

Each user (customer) has to specify his/her primary goal regard-
ing camera usage – the goal has to be one (or more) out of landscape,
portrait, or sports photography. Furthermore, the model includes
optional features representing lightweight cameras, cameras with
an exchangeable lens, and waterproof cameras.

Example 1 (Digital Camera FMR-task). On the basis of this
example feature model, we are now able to define a correspond-
ing FMR-task (𝐹,𝐶, 𝑃, 𝑃𝐹, 𝑃𝐶, 𝑅). The customer requirements 𝑅 =

{𝑟𝑒𝑞1 : 𝑠𝑝𝑜𝑟𝑡𝑠 = 𝑡𝑟𝑢𝑒} in our working example indicate that the
user is interested in a camera that supports the primary goal of
sports photography. Note that we assume that each 𝑝𝑓𝑖 ∈ 𝑃𝐹 de-
scribes a product property, for example, 𝑝𝑖𝑑 represents the id of a
product and 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 describes the resolution of a digital camera.
Finally, the complete product assortment is described by a con-
straint in disjunctive normal form (the specifications of products
𝑝1 and 𝑝8 are exemplified – see Table 1 for a complete specification
of the products in our working example).

• 𝐹 = {𝑓1 : 𝑐𝑎𝑚𝑒𝑟𝑎, 𝑓2 : 𝑔𝑜𝑎𝑙 , 𝑓3 : 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 , 𝑓4 : 𝑠𝑝𝑜𝑟𝑡𝑠 ,
𝑓5 : 𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡 , 𝑓6 : 𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡 , 𝑓7 : 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑙𝑒𝑛𝑠 , 𝑓8 :
𝑤𝑎𝑡𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 }.

• 𝐹𝐶 = {𝑐1 : 𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑡𝑟𝑢𝑒, 𝑐2 : 𝑔𝑜𝑎𝑙 = 𝑡𝑟𝑢𝑒 ↔ 𝑐𝑎𝑚𝑒𝑟𝑎 =

𝑡𝑟𝑢𝑒, 𝑐3 : 𝑔𝑜𝑎𝑙 = 𝑡𝑟𝑢𝑒 ↔ 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝑡𝑟𝑢𝑒 ∨ 𝑠𝑝𝑜𝑟𝑡𝑠 =

𝑡𝑟𝑢𝑒∨𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡 = 𝑡𝑟𝑢𝑒, 𝑐4 : 𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑡𝑟𝑢𝑒 → 𝑐𝑎𝑚𝑒𝑟𝑎 =

𝑡𝑟𝑢𝑒, 𝑐5 : 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑙𝑒𝑛𝑠 = 𝑡𝑟𝑢𝑒 → 𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑡𝑟𝑢𝑒, 𝑐6 :
𝑤𝑎𝑡𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 = 𝑡𝑟𝑢𝑒 → 𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑡𝑟𝑢𝑒, 𝑐7 : 𝑠𝑝𝑜𝑟𝑡𝑠 =

𝑡𝑟𝑢𝑒 → 𝑤𝑎𝑡𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 = 𝑡𝑟𝑢𝑒}.
• 𝐹𝐼𝐿𝑇 = {𝑐8 : 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 = 𝑡𝑟𝑢𝑒 → 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = ℎ, 𝑐9 :
𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡 = 𝑡𝑟𝑢𝑒 → 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ℎ, 𝑐10 : 𝑠𝑝𝑜𝑟𝑡𝑠 = 𝑡𝑟𝑢𝑒 →
𝑓 𝑝𝑠 = ℎ, 𝑐11 : 𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑡𝑟𝑢𝑒 → 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑙, 𝑐12 :

1These constraints are also denoted as filter constraints [8].
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Figure 1: Sketch of feature model based recommendation tasks: the feature model is used to represent the customer preference
space (external features [23] selectable by customers) and a product assortment defines the set of available products (internal
features [23] not selectable by customers). A specific set of constraints (filter constraints) describes relationships between
customer preferences and products [8].

Figure 2: Example feature model representing user prefer-
ence spaces in a digital camera recommendation scenario.

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑙𝑒𝑛𝑠 = 𝑡𝑟𝑢𝑒 → 𝑚𝑜𝑢𝑛𝑡 ≠ 𝑛𝑜, 𝑐13 : 𝑤𝑎𝑡𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 =

𝑡𝑟𝑢𝑒 → 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = ℎ}.
• 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8}.
• 𝑃𝐹 = {𝑝𝑖𝑑, 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟, 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑓 𝑝𝑠,𝑤𝑒𝑖𝑔ℎ𝑡,𝑚𝑜𝑢𝑛𝑡,

𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛}.
• 𝑃𝐶 = {(𝑝𝑖𝑑 = 𝑝1∧𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = ℎ∧𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ℎ∧ 𝑓 𝑝𝑠 =

ℎ ∧𝑤𝑒𝑖𝑔ℎ𝑡 = ℎ ∧𝑚𝑜𝑢𝑛𝑡 = 𝑡1 ∧ 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = ℎ) ∨ .. ∨ (𝑝𝑖𝑑 =

𝑝8∧𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = ℎ∧𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ℎ∧ 𝑓 𝑝𝑠 = 𝑎∧𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑙 ∧𝑚𝑜𝑢𝑛𝑡 = 𝑛𝑜 ∧ 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = ℎ}.

• 𝑅 = {𝑟𝑒𝑞1 : 𝑠𝑝𝑜𝑟𝑡𝑠 = 𝑡𝑟𝑢𝑒}.

Table 1: Example product table 𝑃 . Products 𝑝𝑖 ∈ 𝑃 are de-
scribed in terms of their technical properties (𝑝𝑖𝑑 (product
id), 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 , 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑓 𝑝𝑠 (frames per second), 𝑤𝑒𝑖𝑔ℎ𝑡 ,
𝑚𝑜𝑢𝑛𝑡 , 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛) using the abbreviations {ℎ𝑖𝑔ℎ, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑙𝑜𝑤},
{𝑡1, 𝑡2} as specific mount types, and {𝑛𝑜} indicates that lenses
are fixed. Furthermore, 𝑟 𝑓 (𝑝𝑖 ) denotes the number of features
supported by product 𝑝𝑖 (see Formula 1).

pid 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8
accumulator ℎ ℎ ℎ ℎ ℎ ℎ ℎ ℎ

resolution ℎ ℎ 𝑎 ℎ 𝑎 𝑎 𝑙 ℎ

fps ℎ 𝑎 ℎ 𝑎 𝑎 ℎ 𝑙 𝑎

weight ℎ 𝑙 𝑎 𝑙 𝑙 𝑎 𝑙 𝑙

mount 𝑡1 𝑛𝑜 𝑡2 𝑡1 𝑛𝑜 𝑡1 𝑛𝑜 𝑛𝑜

isolation ℎ 𝑙 ℎ ℎ 𝑙 ℎ 𝑙 ℎ

𝑟 𝑓 (𝑝𝑖 ) 7 5 6 7 4 6 4 6

Definition 2 (Feature Model based Recommendation). A
feature model based recommendation (REC) for a FMR-task is a

set of tuples 𝑅𝐸𝐶 = ∪(𝑟𝑎𝑛𝑘𝑖 , 𝑝𝑖 ) where 𝑟𝑎𝑛𝑘𝑖 represents the rank
assigned to product 𝑝𝑖 ∈ 𝑃 by a corresponding recommendation
function 𝑟 𝑓 , and∀(𝑟𝑎𝑛𝑘𝑖 , 𝑝𝑖 ) ∈ 𝑅𝐸𝐶 : 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶∪𝑃𝐶∪𝑅∪{𝑝𝑖𝑑 =

𝑝𝑖 })meaning that each recommended product 𝑝𝑖 must be consistent
with (support) the constraints in 𝐶 , 𝑃𝐶 , and 𝑅.

A feature model based recommendation task can be solved, for
example, by a constraint solver, a SAT solver, or on the basis of a con-
junctive query.2 Typically, there are different alternative products
that satisfy the given set of requested features. For these products,
we need the mentioned recommendation function 𝑟 𝑓 to determine a
corresponding ranking. For the purposes of our example, we chose
a simple ranking function which is shown in Formula 1 (the num-
ber of features supported by product 𝑝𝑖 ).3 For example, with the
exception of not being a lightweight camera (feature 𝑓6) product 𝑝1
supports all remaining features 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓7, 𝑓8, i.e., 𝑟 𝑓 (𝑝1) = 7.

𝑟 𝑓 (𝑝𝑖 ) = |{𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑝𝑖 )}| (1)

Example 2 (Digital Camera Recommendation). In the context
of our example, we are able to identify three digital cameras support-
ing the given customer requirements in 𝑅 = {𝑟𝑒𝑞1 : 𝑠𝑝𝑜𝑟𝑡𝑠 = 𝑡𝑟𝑢𝑒}
which are 𝑝1, 𝑝3, and 𝑝6 (only these products support 𝑐10 : 𝑠𝑝𝑜𝑟𝑡𝑠 =
𝑡𝑟𝑢𝑒 → 𝑓 𝑝𝑠 = ℎ). By applying our simplified recommendation
function, we are able to derive the following product recommenda-
tion (product ranking): 𝑅𝐸𝐶 = {(1, 𝑝1), (2, 𝑝3), (3, 𝑝6)} due to the
fact that 𝑟 𝑓 (𝑝1) = 7, 𝑟 𝑓 (𝑝3) = 6, and 𝑟 𝑓 (𝑝6) = 6 (see also Table 1).

After having introduced this simplified example of a feature
model based recommendation task (and a corresponding recom-
mendation 𝑅𝐸𝐶), we now want to analyze potential impacts on
recommender applications. In the following, we discuss the corre-
sponding analysis operations.

3 ANALYSIS OPERATIONS "ON THE RUN"
Following the idea of analyzing potential impacts of using a feature
model as a descriptor for user preference spaces, we now introduce
the following analysis operations (metrics). These metrics are also

2Further implementation details can be found here: https://github.com/AIG-ist-tugraz/
AO4FMA and https://github.com/diverso-lab/splc23-analysis-operations.
3For alternative recommendation functions we refer to [8]. In case of an equal score,
we assume tie breaking with a related randomized ranking.

https://github.com/AIG-ist-tugraz/AO4FMA
https://github.com/AIG-ist-tugraz/AO4FMA
https://github.com/diverso-lab/splc23-analysis-operations
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exemplified on the basis of the feature model in Figure 2 and the
corresponding product table (Table 1).4

Restrictiveness of Features. For each feature 𝑓𝑖 ∈ 𝐹 (see also Defi-
nition 1), we are interested in the potential impact of selecting this
feature, specifically, in terms of its restrictiveness, i.e., to which
extent the feature contributes to a reduction of the number of rec-
ommendation candidates 𝑝𝑖 ∈ 𝑃 : 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({𝑝𝑖𝑑 = 𝑝𝑖 } ∪𝐶 ∪ 𝑃𝐶).
For example, when including the feature sports, this results in the
recommendation candidates 𝑝1, 𝑝3, and 𝑝6. Following this idea, we
can define the restrictiveness 𝑟 of a feature 𝑓 (see Formula 2).

𝑟 (𝑓 ) =

1 − |{𝑝𝑖 ∈ 𝑃 : 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({𝑝𝑖𝑑 = 𝑝𝑖 } ∪ {𝑓 = 𝑡𝑟𝑢𝑒} ∪𝐶 ∪ 𝑃𝐶)}|
|{𝑝𝑖 ∈ 𝑃}|

(2)
Measuring feature restrictiveness is important to understand to

which extent the available product assortment (table) 𝑃 is capable
of covering the preferences of a customer community. For example,
the share of waterproof sports cameras could be increased if the
cameras are offered by a winter sports equipment company. In the
extreme case, there is no product 𝑝𝑖 supporting feature 𝑓 – in such
case, the feature can be regarded as a kind of dead feature [6].

Following Formula 2, 𝑟 (𝑠𝑝𝑜𝑟𝑡𝑠) = 1 − 3
8 = 0.625. The

same concept can be applied to feature sets, for example,
𝑟 ({𝑠𝑝𝑜𝑟𝑡𝑠, 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑙𝑒𝑛𝑠}) = 1− 3

8 = 0.625. The complement exclud-
ing both features, i.e., 𝑟 ({¬𝑠𝑝𝑜𝑟𝑡𝑠 ∧ ¬𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑙𝑒𝑛𝑠}) is 1 − 8

8 = 0.
Accessibility of Products. We propose to measure product ac-

cessibility in terms of the number of times a product is part of a
recommendation list, i.e., a product is consistent with𝐶∪𝑃𝐶∪𝑅. In
this context, accessibility can be measured in terms of the share of
recommendation sets including 𝑝 compared to the overall number
of different recommendation sets that can be generated from user
requirements in 𝑅 which is |𝑅𝐸𝐶𝑆 | (see Formula 3).

𝑎(𝑝) = |{𝑅𝐸𝐶 ∈ 𝑅𝐸𝐶𝑆 : (𝑋, 𝑝) ⊆ 𝑅𝐸𝐶}|
|𝑅𝐸𝐶𝑆 | (3)

Given the definition of a feature model based recommendation
task, we can calculate all possible recommendations 𝑅𝐸𝐶 ∈ 𝑅𝐸𝐶𝑆 .
The total number of recommendations in our working example, i.e.,
|𝑅𝐸𝐶𝑆 |, is 47 since there are 47 distinct sets of customer require-
ments. Note that in this context we assume that 𝑅𝐸𝐶𝑆 is a bag-type
set, since different customer requirements could result in exactly
the same recommendation 𝑅𝐸𝐶 . Table 2 provides an overview of
the number of times a product 𝑝𝑖 is included in a set 𝑅𝐸𝐶 .

Table 2: Product occurrencies in recommendations.

pid 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 Σ

#occurrencies 31 7 15 31 3 15 3 15 120

Following Formula 3, 𝑎(𝑝6) = 15
47 since 𝑝6 is part of a recom-

mendation 15 times and the total number of different consistent
requirements is 47. The accessibility 𝑎(𝑝7) is 3

47 , i.e., 0.064 which is
quite low. This could indicate different issues, for example, 𝑝7 could

4We have calculated the metrics on the basis of Choco (choco-solver.org).

be outdated or there could also be a need for including additional
features making the product more accessible, for example, 𝑝7 could
have an excellent usability specifically for beginners, however, this
aspect is not covered (taken into account) by the currently offered
set of features. Furthermore, the accessibility of 𝑝7 could also be
improved by including an upgrade of 𝑝7 supporting additional fea-
tures, for example, a waterproof version of 𝑝7.

If we would include a new type of low-price sports camera 𝑝9
not supporting the feature waterproof, then 𝑎(𝑝9) = 0 since the
feature model would be too restrictive in this case. Such issues can
be resolved, for example, by testing individual products with regard
to their support by the corresponding feature model. Different types
of analysis operations can be applied to recover accessibility [5].

Product Catalog Coverage. We are also interested in the share of
𝑝𝑖 ∈ 𝑃 that can be recommended at least once, i.e., 𝑎(𝑝𝑖 ) > 0 . This
is important due to the fact that we want to avoid situations where
some products 𝑝𝑖 ∈ 𝑃 do not have the chance of being included in at
least one recommendation set – such a situation would be indicated
by 𝑐𝑣 < 1 (𝑐𝑣 is the product catalog coverage – see Formula 4).

𝑐𝑣 =
|{𝑝𝑖 ∈ 𝑃 : 𝑎(𝑝𝑖 ) > 0}|

|{𝑝𝑖 ∈ 𝑃}| (4)

Visibility of Products. Since we are dealing with basic recom-
mendation scenarios, we also have to take into account the item
(product) ranking in recommendation lists. The more often a prod-
uct is shown in a prominent position of a recommendation list5,
the higher the corresponding visibility for customers, since due to
primacy effects, products at the beginning of a recommendation
list are analyzed more often [21]. Taking into account a products’
ranking position 𝑋 in different recommendation lists results in the
following proposed measure of visibility 𝑣 (see Formula 5).

𝑣 (𝑝) = 1 −
Σ𝑅𝐸𝐶∈𝑅𝐸𝐶𝑆 :(𝑋,𝑝 )⊆𝑅𝐸𝐶 𝑋

Σ𝑅𝐸𝐶∈𝑅𝐸𝐶𝑆 :(𝑌,𝑝 )⊆𝑅𝐸𝐶 𝑤𝑜𝑟𝑠𝑡𝑟𝑎𝑛𝑘 (𝑅𝐸𝐶) (5)

For example, product 𝑝5 is part of 3 recommendations – within
these recommendations, 𝑝5 is ranked 4th in two out of 3 recommen-
dations and 7th in one out of three recommendations (the worst
rank in those recommendations is 5, 5, and 8). When applying For-
mula 5, the overall visibility of 𝑝5 (recommendation lists where 𝑝5
occurs), is quite low ((1 − 4+4+7

5+5+8 ) = 0.167), since 𝑝5 is ranked in the
almost worst positions. At the same time, 𝑝5 has a low accessibility
(Formula 3) since it is only part of three recommendation lists (see
Table 2). Having such products could be intended (a product only
relevant for specific customer segments – in our case, customers
interested in lightweight cameras). At the same time, depending on
the popularity of a product, this can also be regarded as a replace-
ment candidate in future product assortment plannings.

Controversy of Features. In the mentioned interactive recommen-
dation scenarios, it can often be the case that a user specifies a set
of preferences which do not allow the identification of a solution
(recommendation) [10, 12, 26]. For example, it is impossible to find a
lightweight sports camera in a recommendation set of our working
example. In this context, we are able to measure the controversy

5Best rank=1 and worstrank represents the last position in a recommendation 𝑅𝐸𝐶 .
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of a feature in terms of the number of times a feature is part of a
conflicting set of user requirements 𝑅.

To measure the controversy 𝑐 of a feature 𝑓 , we need to figure
out all possible combinations of requirements 𝑅 which include 𝑓

and induce an inconsistency with 𝐶 ∪ 𝑃𝐶 . Then, 𝑐 (𝑓 ) represents
the share of inconsistency-inducing requirements including 𝑓 (see
Formula 6). For example, the featurewaterproof is part of 8 different
sets of requirements which induce an inconsistency. In total, we
have 16 different sets 𝑅 inducing an inconsistency resulting in
𝑐 ({𝑤𝑎𝑡𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 }) = 8

16 = 0.5.

𝑐 (𝑓 ) = |{𝑅 ∈ 𝑅𝐸𝑄𝑆 : {𝑓 = 𝑡𝑟𝑢𝑒} ⊆ 𝑅 ∧ 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑅 ∪𝐶 ∪ 𝑃𝐶)}|
|{𝑅 ∈ 𝑅𝐸𝑄𝑆 : 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑅 ∪𝐶 ∪ 𝑃𝐶}}|

(6)
In this setting, we evaluate (on the level of individual features)

how often requirements (𝑅) including feature 𝑓 derived from the
feature model are inconsistent with the constraints in 𝐶 ∪ 𝑃𝐶 , i.e.,
how often a set of requirements including feature 𝑓 does not have
a corresponding recommendation. In this context, the controversy
𝑐 (𝑓 ) can also be regarded as a measure of constrainedness of a
feature model with regard to feature 𝑓 . Omitting the context of a
specific feature 𝑓 , we are also able tomeasure the global controversy
𝑐𝑔 of the feature model (i.e., all features).

𝑐𝑔 =
|{𝑅 ∈ 𝑅𝐸𝑄𝑆 : 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑅 ∪𝐶 ∪ 𝑃𝐶)}|

|{𝑅 ∈ 𝑅𝐸𝑄𝑆}| (7)

Note that in such scenarios, if available, we can also apply conflict
detection and diagnosis algorithms that help to determine minimal
sets of feature selections (so-called conflict sets [17, 30]) that need
to be adapted in order to be able to find a recommendation.

Efficiency of Products. Up to now, we have just analyzed different
properties of features and products. Now, we go one step further
and try analyze the way, an item is perceived by users by taking into
account previous user interactions. We try to measure this aspect
on the basis of efficiency, i.e., the ratio between the number of prod-
uct inclusions in recommendation lists compared to the number of
times the product has been selected (or even purchased) by a user.
We regard this measure of efficiency as a specific type of conver-
sion rate, i.e., how often a displayed product has been converted
into a purchased product. Formula 8 provides a basic measure for
evaluating the efficiency 𝑒 of a product. For example, if product
𝑝6 has been selected (or purchased) 222 times after been having
shown (part of a recommendation list) 771 times, the corresponding
efficiency would be 222

771 = 0.288.

𝑒 (𝑝) = |{𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (𝑝)}|
|{𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝑐𝑜𝑢𝑛𝑡𝑠 (𝑝)}| (8)

Prominence of Features. In interactive recommendation scenarios,
users tend to specify features they are interested in and they know
about to some extent. On the other hand, users avoid to choose
features they do not know about – in such situations, they often
rely on a system recommendation (e.g., in terms of a default [19]). In
this context, we specify the prominence 𝑝𝑟 of a feature in terms of
the number of times the feature has been explicitly specified by the
user compared to the number of times the feature was included in a
final recommendation (see Formula 9). In addition to irrelevancy, a

low prominence can be explained by missing prior feature-related
knowledge but also by low-quality explanations that help to make
a feature transparent for the user.

𝑝𝑟 (𝑓 ) = |{𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑓 )}|
|{𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 (𝑓 )}| (9)

Popularity of Features and Products. We are also interested in
the global popularity of features as well as products. With this we
mean how often a feature or a product has been selected by users
compared to the total number of feature (product) selections. This
aspect can, for example, be measured with Formulae 10 and 11.

𝑝 (𝑓 ) = |{𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (𝑓 )}|
|{𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠}| (10)

𝑝 (𝑝) = |{𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (𝑝)}|
|{𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠}| (11)

For example, if product 𝑝5 has been selected (purchased) 26 times
and the total number of product selections (purchases) is 2.500, the
popularity of 𝑝5 is 26

2.500 = 0.01.

4 THREATS TO VALIDITY
For explaining analysis operations, we have introduced a simplified
working example from the domain of digital cameras. For reasons
of understandability, we have used simplified technical product
properties, for example, instead of explicitly stating a frame per
second (fps) rate, we have used the attribute domain (ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤 ). In
real-world scenarios, such properties are specified on a detailed
technical level. Furthermore, we have used a simplified recommen-
dation function for demonstration purposes, however, this can be
replaced with alternative recommendation functions [7, 22, 27].

Some of the proposed analysis operations require the determi-
nation of large result sets, for example, the set of different combi-
nations of customer requirements or the set of conflicts than can
be induced by customer requirements. Such information can be
directly determined in typical constraint-based recommendation
scenarios with a limited number of offered items and correspond-
ing feature combinations [8]. In the general case, where products
are not defined in the form of a product table and the configu-
ration space is huge and sometimes computationally hard, there
is a potential need of approximations. This can be achieved, for
example, by applying model counting [15] and local search based
conflict detection [31]. We regard related implementations includ-
ing a detailed performance analysis in different recommendation
and configuration settings as a major issue of future work.

We are also aware that the set of proposed analysis operations
is limited, i.e., could be extend with further metrics, for example,
in the context of recommending financial services we could be
interested in the customer communities’ preparedness to take risks.
Another example are sustainability aspects, for example, we could
be interested in the degree of sustainability of selected features.

5 CONCLUSIONS
In addition to existing FM analysis operations, we have proposed
operations that take into account the pragmatics of applying a fea-
ture model. We have introduced such operations in the context
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of constraint-based recommendation where FMs specify customer
preference spaces, i.e., which combinations of features can be se-
lected by customers. Selected features (requirements) are the basis
for recommending relevant products. The discussed analysis op-
erations can support the process of defining a feature model and
also the related task of product space scoping, i.e., deciding about
different variability aspects of the product assortment (when setting
up a new product assortment but also in the context of adapting
already existing assortments and related feature spaces). We have
introduced a set of such analysis operations and regard these as a
basis for future work focusing on extending this set but also propos-
ing solutions that assure applicability when dealing with complex
configuration spaces not restricted by a predefined product table.

Major topics for future work are the following. First, the pro-
posed analysis operations can be further extended to be aware of
trends, e.g., shifts in the preferences of customer communities or
specific community segments. Depending on such shifts, analy-
sis operations could recommend corresponding adaptations in the
feature model and the corresponding product assortment. Second,
the proposed measures could also help to analyze impacts on the
underlying production processes, for example, what does it mean
in terms of needed investments and production capacities to in-
clude a new feature. As mentioned, further research is needed to
find ways to apply the proposed metrics also in the context of FM
configuration scenarios without a predefined product assortment
that reduces the size of the solution space.
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