
Originalarbeit

Elektrotech. Inftech. (2023) 140:572–577
https://doi.org/10.1007/s00502-023-01161-1

Approaching flexible productionwith planningmethods

Marco De Bortoli · Peter Kohout · Dominik Lampel · Leo Fürbaß · Anna Masiero · Stefan Moser ·
Martin Nagele · Tobias Frick · Lukas Knoflach · Gerald Steinbauer-Wagner

Received: 26 May 2023 / Accepted: 23 August 2023 / Published online: 27 September 2023
© The Author(s) 2023

Abstract Flexible production systems are becoming
more and more important for the industry. Higher
requirements for flexibility in the production process
demand further improvements in regards to flexible
automation. In this perspective, the RoboCup Lo-
gistics League competition was designed to provide
a testbed for dynamic production domains. The re-
lated challenges range from robust navigation over
manipulation to efficient production scheduling. In
this paper, we provide an update on how the team
GRIPS approches the flexible production challenge
using modern planning methods. This includes a new
long-term planning and scheduling strategy as well as
a hierarchical structure which further develops such
plans into Behavior Trees.

Keywords Flexible production · Shop floor ·
Autonomous robots · Planning and plan execution ·
Navigation

Ansatz für eine flexible Produktion mit
Planungsmethoden

Zusammenfassung Flexible Produktionssyteme wer-
den immer wichtiger für die Industrie. Höhere An-
forderungen an die Flexibilität des Produktionspro-
zesses verlangen immer mehr Verbesserungen der
flexiblen Automatisierung. Mit der Überlegung, ein
Testbed für dynamische Produktionsumgebungen ab-
zubilden, wurde der Wettbewerb „RoboCup Logistics
League“ entworfen. Die Herausforderungen reichen

M. De Bortoli (�) · P. Kohout · D. Lampel · L. Fürbaß ·
A. Masiero · S. Moser · M. Nagele · T. Frick · L. Knoflach ·
G. Steinbauer-Wagner
Institute for Software Technology, Graz University of
Technology, Inffeldgasse 16B/II, 8010 Graz, Austria
mbortoli@ist.tugraz.at

von robuster Navigation über Manipulation bis hin
zu effizienter Planung. In dieser Arbeit geben wir ein
Update, wie das Team GRIPS an die Probleme der fle-
xiblen Produktion mit modernen Planungsmethoden
herangeht.

Schlüsselwörter Flexible Produktion · Autonome
Roboter · Planung und Planausführung · Navigation ·
Shop Floor

1 Introduction

As a result of the increasing e-commerce as well as
the growing need for highly configurable products
and swift delivery, there is a pressing requirement
for enhanced flexibility in production processes. This
emerging phenomenon, referred to as flexible pro-
duction or Industry 4.0, asks for a higher level of au-
tomation to maintain reasonable pricing, consistent
product quality, and rapid availability. Nevertheless,
the rising demand for flexibility poses a challenge
to the conventional rigid automation, thereby post-
ing novel research questions within domains such
as Robotics, Internet of Things (IoT), multi-agent
systems, planning, and scheduling.

To tackle these challenges and establish a platform
for both research and education in the field of flexi-
ble production, the RoboCup Logistics League (RCLL)
competition was established [9]. The RCLL provides
an abstracted environment that mimics a flexible pro-
duction facility and serves as an attractive platform
for the development and evaluation of innovative pro-
duction concepts.

The GRIPS team, consisting of students and re-
searchers from Graz University of Technology, has
been actively participating in the RCLL since 2016. In
[8], we have described the overarching architecture of
the software utilized by our team to address the chal-

572 Approaching flexible production with planning methods K

https://doi.org/10.1007/s00502-023-01161-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00502-023-01161-1&domain=pdf
http://orcid.org/0009-0007-8947-3013


Originalarbeit

lenges posed by the RCLL, along with a more detailed
exploration of the specific challenges introduced by
the league. In this current paper, we present the re-
cent advancements in the GRIPS software, which have
resulted in improved productivity within the RCLL set-
ting. In particular we report improvements related to
the integration of temporal planning, advanced plan
dispatching concepts and flexible intermediate skills.

2 RoboCup Logistics League

The objective of the league is to promote the advance-
ment of intelligent production automation through
the organization of robotics competitions. In a physi-
cal setting, a team of autonomous mobile robots col-
laborates to manufacture a variety of products by in-
teracting with production machines. The orders for
specific products, including a desired configuration
and delivery schedule, are generated incrementally
during the game. Configurable products are mim-
icked by a stack composed of a base, up to three
rings, and a cap, with the number of rings indicating
the product’s complexity. Special machines are desig-
nated for each of the intermediate production steps,
and additional pieces are required to attach some of
the rings, which must be provided to the correspond-
ing machine. The assembly of the products typically
requires several stages of refinement by different ma-
chines. The complexity of a delivered product deter-
mines the number of points awarded. Details about
how the participating teams tackle the competition
can be found in the champion papers of the Carolo-
gistics [6] and GRIPS [10], together with [8] for a de-
tailed overview of the different challenges presented
by the league.

3 Robot platform

Since quick and reliable manipulation is a key fac-
tor for an efficient production process, a new grip-
per system shown in Fig. 1 was developed. All pro-
cessing related to the gripping procedure is now han-
dled by a programmable logic controller (PLC), which
communicates with the Mid-Level of the Software Ar-
chitecture (see Sect. 4.2) via Open Platform Commu-
nications Unified Architecture (OPC UA). The grip-
per is mounted on a 3-axis positioning system that
is equipped with two distance sensors, one facing to
the front and one to the bottom. When picking up
a product the front sensor scans a profile in the ap-
proximate area, from which the actual position of the
product can then be estimated. The initial scanning
area can be tuned to the accuracy of the alignment
between robot and the machine and if no plausible
object is found the scanning is repeated at a wider
angle. The placing of the product is done in a similar
fashion but using the sensor facing down.

Most problems related to grasping arise due to the
robots not being identical to each other and relatively

Fig. 1 Robot grasping a piece from a machine

flexible in their geometry. A slight tilt or a height dif-
ference in the robot structure can have an effect on the
grasping precision, where the tolerance is in the mm
range. For this purpose, the robots are checked and
some calibrations are set before each competition.

4 Software architecture

In this section we present the novel techniques intro-
ducted to the software stack respect to the old version
presented in [8]. The general architecture does not
differ much, and it is still based on three main lay-
ers, namely (1) planning and dispatching (high-level),
(2) plan refinement and execution (mid-level), (3) be-
havior, control and further low-level functionality. We
refer the reader to [8] for a more detailed description
of the integration between these parts. In order to
gain more flexibility and optimally a new high-level
planning layer was introduced. Instead of a greedy
task allocation algorithm, temporal planning is now
deployed. As a result, the system now has an im-
proved long-term outlook, meaning that it optimizes
the its production plan considering a long time-win-
dow. Other important changes regards the mid-level
executive, which relies now on behaviour trees [2] in-
stead of the BDI-System OpenPRS [7]. Further im-
provement has been implemented in regards of robots
behaviour, like on-the-fly machine alignment.

The difference between the high-level dispatching
module and the mid-level executive module imple-
mented on the robots are that, while the former has
a wider view and dispatches intermediate actions of
the derived general plan to the corresponding robots,
the latter refine such actions into skills.

4.1 Planning and dispatching

The Planning and Dispatching layers implements
a centralized control strategy for multi-agent system
in a dynamic domain. It is based on three main com-
ponents: (1) a Goal Reasoner (GR), (2) a Planner (P),
and (3) a Dispatching and Monitoring Module (DM).

K Approaching flexible production with planning methods 573



Originalarbeit

DISPATCHING
AND MONITORING

GOAL
REASONER PLANNER

KNOWLEGE
BASE

All Goals

(re)planning

Selected Goals

Plan
Update

Task Feedback

Fig. 2 Planning and Dispatching Architecture

In Fig. 2, the interaction between the components
is shown. The Dispatching and Monitoring module
plays the role of the main controller that invokes
GR and and P as well as executes the obtained plan.
The plan execution is constantly monitored for issues
that may require a regeneration of goals or plans, e.g.
failed actions or deadline violations.

The planner is responsible for finding a plan for the
goals selected by GR while minimizing its makespawn.
Planning is performed using the temporal planner
TFD [3] that offers numerous PDDL 2.1 features [4].
We chose temporal planning for its ability to handle
temporal deadlines and coordinate multiple agents.
The downside is the high planning costs. In order
to address this issue for the RCLL domain, we ab-
stracted the domain model and introduced an online
goal selection. The domain is modeled in PDDL by
representing the two main interactions with a station
as abstract action: get and delivery only. The former
retrieves a workpiece from a station after processing,
while the latter delivers the workpiece to a station for
processing. In the RCLL robots can not carry more
than one piece at a time, so every get◦delivery action is
interleaved with a move action. For this reason, both
get and delivered already include costs and constraints
related to the previous move action: a get action ac-
tually models a move_and_get macro-action. This
significally speed-up the planning process. The result
of planning is a temporal plan, which is represented
by the schedule σ, formed by triples 〈a, ta ,da〉, where
a is an action, ta is the time when the action a needs
to be started, and da is the duration of the action.
Table 1 shows a temporal plan to build and deliver
a simple product in the RCLL.

This representation poorly supports action dis-
patching, since it is not easy to determine how delays
in the execution of an action, affect the other triples
of the plan. To address this, we represent the plan as
a temporal graph (Simple Temporal Network), which
encodes the temporal dependencies and the partial
order of actions, without constraining the start of ac-
tions to specific time points. An accurate estimation
of action durations is crucial for appropriate plan-
ning and monitoring plan execution. The interaction
time of a robot with a station has been estimated
empirically. Regarding the traveling time, we precom-
pute a matrix containing all the estimated costs for
traveling between each pair of locations. Since the

Table 1 Temporal plan for the simplest product. Param-
eters (except for the agent) have been omitted for better
readability
1 0.000:(getBaseFromBS r1)[51.000]

2 0.000:(bufferCapBaseFromCS r2)[89.000]

3 89.001:(getBaseFromCS r2)[52.000]

4 141.002:(deliverProducttoCS r1)[85.000]

5 226.003:(getProductFromCS r1)[52.000]

6 278.004:(deliverProductToDS r1)[73.000]

same path finding algorithm is used as in the robot’s
navigation skill, the estimated times are close to the
real ones. To make the estimation even more precise,
we are also considering orientation costs at the start
and at the end of each movement action. By adopting
this procedure we achieve an accurate estimation of
actions duration that is incorporated into the PDDL
domain.

As we are interested in dynamic domains, planning
needs to be fast, to be able to react to changes and
new opportunities in the environment in time. For
this reason, GR selects the most rewarding set of goals
P the planner may be able to obtain a plan for with
a given time budget (e.g., 1 min). For RCLL a sin-
gle goal is an individual order. In general, planning
for all received orders is not possible within a reason-
able time window. Thus, we follow the idea of partial
satisfactory planning [11]. GR solves a relaxed ver-
sion of the domain, assuming that each goal can be
achieved by a single agent individually, ignoring coop-
eration or resource management. Giving this setting,
the goals selection is formulated as a simple task allo-
cation problem with an overall deadline. We employ
the ASP solver CLINGO [5] to compute this optimiza-
tion task, which consists of finding a subset of goals
such that the awarded points are maximized within
the given constraints. A drawback of the goal selec-
tion heuristic is that the solution of the relaxed prob-
lemmay be too optimistic. Thus, the planner may not
able to find a plan achieving all selected goals while
respecting the given deadlines. To mitigate this we ex-
ploit parallel planning over multiple sets of goals. The
sets are the original set plus sets obtained by either
dropping goals or replacing goals with less complex
ones. For each of this set, a planning thread is ran for
1 minute. The rational behind this approach is that in
general it is more likely to find a feasible plan for sim-
plified goal sets with a bounded time budget. Among
the returned feasible plans, we select and dispatch the
one with the highest reward.

The Dispatching and Monitoring module dis-
patches the actions of the obtained plan in time,
monitors proper execution (in terms of state and
time), and initiates replanning if necessary. These
three events may trigger replanning: (1) failed skill
execution, (2) successful execution of the actual plan,
(3) impossibility to achieve a goal in time.

574 Approaching flexible production with planning methods K



Originalarbeit

In this work, we use a dedicated approach to check
the temporal constraint of the temporal network
reprenting the plan, in order to allow an earlier de-
tection of deadline violations. We use two types of
edges: (1) action duration edges [da ,da] between start
and end of the action a, and (2) partial order edges
[0,+∞) between the end of an action and the start
of the following one. Nodes corresponding to start
actions are dispatched by sending the action to the
robot for execution, while end nodes are dispatched
when a feedback for the successful execution of the
corresponding action is received. The partial order
encoded through the edges is ensured by the dis-
patching. Unfortunately, it can not be expected that
the execution in the real world perfectly respects the
temporal constraint [da ,da ] (interval betweenmin and
max time). The approach presented in [1] propagates
the detected delay by fixing the execution times of
already executed actions and updating the remaining
deadlines using constraint propagation. In our ap-
proach, violations of such edges are tolerated, since
our early deadline detection strategy immediately rec-
ognizes if such delays will cause a deadline violation
in the future. Thus, we use the opposite approach,
propagating back the deadlines from the goal nodes
to the rest of the network, labeling each node with
a relative deadline rdl(x). This represents the latest
time point we can dispatch that node without violat-
ing the deadline x. Starting from the goal vertices, we
calculate the relative deadlines rdl of each vertex by
traversing the edges in the opposite direction, sub-
tracting the lower bound of the edge at each step. If
there are more paths from a normal vertex to a goal
vertex, we keep the more restrictive relative deadline.
Every time a node is dispatched, we check if all its
relative deadlines are respected, otherwise we trigger
replanning. In Fig. 3 a partial result of this approach
applied to a temporal graph is shown.

4.2 Mid-level executive

In order to ensure reliable execution of tasks, a mod-
ification was made to the middle layer, which now
utilizes Behavior Trees [2] for action execution. Each
dispatched action is divided into smaller, atomic low-
level skills, such as moving the gripper or placing an
object on a station. This allows for the decomposition
of each action into executable skills. The execution of
routines is represented as a tree structure composed
of different types of nodes. Control nodes are used to
alter the program flow, while execution nodes initiate
actions. These nodes exchange data through black-
boards implemented by the Behavior Tree library. ROS
action clients are used to trigger action on the PLC,
the robot platform or to gather sensing information.
The high-level receives notifications about the execu-
tion outcomes. If a tree fails to execute, control is
returned to the high-level, and the robot waits for the
next action to be assigned. The key advantage of this

Fig. 3 The deadline propagation process on a part of a tem-
poral network. 1020 is the final deadline for the entire network

approach is the user-friendly nature of behavior trees,
while still enabling the encoding of complex behav-
iors.

One notable improvement over the previous sys-
tem is the introduction of on-the-fly alignment for
the robot’s interaction with machines. In the previ-
ous system, the robot would first navigate towards the
closest zone on the correct side of the machine, fol-
lowed by a separate alignment step with the conveyor.
In contrast, the updated system enables the robots
to initiate alignment immediately upon detecting the
presence of a machine while moving towards the des-
ignated zone. For its implementation, a multiplexer-
based mechanism is employed, which switches be-
tween the velocity provided by the navigation planner
to the robot platform and a feedback controller uti-
lized for precise alignments. A proportional controller
was chosen as control algorithm. We can reach refer-
ence tracking and a low settling time due to the high
gain of the controller and a velocity constraint. The
velocity constraint is calculated based on the maxi-
mum acceptable error divergence (2 cm) and the ac-
celeration of the move base (3 m/s²). The error cal-
culation for the controller determines the signal for
selecting the multiplexer values. Once a threshold is
reached, indicating that the robot can safely align with
the machine, the multiplexer switches from the move
base velocity to the alignment velocity. This on-the-fly
alignment approach significantly reduces skill transi-
tion delays by minimizing network interactions and
tree initializations.

5 Conclusion

This paper presents the key improvements imple-
mented by the GRIPS team in order to effectively
address the challenges posed by the RCLL. These
enhancements concern both the high-level decision-
making component and the mid-level executive layer
of the software stack utilized by the team. In terms of
the high-level decision-making, a novel architecture
has been developed, which incorporates a temporal
action-planner, a goal reasoner, and an action dis-
patcher. This architecture effectively coordinates the
fleet of robots and assigns and schedules appropriate
actions for execution. Furthermore, these actions are
subsequently transformed into behavior trees within
the mid-level layer. These behavior trees incorporate
additional diagnosis and monitoring techniques that
are seamlessly integrated into the overall structure.
In addition, a new gripper allowed for faster grasping
and placing operations. The incorporation of these

K Approaching flexible production with planning methods 575



Originalarbeit

improvements has resulted in enhanced performance
within the RCLL competition, as demonstrated by the
team’s success in winning two competitions following
the adoption of the new architecture.

Acknowledgement Team GRIPS is grateful to its sponsors
Knapp AG, ANEXIA Internetdienstleistungs GmbH, Magna
Steyr GmbH and AccuPower GmbH.

Funding Open access funding provided by Graz University
of Technology.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
anymedium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article
are included in the article’sCreativeCommons licence, unless
indicated otherwise in a credit line to thematerial. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Castillo L, Fdez-Olivares J, González-Muñoz A (2002) A
temporalconstraintnetworkbasedtemporalplanner

2. ColledanchiseM,ÖgrenP (2018)Behavior trees in robotics
and AI: An introduction. CRC Press, Boca Raton, Florida,
USA

3. Eyerich P,Mattmüller R, Röger G (2009)Using the context-
enhanced additive heuristic for temporal and numeric
planning

4. FoxM, LongD (2003) PDDL2. 1: An extension to PDDL for
expressing temporal planning domains. J Artif Intell Res
20:61–124

5. Gebser M, Kaminski R, Kaufmann B, Schaub T (2014)
Clingo= asp+ control. https://doi.org/10.48550/arXiv.
1405.3694(arXivpreprintarXiv:14053694)

6. Hofmann T, Limpert N, Mataré V, Ferrein A, Lakemeyer G
(2019)Winning the robocup logistics league with fast nav-
igation, precise manipulation, and robust goal reasoning.
In: Chalup S, Niemueller T, Suthakorn J,WilliamsMA (eds)
RoboCup2019: RobotWorldCupXXIII. Springer,Cham,pp
504–516

7. IngrandF,ChatilaR,AlamiR,RobertF(1996)Prs: ahighlevel
supervision and control language for autonomous mobile
robots. Proceedings of IEEE International Conference on
RoboticsandAutomation,vol1,pp43–49

8. Kohout P, De Bortoli M, Ludwiger J, Ulz T, Steinbauer G
(2020) A multi-robot architecture for the RoboCup Lo-
gistics League. e&i Elektrotechnik Informationstechnik
137:291–296

9. Steinbauer G, Niemueller T, Karras U (2018) The RoboCup
Logistics League - A Testbed forNovel Concepts in Flexible
Production. Robotic Assembly – Recent Advancements
and Opportunities for Challenging R&D: Workshop IEEE
International Conference on Automation Science and En-
gineering

10. Ulz T, Ludwiger J, Steinbauer G (2019) A Robust and Flexi-
ble System Architecture for Facing the RoboCup Logistics
League Challenge. In: HolzD, Genter K, SaadM, von Stryk

O (eds) RoboCup 2018: Robot World Cup XXII. Springer,
Cham,pp488–499

11. VanDen BrielM, Sanchez R, DoM, Kambhampati S (2004)
Effectiveapproachesforpartialsatisfaction(over-subscrip-
tion)planning. Proceedingsof theNationalConferenceon
Artificial Intelligence(AAAI),pp562–569

Publisher’sNote SpringerNature remainsneutralwith regard
to jurisdictional claims in published maps and institutional
affiliations.

MarcoDeBortoli, isaPh.D.stu-
dent at the Graz University of
Technology. His field of study
is planning and scheduling. He
graduated in Computer Science
from the University of Udine,
specializing in logic program-
mingandplanning.

Peter Kohout, is a Master’s stu-
dent of Computer Science at the
Graz University of Technology
and leader of the GRIPS team in
theRoboCupLogisticsLeague.

Dominik Lampel, is a Master’s
student at theGrazUniversity of
Technology. He is currently fin-
ishing his Master’s thesis in the
areaof roboticsandsoftwarede-
velopment and has been part of
the RoboCup team GRIPS since
2022. His Master’s thesis com-
prises a simulation that will be
usedintheRoboCupintheyears
tocome.

576 Approaching flexible production with planning methods K

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.1405.3694
https://doi.org/10.48550/arXiv.1405.3694


Originalarbeit

Leo Fürbaß, is an Informa-
tion and Computer Engineering
Master’s student. He joined
the RoboCup GRIPS team at the
end of 2018, during the third
semester of his Bachelor’s stud-
ies. At themoment, he ismainly
working on tasks regarding, for
example, control and low-level
execution.

Anna Masiero, is currently do-
ing a Master’s degree in Elec-
trical Engineering at the Graz
University of Technology. Be-
fore that, she attended a school
for higher technical education
in her hometown Bolzano, Italy.
She joined the RoboCup GRIPS
team in 2020 and has mainly
worked on electrical or hard-
ware-related issues focusing on
thegrippingsystem.

Stefan Moser, is a Master’s stu-
dent of Information and Com-
puter Engineering at the Graz
University of Technology and a
memberoftheGRIPSteaminthe
RoboCupLogisticsLeague.

Martin Nagele, is a student of
Information and Computer En-
gineering at the Graz University
of Technology. He is currently
pursuing a Master’s degree with
a focuson robotics andmachine
learning.

Tobias Frick, iscurrentlystudy-
ing Information and Computer
Engineering at the Graz Uni-
versity of Technology special-
izing in robotics and computa-
tional intelligence. Previously,
heattendedtheschoolforhigher
technical education inRankweil
with a focus on computer engi-
neering. Alongside his studies,
heisworkingasasoftwaredevel-
oper.

Lukas Knoflach, graduated in
Information and Computer En-
gineering from the Graz Univer-
sityofTechnology. Heisa former
memberoftheGRIPSteaminthe
RoboCupLogisticsLeague.

Gerald Steinbauer-Wagner, is
an Associate Professor at the In-
stitute for Software Technology
at the Graz University of Tech-
nology. His main research in-
terests are autonomous mobile
robots, model-based diagnosis,
reasoning, planning, and the
RoboCup. He is particularly
interested in intelligent robust
control of autonomous mobile
robots.

K Approaching flexible production with planning methods 577


	Approaching flexible production with planning methods
	Abstract
	Zusammenfassung
	Introduction
	RoboCup Logistics League
	Robot platform
	Software architecture
	Planning and dispatching
	Mid-level executive

	Conclusion
	References


