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FREE INTEGRAL CALCULUS
FRANZ LEHNER AND KAMIL SZPOJANKOWSKI

ABSTRACT. We study the problem of conditional expectations in free random variables and pro-
vide closed formulas for the conditional expectation of a resolvent ¥(z) = (1—2zP(ay,...,a,)) "
of an arbitrary non—commutative polynomial P(ay,...,ay) in free random variables aq, ..., a,
onto the subalgebra of an arbitray subset of the variables a1, ..., a,. More precisely, given a lin-
earization of ¥(z), our methods allow to compute a linearization of its conditional expectation.
The coefficients of the expressions obtained in this process involve certain Boolean cumulant
functionals which can be computed by solving a system of equations. On the way towards
the main result we introduce a non—commutative differential calculus which allows to evaluate
conditional expectations and certain Boolean cumulant functionals 3° and 3°. We conclude
the paper with several examples which illustrate the working of the developed machinery. For
completeness two appendices complement the paper. The first appendix contains a purely al-
gebraic approach to Boolean cumulants and the second appendix provides a crash course on
linearizations of rational series.

CONTENTS
Introduction . . . . . . . .o 2
1.1 Outline . . . . . . . e 2
1.2 Subordination for general polynomials . . . . . . .. .. ... ... ... ... 4
Preliminaries . . . . . . . . . . .. 8
2.1 Non-commutative probability spaces . . . . . . . . .. .. ... ... 8
2.2 Conditional expectations . . . . . . . . . ..o 8
2.3 Main idea — Boolean cumulants and conditional expectations . . . . . . . .. 9
2.4 Boolean cumulants with products as entries . . . . . . .. ... ... ... .. 11
2.5 Tensor products and tensor algebras . . . . . . .. .. ... ... L. 11
2.6 Free products of algebras . . . . . ... Lo Lo 12
2.7 Derivations . . . . . . . .. 13
Boolean cumulants of free random variables . . . . . .. ... ... ... .. 16
3.1 Characterization of freeness by Boolean cumulants . . . . . . . ... ... .. 16
3.2 Mixed Boolean cumulants of free random variables . . . . . .. ... ... .. 19
Calculus for conditional expectations . . . . .. ... ... .. ........ 21
Calculus for the block cumulant functional 5* . . . . .. ... . ... ... . 27
Linearization and conditional expectations . . . . . . .. ... ... .. ... 31
6.1 Amplifications of expectations and cumulants . . . . . . . ... ... ... .. 31
6.2 Amplifications of derivations . . . . . . .. .. ... 32
6.3 Computing conditional expectations via linearizations . . . . . ... .. ... 33
Examples . . . . . . . 37

Date: Rev.342, November 8, 2023.

2020 Mathematics Subject Classification. Primary: 461.54. Secondary: 15B52.
Key words and phrases. Free Probability, subordination, Boolean cumulants, conditional expectation.
Supported by the Austrian Federal Ministry of Education, Science and Research and the Polish Ministry of

Science and Higher Education, grants N°® PL 08/2016 and PL 06/2018.

FL: This research was funded in part by the Austrian Science Fund (FWF) grant 1 6232-N BOOMER (WEAVE).
KSz: This research was funded in part by National Science Centre, Poland WEAVE-UNISONO grant BOOMER
2022/04/Y /ST1/00008.

For the purpose of Open Access, the authors have applied a CC-BY public copyright licence to any Author
Accepted Manuscript (AAM) version arising from this submission.

1



2 F. LEHNER AND K. SZPOJANKOWSKI

7.1 The product of free random variables . . . . . . . . .. ... ... . ... ... 37
7.2 Conditional expectations of free commutators and anti-commutators . . . . . 38
7.3 A Lie polynomial . . . . . . . . ... 41
7.4 An example with three variables . . . . . .. .. .. ... ... ... ..... 42
7.5 Avrational example . . . . ..o 43
Appendix A An algebraic approach to Boolean cumulants . . . . .. .. .. 45
A.1 Algebraic proofs of Lemma 2.6 and Corollary 2.7 . . . . . . .. .. ... ... 45
A.2 Boolean cumulants via tensor algebras . . . . . . ... ... .00 46
Appendix B Rational series and linearizations . . . . . . .. ... ... ... .. 49
References . . . . . . . . L 51

1. INTRODUCTION

1.1. Outline. Free probability was introduced by Voiculescu 40 years ago [42] as a means to
solve long-standing problems in von Neumann algebras. Over the years however deep connec-
tions to several branches of mathematics came to light, among others random matrix theory
and representation theory of the symmetric group. Complementing Voiculescu’s analytic ap-
proach, Speicher developed a systematic theory of free cumulants [35], already announced in
[42]. In this approach, free independence is characterized by vanishing of mixed free cumulants,
in analogy to classical independence, which can by characterized by vanishing of mixed classical
cumulants. Indeed, most properties of free cumulants can be obtained from the corresponding
properties of classical cumulants by replacing the lattice of all set partitions by the lattice of
non—crossing partitions, following the general scheme of multiplicative functions on lattices [12],
see the standard reference [31] for a detailed treatment of free cumulants. The discovery of free
cumulants triggered a lot of progress in free probability, and it was the starting point of many
deep combinatorial studies of various structures in free probability (see [30, 21, 22] and many
other).

“Partial cumulants” were introduced by von Waldenfels in order to simplify certain calcula-
tions in mathematical physics [47]. Later they were called Boolean cumulants corresponding
to the notion of Boolean independence which was introduced in [36]. They naturally appear
in the guise of first return probabilities of random walks [48]. Combinatorially Boolean cumu-
lants follow the pattern of classical and free cumulants by replacing the lattice of set partitions
(resp. noncrossing partitions) with the lattice of interval partitions which is isomorphic to the
Boolean lattice. From a combinatorial point of view Boolean cumulants are the simplest kind
of cumulants.

Recently it was noticed that despite their simplicity Boolean cumulants are useful for non—
commutative probability in general [18] and free probability in particular [5, 14, 23, 37]. Boolean
cumulants were used for the first combinatorial solution to the problem of the free anti-
commutator in [14] (an analytic solution was found earlier by Vasilchuk [41]; a solution in
terms of free cumulants was presented recently in [32]), and for the identification of the coeffi-
cients of power series expansion of subordination functions [23] (implicitly also in [48]).

In the present paper we continue these investigations and show that Boolean cumulants may
indeed be used for a systematic study of free random variables. The first step in this direction
is a surprisingly simple characterization of freeness by the vanishing of some mixed Boolean
cumulants.

Theorem 1.1 (Characterization of freeness in terms of Boolean cumulants). Let (M, @) be
a tracial non—commutative probability space. Subalgebras A and B are free if and only if
Bm(ar,as,...,a,) = 0 whenever n > 1 and a; € AUDB for j = 1,2,...,n with a1 and a,
coming from different subalgebras.

This property turns out to be the key to an efficient calculation of conditional expectations
in free random variables. In particular, for free random variables a1, as, ..., a, we determine
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the conditional expectation of the resolvent (1 — 2P(ay,as,...,a,))”! of an arbitrary non—
commutative polynomial P(ay,as,...,a,) onto a subalgebra generated by some subset of the
variables ay, as, . .., a,. To this end we employ the concept of linearizations, a method also used
in [4, 16]. More precisely, given a linearization of the resolvent, we obtain a linearization of its
conditional expectation. Our discussion is focused on non—commutative rational functions of
the form (1 — zP(ay,as,...,a,))"!, however an example at the end of this paper shows that
the methods are applicable to a wider class of rational functions.

The first step of our approach is based on a recurrence which can be summarized as a
free integration formula and which in the case of resolvents naturally leads to a system of
linear equations for the conditional expectation which can be turned into a linearization. The
coefficients appearing in said linearization are certain generating functions of mixed Boolean
cumulants of free random variables.

For the sake of simplicity let us consider the case of non—commutative polynomials in two
free random variables X and Y. It is known that for free random variables the conditional
expectation of a polynomial is a polynomial again. We show how to obtain this result in a
recursive way. The functional (% is defined on non-commutative polynomials and depends on
the distributions of X and Y. The derivative dy acts on non—commutative polynomials. For
precise definitions we refer to Section 4.

Theorem 1.2 (Free integration formula). The conditional expectation of a non—commutative
polynomial P € C(X,Y’) satisfies the identity

Ex[P] = 85(P) + (8% ® Ex)(dx(P)).

This formula has a certain resemblance to classical integration. Ex “integrates away” the
variable Y and if we denote Jy = 8% ® Ex, then the formula reads

Iy (0x(P)) = Ex[P] — 8%(P) = Jy(I® P — P& I).

The formula above allows to calculate conditional expectations in terms of Boolean cumu-
lants. Thus we are faced with the problem to calculate Boolean cumulants of functions in free
random variables. In order to do this we introduce an algebraic calculus of Boolean cumulants,
based on a number of algebraic rules and devices which allow to establish equations for the
generating functions arising from the previous calculations. More precisely we introduce two
functionals 4° and 3° on the free algebra which evaluate Boolean cumulants in two ways, block-
wise and fully factored. We then establish mutual recursive equations between these with the
help of the previously developed algebraic devices which lead to a closed system of algebraic
equations. Although the functionals 4? and 3° are defined in relation to conditional expecta-
tions, it appears that they will have much wider applications, and the calculus we introduce
for them is of independent interest. The calculus for 5° and (°, based on generalizations of
observations from [14, 23], subsumes the combinatorial case-by-case analysis of functions in free
variables into a general algebraic machinery.

First steps towards a similar calculus in terms of free cumulants were done in [10] and
we expect the unshuffle algebras of [13] to play a role here. Mixed free cumulants of free
random variables vanish and they turn additive free convolution into a simple addition. However
it turned out that when it comes to multiplicative free convolution, free cumulants offer no
advantage as the formulas are actually identical [5]. The advantage of Boolean cumulants lies
in their combinatorial simplicity. The main steps of our calculations are as follows:

(i) Turn the simple combinatorics of Boolean cumulants of products of free variables into an
algebraic rule involving certain derivations which appeared earlier in free probability.
(ii) Apply these derivations to resolvents and use the fact that these play the role of “eigen-
functions” analogous to the exponential function in classical calculus.
(iii) Use the formula for Boolean cumulants with free entries in order to separate the variables
and obtain equations for the generating functions.
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We do not prove any new combinatorial results, rather provide algebraic reformulations of
known combinatorial identities and put them together into an effective machinery to make them
available for free analysis. It allows to establish equations for generating functions of Boolean
cumulants of functions in free variables which in some cases can be effectively solved and used
to compute conditional expectations and distributions of arbitrary polynomials in free random
variables.

In particular we present an algebraic interpretation of the formula for Boolean cumulants
with products as entries and a characterization of freeness in terms of Boolean cumulants from
[14] in terms of Voiculescu’s free derivative. We refer to Theorem 5.5 for the precise statement
and Definitions 4.10 and 5.2 for definitions of the functionals 4* and /3°.

The paper is organized as follows.

The rest of the introduction is devoted to an exposition of the problem of conditional expec-
tations.

Section 2 presents results about the basic ingredients: conditional expectations, Boolean
cumulants and derivations.

In Section 3 we prove the characterization of freeness announced above in Theorem 1.1.

In Section 4 we provide a method to compute conditional expectations in terms of Boolean
cumulants. In particular we prove Theorem 1.2.

In Section 5 we introduce a calculus for the Boolean functionals 3° and 3° which is summa-
rized in Theorem 5.5.

In Section 6 we show how linearizations allow to solve the problem for subordinations for
general polynomials. In particular we prove Theorem 1.3 which we discuss below.

Section 7 contains examples.

Appendix A we give self-contained algebraic proofs of the basic results about Boolean cumu-
lants as well as a reformulation of these in terms of tensor algebras.

Finally Appendix B contains the essential information required for the computation of lin-
earizations.

1.2. Subordination for general polynomials. Let X and Y be classically independent
random variables with distributions px and gy, then their joint distribution is pxy = pux ® iy,
i.e., the expectation of any integrable function f(X,Y) can in practice be computed as a double
integral

Ef(X,Y) = / / £ ) dyy () dpx ().

In the non—commutative case there is no such integral representation, however the inner integral
is in fact the conditional expectation

(11) / F(X, ) dpy () = E[f(X,Y)|X]

and thus

Ef(X.Y) =EE[f(X,Y)[X]]
which does have a non—commutative analogue. In the present paper we propose a method to
compute this non—-commutative conditional expectation

IEX [P(Xv Y)]

for arbitrary non—commutative polynomials P and more general rational functions in free ran-
dom variables. It is the analogy with (1.1) which motivated us to call our endeavour free integral
calculus.

This follows ideas of Voiculescu [43] and Biane [7] who showed that for the sum a + b of
two free random variables a, b there exists an analytic self map of w : C* — C* such that the
conditional expectation of the resolvent onto the algebra generated by a is a resolvent again

(12) Edl(z —a -] = (@(z) — ),
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which after application of ¢ yields results in the subordination relation G,(w(z)) = Gayp(2).
Moreover the function w is known to satisfy a fixed point equation.

In the present paper we generalize this method to arbitrary polynomials using an algebraic-
analytic method based on the observation from our previous work [14, 23] that Boolean cumu-
lants turn out to be a convenient tool to “store” the results of the “partial integral” described
above.

Fix a non—commutative probability space (M, ). Given self-adjoint random variables
ap,as,...,a, € M and a non-commutative polynomial P € C(X;, Xs,...,X,), our objec-

tive is an explicit formula for the conditional expectation of (1 —zP(ay,as, ..., an)> onto the
algebra generated by some subset of the variables aq, as, ..., a,. Without loss of generality we
may assume that the subset consists of a1, as, ..., ar, where k < n.

In the first step we construct a linearization of the resolvent, i.e., matrices C1,Csy,...,C, €
My (C) such that for L=C1 ®a; +Co®as+ -+ C, ® a, € My(C[z]) ® M and z in some
neighborhood of zero we have

(1.3) (1—2"P(ay,as,...,a,)) " =u'(Iy — 2L) v

for some vectors u,v € CV, where m is the total degree of P. In general a polynomial may have
many linearizations; in Appendix B we discuss in detail algorithms for finding linearizations
which work for our purposes. It suffices to say for the moment that in contrast to [4] some
technical issues force us to work with regular linearizations which are not self-adjoint and to
restrict the calculations to the level of formal power series.

In the case when A is the von Neumann subalgebra freely generated by ai,as, ..., a,, we
prove the following theorem. It follows by evaluating the formal expression from Theorem 6.12
below in the variables aq, ao, ..., a,.

Theorem 1.3 (Subordination for general polynomials). Given a linearization (1.3) for a poly-
nomial P € C(Xy,Xs,...,X,) of degree m we have for z in some neighbourhood of O the
following linearization for the conditional expectation of the resolvent

(14) Ea[(1—2"Plar,az, ..., a,)) 7"

—1
:ut<IN—z(01®a1+Cg®a2+~~~+0k®ak—|—(Ck+1Fk+1+-~~+CnFn)®I)> v

where the matrices Fy, Iy, ..., F, constitute the unique fixed point of the system of equations
-1
(1.5) Fy =1, (z(IN—zZCij> 01) fori=1,2.....n
i

with entries which are analytic at 0. Here by 1,(z) = > o0, Ba(a)z""1 we denote the shifted
Boolean cumulant generating function of a random variable a.

Remark 1.4.

(i) From a practical point of view Theorem 1.3 asserts that the evaluation of the conditional

expectation of the resolvent

(1 — sz(al,ag,.‘.,an))_l = (IN —2(C1®a; + Cy ® ay +---+Cn®an))_1v
onto A (i.e., “integrating out” aj41,...,a,) amounts to replacing the corresponding sum-
mands Iy ® a; with the matrices F; ® 1.

(ii) Although only the matrices Fjy1, Fyy2, ..., F, explicitly appear in the final formula (1.4),
the matrices FY, Fy, ..., I}y are required as well in order to extract the former from the
solution of equation (1.5). Moreover observe that in general the equations cannot be effec-
tively decoupled (unless n = 2, see example 1.6 below) and each matrix from Fy, Fs, ..., F,
depends on the distributions of all variables aq, ao, ..., a,.
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Remark 1.5 (Subordination). The previous theorem generalizes the subordination phenomenon
in the following sense. For simplicity consider the case of two free variables a,b and fix a
polynomial P € C(X,Y) of degree m. We fix an N x N linearization
(1—-2"P(X,Y)) ' =u'(Iy — 201X — 2C,Y)7!
then the above theorem says that the moment generating function Mp(z) = ¢ ((1 — 2P(a,b)) ™)
is obtained from the linearization via
Mp(ap(2™) = ute™ (Iy — 2C1a — 2Cob) 1w

where V) is the entry-wise application of . Let H; = (I — zCyF})™", then the preceding
identity can be written as

Mp(a’b)(zm) = utgo(N) (IN — Zchzb)ilHlv

Suppose that the matrix H,C, is diagonalizable and write zH,Cy = QDQ~! with D =
diag(A1, ..., Ay). Then we obtain

My (A1) 0 e 0
0 My(A e 0
Mpap(2™) = (Pu)tp(Iy — Db) P~ Hyv = @ bf 2 ) 0
0 0 ... My(\)

where @ = Pu, © = P~'Hiv and My(z) = ¢((1 — 2b)™!) is the moment generating function of
b.

Therefore the eigenvalues \; = \;(z) of zH;Cy can be understood as a generalization of the
subordination functions from free additive convolution. At the time of this writing we do not
know whether H,C) is actually diagonalizable in general. If this turns out not to be the case,
one can use the Jordan canonical form and the derivatives M}, M/’,... will populate the upper
triangular parts fo the Jordan blocks.

Let us illustrate Theorem 1.3 with a quick derivation of the subordination function for addi-
tive free convolution and for anti-commutator. For further examples see Section 7.

Ezxample 1.6. The polynomial P(a,b) = a + b is already linear and we can apply Theorem 1.3
with the trivial linearization

E, [(1 —z(a+ b))_l} =(1—za— ZFb(Z))_l

where

Fo(2) = ﬁa(#Fb(ZQ Fy(z) = ﬁb(%m)

Both formulas for the conditional expectation and the two equations can be easily checked to be
equivalent to the well known subordination results for free additive convolution. In particular
in this case it is straightforward to decouple the equations and obtain separate fixed point
equations for F; and F5 after a simple substitution of one equation into the other.

Ezxample 1.7. Let P(a,b) = ab+ ba be the anti-commutator, then for z in some neighbourhood
of zero the conditional expectations of the resolvent are
-1
E, [(1 — 2%(ab + ba))fl} = (1 — fausz — 22a (fass + foua) — f2,34a223) ;
1

Eb [(1 — 22(6Lb + ba))_l} = (1 — f17122 — Z2b (f1711 + fl'gz) — f1721b223>_ .

This result is obtained with the linearization involving the matrices
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Apriori the equations (1.5) involve a total of 32 variables f;;, k € {1,2},1 <,j < 4. However
it is easy to see with the help of the projection matrices onto ker Cy and ker Cy (cf. Remark 6.14)
that many variables vanish and the solution matrices have the form

firn fizz 00 00 O 0

_|fizr fize 00 100 0 0
= 0 0 00 B= 0 0 fass foz34
0 0 00 0 0 fous foua

and satisfy the following system of equations

Fi =7 (2Q1(1 = 205 F,) 7' Ch)
Fg = ﬁb (ZQQ(l — ZClFl)ilcg) ,

where I — (); is the projection onto the kernel of the matrix Cj, i.e., C;Q); = C;. This system
gives the analogue for the anti—-commutator of the fixed point equation in the case of additive
convolution stated in the previous example. Note that the explicit formulas for the matrices
Hy = Q1(1 — 20,F,)7'Cy and Hy = Qo(1 — 2C1 F,)~1Cy are essentially the same as those for
matrices H, and Hj from Theorem 6.1 in [14], i.e., linearizations were already implicitly present
in [14].
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2. PRELIMINARIES

In this section we introduce the main ingredients of the paper: conditional expectations,
Boolean cumulants and derivations.

2.1. Non—commutative probability spaces. We assume that M is a unital x-algebra and
v : M +— C is a positive unital linear functional, commonly called a state and we usually
assume it to be faithful. We will refer to the pair (M, ¢) as a non-commutative probability
space. For technical reasons we will mostly work with the free associative algebra.

Notation 2.1. Let X = {Xy, Xy, ..., X, } be an alphabet. We denote by X+ = {X; X, --- X;, |
ke N,i; € {1,2,...,n}} the free semigroup it generates and by X* = X*U{1} the free monoid.

We denote by C(X) = C(X1, Xs,...,X,) the free associative algebra generated by the vari-
ables X1, X, ..., X, i.e., the linear span of X*, also known as the algebra of non—commutative
polynomials.

For elements ay,as,...,a, € M and P € C(X;, Xs,...,X,,) we denote by P(ay,as,...,a,)
the evaluation of a polynomial P € C(X;, Xy, ..., X,), i.e., the element of M obtained after
substituting every X; with a; for i =1,2,... n.

The joint distribution of ai,as,...,a, is the linear functional p : C(X7, Xs,..., X,,) — C
given by

1(P) = ¢ (Play,az,...,a,)).

Definition 2.2. A family of subalgebras (A;);c; of a ncps (M, ) is called free or free inde-
pendent if

o(ugug -+ u,) =0
for any choice of u; € |J; A; such that p(u;) = 0 and u; € A;; with i; # ;41 for all j €
(1,2,...,n—1}.

2.2. Conditional expectations. Fix a non—commutative probability space (M, ¢) and let
A C M be a subalgebra. A conditional expectation is a state-preserving projection E4 : M —
A, i.e., such that ¢ o E4 = . In general such a map not necessarily needs to exists, unless M
is a finite von Neumann algebra and ¢ is tracial [39, Proposition 5.2.36]. If it does exist and
the state  is faithful, then the conditional expectation E 4]u| is the unique element 4 € A such
that for any a € A one has p(ua) = p(aa). E4 : M — A is a unital A-bimodule map, i.e.,
E layuas] = a1 E 4lu]as, for all w € M and aq,ay € A.

In the present paper we will always assume that the algebra M is freely generated by two
of its subalgebras A, B C M, or more specifically, M is freely generated by some subalgebras
A;, i € I and the subalgebra A is generated by some subset of these, i.e., A = (A;);es
where J C I, and B = (A;)icr\s. In this case the existence of the conditional expectation
E4 onto A is generally warranted by combinatorial arguments [28, §2.5]. Alternatively, in
the C*-algebraic context, if the state is faithful, then M is isomorphic to the reduced free
product (A, ¢|4) * (B, ¢|s) and the existence of the conditional expectation also follows from
[1, Proposition 1.3].

More precisely, in order to find the conditional expectation of a non—commutative polynomial
in variables aq, as, . .., a, onto the algebra A generated by aq, as, ..., a; one has to find suitable
expressions for moments of the form

¢ (ai,ai, - -+ a;,b),
where iy,14s,...,4, € {1,...,n} and b € A. It is a fundamental property of freeness (as one of
the universal notions of independence in the sense of [29]) that all joint moments of freely inde-
pendent random variables are uniquely determined by the marginal moments of the variables
in question. Thus for each moment of the form indicated above there is a universal formula

(not depending on the particular choice of the distributions of ay,as, ..., a,) which expresses
any joint moment as a sum of products of marginal moments.
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After fixing random variables aq, as, ..., a, all relevant information we need for finding the
conditional expectation is contained in the pair (C(Xj, Xs,...,X,), ) defined in Notation
2.1 and therefore we will mostly work on a formal level and focus on this non—commutative
probability space. Note that such p need not to be faithful.

Working with non—commutative polynomials is very useful as it allows us to ignore algebraic
relations satisfied by variables a,as, ..., a,. Another advantage of C(X;, Xs,..., X,,) is that
it is augmented (see below) and has a natural linear basis, hence we can easily define linear
mappings and functional on this algebra by prescribing values on the basis elements. It is also
straightforward then, again by linearity, to extend all those mappings to the algebra of formal
power series in non—commuting variables X, X5, ..., X, denoted by C{(X1, Xa, ..., X,).

2.3. Main idea — Boolean cumulants and conditional expectations. Boolean cumu-
lants appeared in various contexts and disguises in the literature [47, 40, 36]. In our previous
work [23] we observed that Boolean cumulants appear naturally in connection with conditional
expectations of functions in free variables. The present paper is an exploration of this con-
nection based on a recursive reformulation which is suitable for explicit calculations in closed
form. In addition we introduce a non—commutative differential calculus for Boolean cumulants
of polynomials in free variables which reduces the combinatorial apparatus to a minimum.

Although Speicher’s free cumulants are the tool of choice in free probability [35, 31], more
recently it turned out that for certain questions Boolean cumulants are useful as well. Indeed
some problems like the free anti-commutator [14] and subordination functions [23, 38| are
easier to describe in terms of Boolean cumulants rather than free cumulants. The present
paper extends and unifies these ideas. Before discussing this, let us start with a review of some
basic facts about Boolean cumulants. An interval partition is a partition 7 = {By, Bs, ..., Bx}
of the set {1,2,...,n} such that all blocks are intervals, i.e., for all 1 < ¢ < k we have
B; = {k,k+1,...,1l} for some k < [ in {1,2,...,n}. The set of all interval partitions of
{1,2,...,n} is denoted by Int(n).

For any tuple aq,as,...,a, € M we define the Boolean cumulant functional g, : M™ — C
implicitly via the formula
(2.1) olajag -+~ ay) = Z Br(ar, az, ..., an),
w€lnt(n)
where (a1, aq,...,a,) = [lge. OB ((al, as, . . . ,an)|B), and by fp ((al, as, . .. 7an)|B) we
mean that we take the functional gy such that k& = |B|, and we evaluate it at those a; for

which i € B, and the arguments a; appear in the natural order (one should note that in general
Boolean cumulants are not invariant under permutations of arguments). One way to inverting
the formula (2.1) and to obtain an explicit formula for Boolean cumulants is Mébius inversion
on the lattice of interval partitions. We refrain from doing so and rather base our calculations
on a well known recurrence, namely

(22) S0<alaf2 o an) = Z /Bk(al, &2, . 7ak‘) @(ak+1ak+2 . an)
k=1

or equivalently

n

(2.3) <P(CL1GQ s Gn) = Z 80(a1a2 s ak:—1) 6n—k+1<ak7 Q415 - - 7an)-
k=1

This elementary recurrence is the starting point for our investigation. It immediately implies
a similar recurrence for conditional expectations of products of free random variables: Assume
that {ai,as,...,a,} € A and {by,bs,...,b,_1} € B are two families of variables and assume
that subalgebras A and B are free.
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In order to calculate the conditional expectation of a;bias - - - b,_1a, € M onto the subalgebra
B, we have to find an element Eg|aibias - - - b,_1a,] € B such that

olarbras - - - by_1a,b) = ¢ (Eglarbras - - - a,]b)

for any b € B. If ¢ is faithful then this element is uniquely determined and can be found using
the following recursive reformulation of [23, Proposition 1.1].

Proposition 2.3. Assume that ¢ is faithful. Then for a; € A and b; € B the conditional
expectation of the alternating product satisfies the recurrence

(2.4) Eglaibias - - - ap—1b,—1a,] = i Pog—1(ar, by, az,...,ar) by Ep[agr1bprr - an).
k=1
Proof. The recurrence (2.2) yields
© (EB[alblal . -an]b) = p(a1bias - - - ayb)
= i Bok—1(a1, by, ag, ..., a) p(bragsr - -b) + i Bar (a1, b1, a2, ..., b) p(ars1bir - b)
k=1 k=1
Now it follows from Theorem 1.1 (see also Definition 3.1 and Proposition 3.6 below) that

for free random variables the mixed Boolean cumulant fox(aq, b1, as, ..., ax,by) vanishes for
k=1,2,...,n and hence

¢ (Eglarbias - - - a,)b) = Zﬁ%—l(ah bi,as, ..., ax) P(bpari1bprr - - - anb)
k=1

= SD(Z Bor-1(a1, b1, as, ..., ak) bp@ps1bpir - - anb)

k=1

= SD(Z Bor—1(a1, bi, ag, ..., ax) by Ep [ag41bp11 -+ - ay) b)-
K1

O
Observe that vanishing of cumulants of the form fox(ay, b1, as,. .., ax,by) is essential in this
proof, because it eliminates fs, (a1, by, as, ..., a,_1,b). Otherwise b would be trapped inside this

term and the recurrence would fail.
We will also make use of the original non-recursive version of the formula for the conditional
expectation found in [23].

Corollary 2.4. Let (A,¢) be a ncps and B C A a subalgebra such that the conditional
expectation Eg : A — B exists. Let {by,bs,...,b,_1} C B and assume that the family
{a1,as,...,a,} C Ais free from B.

(i)
(2.5) ¢ (aibias---by—1a,by,)

n—1 k
= E E gp(b“bZQ ce bzkbn H ﬁZ(i]'.;_l—ij)—l(a’ijJrl? bl'jJrl, aij+27 RN ,CLi].Jrl),
k=0 1<i1 <ia<---<1p<n—1 7=0

(ii) Then the conditional expectation of alternating monomials can be evaluated as follows

(26) EB [alblag cee bn,lan]
k

n—1
= E g biy by - - - by, H 52(ij+1—ij)—1(az‘j+1a bz‘j+1a Aj;42y - - - 7%-“)7

k=0 1<41 <@a <<t <n—1 7=0
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where in the above sum for each sequence 0 < 17 < ig < -++ < i < n we set ig = 0 and
ik+1 =n.
2.4. Boolean cumulants with products as entries. In this subsection we present the basic
tools preparing the non—commutative differential calculus for Boolean cumulants of polynomials
in free variables.

The main tool is the formula for Boolean cumulants with products as entries in terms of
cumulants of individual variables. Such formulas are known for classical cumulants [24, 34]
and free cumulants [20] and follow a general pattern [22]. The analogous formula for Boolean
cumulants is given below. The proof may go via a standard argument involving Mobius inversion
(see Lecture 14 in [31]). In view of possible generalizations and for the sake of completeness we
present alternative algebraic proofs based solely on the recurrence (2.2) in Appendix A.1.

Proposition 2.5. Let aq,ao,...,a, € A be random variables then

(27) Bmsr(araz - gy, Qg 410012+ Qs -+ Gy 1Qaia = an) = > Pelar,az, ..., an),

w€nt(n)
wVp=1,

where p = {{1,2,...,di},{di + 1,d1 +2,...,do},...,{dmn+ 1,...,n}} € Int(n), and V is the
join in the lattice of interval partitions. The condition ™V p = 1,, is equivalent to

> {{1},{2},...,{dy — 1},{dy,dy + 1}, {d1 + 2}, ... . {dp, — 1}, {dm, dm + 1}, ..., {dn}}.
Proposition 2.5 can be proved by iteration of the following lemma and Corollary 2.7 below.

Lemma 2.6.

(2.8) Bu-i(ar,az, ..., ap0p41, Gpro, pis, ..., Q)
- 5;0(@17 az, ... 7ap) ﬁn—p(ap-i-la Ap+2; Ap43; - - - 7an) + Bn(ala ag, . .. a&n)
We will actually mostly make use of the following recursive version of Proposition 2.5.

Corollary 2.7. Let ay,as,...,a, € A be random variables consider the interval partition p =
{1,...,di},{di+1,...,d2},... . {dn+1,...,n}} € Int(n). We write p={B1,Bs,...,Bni1},
where blocks are ordered in natural order. For j € {1,...,n} denote by p(j) the number of
block containing j, i.e. we have p(j) =k if j € By, then

Brt1(aiag -« - ad,, Gay 110,42 -~ Adys - - - 5 Ay 41042 * * * Q)

(2‘9) = Z 5j(a1, az, . .. 7aj)6m—p(j)+1)(a’j+1aj+2 T Qs Adp 1t Gn)‘
je{lv"'7n}\{d11d27"'7dm}

We record here one immediate consequence of Lemma 2.6 which allows to eliminate units.
This also follows from Proposition 3.8 below.

Corollary 2.8 ([33, Proposition 3.3]). For any n > 2 we have

(2.10) Bn(1,as,...,a,) =0
(211) ﬁn(al,aQ,...,an_l,l) =0
(2.12) Bnlar,ag, ... ak—1,1,aps1,. .. 0n) = Pnor(ar, ag, ..., ap_1,Qkt1, .-, aQ)

2.5. Tensor products and tensor algebras. The tensor product U ®V of two vector spaces
has the universal property that every bilinear map B : U x V' — W has a unique extension
to a linear map B : U ® V. — W. Consequently, a family of multilinear maps f, : V" — W,
n > 0, corresponds uniquely to a linear map f : T(V) — W on the tensor algebra T(V) =
@ V&, Moreover, any linear map on V' can be extended to a derivation of the tensor algebra
(Lemma A.1).
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Notation 2.9. It will be convenient to denote the product operation on the tensor algebra
by ® and extend it to matrices as follows: Given a matrix A = [a;;] € M,(A) and a € A,
let a ® A =[a®a;] € M,(A® A). Similarly, for two matrices A, B € M, (A) we denote by
A® B e M,(A® A) the matrix with entries

AQB’LJ Zazk®bkj

Note that associativity holds in connection with multlphcatlon with scalar matrices C' € M, (C),
in the sense that A© CB = AC ® B.

2.6. Free products of algebras. A coproduct or (algebraic) free product of unital algebras A,
and A, over a field K is a unital algebra A with embeddings ¢; : Ay — A and 5 : A3 — A such
that the images generate A and every pair of homomorphisms h; : Ay — B and hy : Ay — B
has a unique extension to a homomorphism A — B.

For details about free products and tensor algebras we refer to [2, §1.4] and [9].

Proposition 2.10.
(i) The free product is unique and is given by the quotient of the tensor algebra TT(A; ® Ay) =
> (A & Ao)®™ with respect to the ideal generated by all elements of the form

a1 ® by —aiby as ® by — agby Tay — Tay, a;,b; € A;.

The algebraic free product is denoted by A; 11 A,.

(i) [2, Lemma 1.4.5] Let Ay and Ay be algebras with 1 over a field K with respective K-bases
{1} U M; and {1} U My. Then {1} U M is a K-basis for A; 11 Ay where M is the set of
alternating monomials in letters from My and Ms.

Definition 2.11. An algebra A is called augmented if it comes with an augmentation map,
i.e., an algebra homomorphism ¢ : A — C. Its kernel A = kere is called the augmentation
1deal.

Ezxample 2.12. Typical examples of augmented algebras are polynomial algebras (both commu-
tative and non—-commutative) where the augmentation map

¢(P) = P(0) = constant coefficient
is clearly a homomorphism.

The free product of augmented algebras is clearly augmented. Moreover, it is isomorphic
to a subalgebra of the tensor algebra and this fact will be helpful for the definition of certain
functionals to be defined in Section 5 below.

Proposition 2.13 ([17]). The free product of augmented algebras is isomorphic to

(2.13) AHB~<C1@€BT B) @ T, (B, A)
n=1
where by
TUV)=UVeU®--- (n factors)
we denote the alternating tensor product of two vector spaces. The multiplication is given by
the tensor product modulo the identifications o’ ® a” = d'a” and b/ @ b = b'b" already present
i Proposition 2.10.

Ezxample 2.14. The free associative algebra C(X,Y’) is the isomorphic to algebraic free product
C[X] I C[X]. The decomposition (2.13) corresponds to the decomposition into the constant
term and alternating monomials X*1 Y% X*2Y?% ... with exponents k;, l; > 0.

Notation 2.15. Extending the terminology of the preceding example to free products of general
augmented algebras, alternating products of the form w = a;byashy - -+ (resp. w = byabyas - - -)
with a; € A and b; € B, i.e., the images of elementary tensors from T),(A, B) (resp. T,,(B, A)),
will be called monomials.
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The reduced free product of neps (A, ¢) and (B, 1) will be denoted by (A, ¢)* (B, ¥) or AxB
in short. It is realized as the image of the free product of their GNS representations, see [46,
§1.5]. For our purpose the following subalgebra is sufficient.

Proposition 2.16 ([46, §1.5]). Let (A1, 1) and (Ay,¢3) be neps and denote by A; = ker ;
their centered components. Then the orthogonal direct sum

n=1 iz i
18 a dense subalgebra of the reduced free product.

Definition 2.17. Unital subalgebras A, B of an algebra M are called algebraically free if
they do not satisfy any mutual algebraic relation, i.e., if the free extension of the embeddings
ta: A= M, 1p: B— M toahomomorphism h: AIl B — M is injective.

Proposition 2.18. Let (M, ) be a ncps with faitful state ¢ and let A, B be freely independent
subalgebras in the sense of Definition 2.2. Then A and B are algebraically free.

Proof. The algebra generated by A and B is isomorphic to their reduced free product A x B
and thus by [1, Proposition 2.3] contains a faithful copy of the algebraic free product. 0

2.7. Derivations. Coincidentally it turns out that similar to classical calculus, integration has
strong ties to derivations. More precisely, we will be concerned with several derivations from
an algebra A into the bimodule M = A ® A with the natural action

(2.14) a;- (z®y) az= (a1 @1)(xRy)(1® az) = a1z ® yas

Definition 2.19. Let A be an algebra and 9t be an A-bimodule. An 9M-derivation is a linear
map D : A — 9 satisfying the Leibniz rule

(215) D(alag) = D(CL1> -ag +ap - D((Ig)

If one modifies the left and right actions of 4 on A ® A then homomorphisms become a rich
source of derivations.

Proposition 2.20. Let A be a unital algebra and ®1, 5 : A - A® A be two homomorphisms,
then D = &1 — &y is a derivation in the sense that D(ab) = D(a)®4(b) + $1(a)D(b)

Let us present some examples of derivations

FExample 2.21. The “tensor commutators” V:A- A2 A mapping Vi=a®1—-1®aisa
derivation for any algebra 4. It appears in [45, Section 5.3] (see Section 3.1 below) and has
the universal property that every derivation factors through it [9, p. 111.132, Proposition 17].
It will be convenient to denote V = —V.

Ezxample 2.22. The free derivative or free difference quotient on Clz| is the map 0 : Clz] —
Clx] ® Cl[z] given by

n—1
Ox" = Zxk ® xn—k—l'
k=0
In the natural identification Clz] ® C[z] ~ C|x, y] this coincides with the difference quotient
pr)—ply
N CE0)
=Y
and for this reason is also known as the Newtonian coproduct [19, §XII]. Tt first appeared in

free probability in connection with the non—commutative Hilbert transform approach to free
entropy [44].
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FExample 2.23. A slight modification of the previous derivation comes from the divided powers
coproduct [19, §VI]. Let again A = C[X] be the polynomial algebra, then the deconcatenation
coproduct is a homomorphism

Ay(z") = Z b @ "k
k=0
and thus both
dp(r) = Agp(r) — 1@ p(r) = (r ® 1)0p(x)
]_ p—

1
Agp(z) = p(r) @ 1 = (1@ 2)dp(z)

>

=

=
I

are derivations.

Ezample 2.24. For an augmented algebra, the map A(a) = a — €(a) is a derivation in the sense
of Proposition 2.20 and so are the left and right “block derivatives”
AtA— A0 A AtAs AR A
a—~1® (a—¢€(a)) ar (a—e(a))®1.

Next we discuss free products of derivations.
Proposition 2.25. Let A, and As be algebras and A = Ay 11 Ay their (unital) free product.
Let M an A-bimodule (equivalently, a bimodule for both Ay and As) and D; : A; — M, i = 1,2
be derivations. Then there exists a unique derivation Dy x Dy @ Ay 1T Ay — M extending D
and Dy. Moreover, we have the decomposition

DixDy=D;x0+0% Do

where 0 is the trivial derivation.

Proof. We first extend D = D; & Dy : A; & Ay — 90 to the tensor algebra TH(A; & As) by
the Leibniz rule, see Lemma A.1:

Dl ®up ® - @) = D w1 @ up @ g1 - D(un) - wpn @ -+ Dy
k=1

and then check that it passes to the quotient (see Proposition 2.19), ie., thejdeal generated
by 14— 15, d @ a” — d'd” for ¢, a” € A; U A, is contained in ker D. Clearly D(1) = 0 and on
the other hand for a’,a” € A;
Du® (d ®@d" —dad")®v)=D) - (d®d —dd") @)
+u-(Dy(a')-a" +a" - Di(a")— Di(d'a")) -v
+u® (d ®@d" —dd")- D)

which is mapped to 0 in the quotient space and the Leibniz rule is satisfied by definition. [
Example 2.26. If we identify the algebra of non—commutative polynomials with the unital free

product C(z,y) ~ C[z] * C[z], then we can construct the partial derivatives Oy, 0y, Oy and Y,
as free products of the derivations V (Example 2.21), ¢, § (Example 2.23) and 0 on Clz]:

XI:X*O lgy:O*l(S_
8y = 0%0 0,=0%0
O, =0%*0 0y =0%0
V, = V0 %:O*ﬁ
V, = V0 V,=0%V

r
r

&
=
Q.
<r
I
8
+
<

moreover, we obtain decompositions § = J, + 9,
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Ezample 2.27. Let A and B be augmented algebras and set 91 = (Al B) ® (ALl B). Denote
by A 4 and AB (resp. A 4 and AB) the left (resp. right) block derivatives from Example 2.24
into the corresponding submodules of 9. The free products A 4% 0,0 % AB AIL B — M are
called partial block derivatives. By abuse of notation we will denote them by A 4 and 25 as
well. Their action on the augmentation ideal is deconcatenation on monomials

zA(CblbﬂllCLsz e 'ann) = Z a1baag - - - by ® apbpq1apy1 - - - anby

ZA(albﬂlCLQ[b e 'a/nbn) = Z a1bgag - - - ap @ brag1bpyr - - anby

where a; € A and b; € B. In contrast to the previous derivations, neither the partial block
derivatives nor the deconcatenation operator A = A 4 + Ag satisfy the Leibniz rule with respect
to the natural action (2.14), but the “compatibility relation” of unital infinitesimal bialgebras
applies [25, Definition 2.1]

z(uv) = (Eu)(l ®v)+ (u® 1)21} —u®uv.
Note however that A A— A A= §A is a derivation.
Let us observe that resolvents work nicely with any derivation

Remark 2.28. Let A be a unital algebra and D : A — 91 be a derivation into an A-bimodule
M. Then for any invertible element a € A we have as a consequence of the Leibniz rule

(2.16) D(a™") = —a'D(a)a™*

In particular, the derivation of a resolvent R = (z — a)~! satisfies
D(R) = RD(a)R

while for ¥ = (1 — za)™! we have

(2.17) D(¥) = 2UD(a)V.
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3. BOOLEAN CUMULANTS OF FREE RANDOM VARIABLES

3.1. Characterization of freeness by Boolean cumulants. In this section we elaborate
on on the main property which allowed us to derive recurrence (2.4), i.e., the fact that mixed
Boolean cumulants of free variables which start and end with mutually free variables vanishes.
The main result is a surprisingly simple characterization of freeness which is inspired by an
algebraic characterization of freeness found by Voiculescu in [45]. We are grateful to R. Speicher
and J. Mingo for bringing this paper to our attention.

Definition 3.1.
(i) Subalgebras A, B of a ncps (M, ) have vanishing cyclically alternating cumulants if

Bn(uy, ug, ... u,) =0
whenever u; € AU B such that u; and u, come from different algebras. We will call this
Property (CAC).
(ii) Subalgebras A, B of a ncps (M, ) satisfy Property (WCAC) (weak (CAC)), if they
satisfy Property (CAC) for alternating words, i.e.

/Bn(ah blu ag, b27 ey U, bn) - 0
and
571(617 as, b27 ag, ... 7bna an) =0
for any choice of a; € A, b; € B.
(iii) Subalgebras A, B of a ncps (M, ¢) satisty property (V) if

(3.1) (0 ® @) 0 Va(arbrashs - - - anby) = 0

for any choice of a; € A and b; € B. Here the expression on the right hand side of (3.1)

is meant to be evaluated as follows:

1. The formal derivative V,x1y1x2ys - - - ,y, is computed in the free associative algebra
Clxr, Ta, o Ty Y1, Y2, -+ 5 Yn);

2. substitute x; = a;, y; = b; to obtain an element of M ® M,

3. evaluate p ® ¢ on the latter.

Remark 3.2. Since V = V4 + Vj and trivially (p®¢p)o ¥ =0, identity (3.1) is equivalent to
((ﬂ & QO) o %B(alblang s anbn) =0
Lemma 3.3. Property (WCAC) is equivalent to Property (CAC).

Proof. Clearly Property (CAC) implies Property (WCAC). The converse can be seen as a
special case of Lemma 3.10 below, but here is a proof by induction, assuming that Property
(WCAC) holds for all orders.

Suppose that Property (C'AC') holds for all orders up to n—1 and pick a tuple uy, ug, ..., u, C
AU B such that u; and u, come from different algebras.

If the tuple is alternating then there is nothing to prove.

Therefore assume that it is not alternating. Without loss of generality we consider the follow-
ing configuration (the proof of the other cases is analogous): u; = a,u, = ', up41 = a” € A and
u, = b € B. Thus we have to show that the cumulant g, (a, us, ug, ..., a",a" ugs2, ..., Up_1,b)
vanishes. We apply the product formula (2.8) in the reverse direction and obtain

/ /i
Bnla,ug, ..., up_1,a',a" ugyo, ... Uy 1,b)
1"
= Bn_1(a,ug,ug, ..., up_1,a'a”  upya, ..., up_1,b)

- Bk(aa U2, U2, . - ., Uk—1, CL/) Bn—k(a”v Uk+2y - - -5 Up—1, b)

All cumulants on the right hand side are of lower order and all except the second one satisfy
the assumptions of the induction hypothesis and therefore the right hand side vanishes. 0

Proposition 3.4. Property (WCAC) is equivalent to Property (V).
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Proof. We apply recurrence (2.3) to the first factor of the first sum and (2.2) to the second
factor of the second sum in the following expression

(p® @)(ﬁAalbl - apby)

= Z 90(a1b1 T ak) @(bkak—&—l T @nbn) - Sﬁ(allh T ak—lbk—l) %D(akbk T anbn)
k=1

hE

SO(G151 ce bp—l) 62(k—p)+1(ap7 bp7 e ;ak) @(bkakﬂ e 'anbn)

k=1 p=1
n k—1
+ Z 90<a1b1 T ap) /62(167])) (bp7 7ak’) @(bkalﬁrl e anb )
k=1 p=1
- 90(a1b1 e bk—l) 52(p7k)+1(@k, br, 7%) SO(bpapH e apb )
k=1 p=k
- @(arby - - - br—1) Bap—t)+2(@r, bis - - -, bp) @(apg1 - - - anby)
k=1 p=k

= a1y -+ bp—1) Bo—p)+1(ap, bp, . . ., a) P(brry1 - - - anby)

1<p<k<n
n k—1
+ Z SD(albl e ap) 62(19—17) (bp7 e aa'k) @(bkak-l—l e anbn>
k=1 p=1
— D plaabi - ben) Bagry (@ bes 5 @) @byt - - anbn)
1<k<p<n
n—1 n
- ‘;D(albl Tt bk—l) 52([)7]6)4»2(61167 bk7 CI bp) Sp(ap-l-l T a'nbn)
k=1 p=k
- ﬁ2n(@17 bla ceey Ap, bn)
n k—1
= Z @(albl c ap) BZ(k—p) (bpa .- 7akz) Qp(bkak—l—l t anbn)
k=1 p=1
n—1 n
- @(arby - - br—1) Bap—t)+2(a, bis - - -, bp) @(apy1 - - anby)
k=1 p=k

- ﬁQn(aly b17 ey Oy, bn)
Now all but the last term on the right hand side involve lower order cumulants which vanish by

by induction hypothesis. Therefore the left hand side vanishes if and only if 85, (a1, b1, . .., @y, by) =
0. O

Lemma 3.5. Free subalgebras satisfy Property (CAC).

Proof. This is an immediate consequence of the vanishing of mixed free cumulants and the
formula expressing Boolean cumulants as a sum of free cumulants indexed by irreducible non—
crossing partitions [21, 5], and is also a special case of Proposition 3.8 below.

Here is a direct self-contained proof using only the recurrence (2.2) and induction. By
Lemma 3.3 it suffices to prove Property (WCAC).

To begin with, in the case n = 2 the recurrence (2.2) immediately resolves into the covariance:

Ba(a,b) = p(ab) — p(a)p(b) = 0.
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For the induction step, we first verify that cumulants of alternating centered words vanish
and then reduce the general case to this.

Assume that the assertion holds for any order up to k < n—1 and that the tuple uy, us, .. ., u,
is alternating, i.e., neighouring elements come from different algebras, and that all elements are
centered. Then it follows from recurrence (2.2) that

n
B (ur, g, ... un) = p(urtip - up) — Zﬁk(“hum s UR) P(Up 1 Uk Up)
k=1

and all terms on the right hand said contain expectations of alternating words in centered
elements. Freeness implies that they vanish and so does the cumulant on the left hand side.

It remains to show that we can replace the letters of an alternating word with centered
elements. We will do this step by step using multilinearity and Corollary 2.8. The condition
that the first and last arguments of the involved cumulants come from different algebras is not
violated throughout the following manipulations.

ﬂn(ula Ug, . .. Jun) - Bn(ﬁla Uz, ... 7un) + QO(U1> Bn(la Uz, ... 7un)

= Bn(ty,ug, ..., uy) by (2.10)
= Bn(tq, g, us, ..., upy) + @(uz) Bulty, 1, us, ..., uy)

= Bn(ty, g, uz, ..., up) + ©(u2) Proq(ty, ug, ..., uy) by (2.12)
= Bn(ty, U, us, . .., Up) by induction hypothesis

- ﬁn(’&l,fbg, e ,an)
[

In conclusion, in the tracial case we have the following extension of Voiculescu’s freeness
criterion [45, §14.4].

Proposition 3.6 (Characterization of freeness in terms of Boolean cumulants). Let (M, ¢) be
a tracial non-commutative probability space and A, B C M two subalgebras. Then the following
are equivalent.

(1) A and B are free.
(i) A and B satisfy property (CAC).
(i1i) A and B satisfy property (V).

Proof. Ttems (ii) and (iii) are equivalent by Proposition 3.4 even without traciality.

Item (ii) implies (iii) by Lemma 3.5 and it remains to prove the converse in the tracial case,
i.e., Property (CAC) implies freeness.

Recall that in [45] it is shown that in the tracial case for every n the original freeness condition
(F(n))

p(arby -+~ apyb,) =0
whenever all elements a;, b; are centered can be strengthened to condition (F'(n)’") allowing one
of a; or b, to have nonzero expectation.

We will use this equivalence and proceed by induction and show that for every n condition
(F'(k)") for k < n together with (C'AC') implies condition (F(n)). To this end we pick centered
elements a,as, ...,a, € A and by, by, ..., b, € B and and show that ¢(aib; - - a,b,) = 0.

The case n =1 is obvious.

For the induction step, observe that we can rewrite recurrence (2.2) as follows

Qo(albl e anbn) = Z 62k—1(a17 bl, cee ,ak) go(bkak+1bk+1 cee bn)
k=1
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+ Zﬁzk(al,bl, oy b)) (aggrbpgr - by).
k=1

All terms in the second sum vanish by property (CAC). In the first sum the term corresponding
to k = n vanishes because we assumed that ¢(b,) = 0. In order to see that the remaining
terms corresponding to k < n vanish as well, first note that by traciality ¢(brag.q...b,) =
©(agy1 - .- bybg) which is an alterning product with at most 2(n — 1) factors. Now the element
b,b. needs not to be centered but as discussed above, the freeness conditions (F'(n — 1)) and
(F(n — 1)) are equivalent and thus the expectation vanishes. O

Remark 3.7. Note that traciality of the linear functional is essential for this characterization.
Property (CAC) (and hence Property (V)) also holds for Boolean independent and more gen-
erally conditionally free random variables.

3.2. Mixed Boolean cumulants of free random variables. The following characterization
of freeness from [14] generalizes Property (C'AC) and will provide an essential tool for later
considerations.

Proposition 3.8 ([14, Theorem 1.2], [18]). Subalgebras Ay, As, ..., As € M of a neps (M, p)
are free if and only if for any colouring ¢ : {1,...,n} — {1,...,s} we have

Bnlar,ag,. .. a,) = Z Br(a,ag, ..., ap)

7ENC™ (n) with VNRP

whenever a; € Ac;). Here a partition m € NC'™(n) is said to have VNRP if 7 < kerc and
every inner block covered nested by a block of different colour, i.e., ¢ induces a proper coloring
on the nesting tree of m.

We will only use the preceding theorem in the special case of alternating arguments, which
was first explicitly stated in [38].

Proposition 3.9. Let {ay,as,...,a,} and {by,bs,...,b,_1} be free, n > 1. Then
(3.2)
/BQTL—l(ala b17 ey Qp, bn—17 an)

n k-1
= Z Z ﬁk(ajm Ajay - - - 7ajk) H 62(j£+1—jz)—1(bjzv @jpt1s -5 g g =15 bjz+1*1)'
/=1

k=2 1=j1<jo<--<jp=n

Next we record another property which will be important in the following, namely as we
already know a Boolean cumulant which takes as arguments elements of two free algebras A
and B vanishes unless it starts and ends with elements from the same algebra. Suppose this is
the case, say the both the first and last argument come from A, then the Boolean cumulant
does not change under arbitrary splitting of thee arguments coming from the subalgebra B into
factors. This will allow us to write any Boolean cumulant in free variables as an alternating
cumulant.

Lemma 3.10. Suppose A, B C M are free and let aq,ao, ... @y, € A and by, by, ..., b, € B.
Assume further that for each j =1,2,....,n — 1 we have b; = cgz) e Cg‘:) with cgz), e ,c§-:) € B,
then we have

Ban—1(ai, by, ag, ... .bu—1,0n) = Butjit. 4o (A1, cgl), o ,cﬁ), as, . .. ’an71)> . ,cg.:;l), ay).
Proof. This follows from the formula for Boolean cumulants with products as entries (2.7) and
property (C'AC'). More precisely, applying said formula to the Boolean cumulant

1) (1 1 n—1) (n—1 n—1
Bn+jl+"'+jn—l(a17 Cg )C; ) e Cg'l)v az, ... 7Cg )Cg ) e Cg'n_l )7 an)

recall that we have to sum over interval partitions 7 such that 7V o = 1,4, 4.4, ,, where o
is given by the product structure, hence we sum over 7 greater than {{1,2},{3}...,{j1},{j1 +
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1,51 +2},...{n — 1,n}} or in other words are complementary to p = (1,71,1, 2, ., Jn_1,1).
Observe that the block of m containing a; cannot end in any ¢!, as in that case the corresponding
Boolean cumulant vanishes by property (CAC). On the other hand the block containing a,

cannot finish in any of the variables ay,as, ..., a,_1 as this would violate the complementarity
property. Thus the block which contains a; has to end in a,, and since we consider only interval
partitions, there is only one such partition 7 = 1,4 4.4, ;- U

Remark 3.11. Lemma 3.10 allows to rewrite an arbitrary joint Boolean cumulant of free random
variables as an alternating cumulant, by grouping together terms from the algebra B above.
Indeed after regrouping the inner variables into free blocks, Corollary 2.8 allows us to fill the
gaps between elements of A with units to obtain

ﬂk(alaa% ceey A, Qryy, - 7%) = ﬁk(ala Lp,ag, ..o ag, Iy, agg, - 7&n)'
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4. CALCULUS FOR CONDITIONAL EXPECTATIONS

In order to define several objects objects used in this and the next section we require addi-
tional structure on the ncps we work with.

Assumption 4.1. From this point we will assume that (M, ¢) is a ncps, where M is an aug-
mented algebra (see Definition 2.11). Furthermore we assume A4, B C M are freely independent
subalgebras which generate M as an algebra, that is, M = A Il B. The latter is a moderate
restriction since it is a dense subalgebra by Proposition 2.18.

Remark 4.2.

(i) This assumption is necessary to make sure that the functionals introduced below are well
defined. Indeed in the augmented case the algebraic free product is canonically isomorphic
to a subspace of the tensor algebra (see Proposition 2.13) and thus families of multilinear
functionals can be identified with linear functionals on the latter.

(ii) The reader not familiar with these notions should think of the algebras as polynomial
algebras from Example 2.12 in the following. More precisely,

M=C(X1,Xs,..., X, Y1, Y5, ... Y,) A=C(X1, Xo,...,X0n) B=C(Y1,Ys,....Y,)

and ¢ = p is some formal distribution, i.e., a unital linear functional u : M — C. The
augmentation is e(P) = P(0).
In fact it is sufficient to understand the bivariate case

M=C(X)Y) A=CX) B=C()

and the general case will be straightforward.

In the case of polynomial algebras w € M means that w has zero constant term and
in fact it is sufficient to consider monomials w = a1baasbs - - - where a; and b; come from
the monomial basis, i.e., in the case of C(X,Y) this means that a; € {X*|k > 1} and

Notation 4.3. It follows from Proposition 2.13 that in the free product of augmented algebras
any monomial (i.e., simple tensor) W € M has a unique factorization into an alternating
product of elements from A and B in one out of four types:

type A-A if w=abias---bp_1a,,
type A-B if w=abias---a,by,,
type B-A if w=biaiby---bpa,,
type B-B if w=bia1bs---a,_1by,
with aq,as,...,a, € A and by, bs,...,b,_1 € B. We will call such monomials A4 monomials

etc. and we will refer to the factorization as the A-B block factorization.

Remark 4.4. At this point augmentation is essential. Otherwise allowing units in monomials
leads to inconsistencies like (1 + a)b = b+ ab belonging to the image of A® B and (B® A® B)
simultaneously. However the direct sum decomposition (2.13) is essential to consistently extend
the multilinear maps to be defined shortly (see Definition 4.10) to linear maps on the free
product.

We now take formula (2.6) as a formal definition of a conditional expectation.

Definition 4.5. Define a linear mapping Eg : M — B via the following requirements:
(i) Eg[l] =1,
(il) Eg[bwb’] = bEg[w]d’ for any w € M and any b,V € B.
(iii) We define the conditional expectation of a monomial of type A-A w = aibiay - b,_1a,
with a; € A and b; € B as

Eg [a1b1a2 Tt bn—lan] = 52n—1 (Gh bi,az,...,bnh_1, Cln) +
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n—1 k
E g biy by - -+ by, H 52(z‘j+1—ij)—1(ai]-+1, bz’j+1, Ai;+2; - - 7az‘j+1)a
k=1 1<i1 <ia<---<ip<n—1 7=0

(iv) We define the block cumulant functional 5° : M — C by prescribing the values on mono-

mials
A1) =1
B (ugtg - ty) = Bo(uy, ug, . . ., Uy)
whenever u us - - - u,, is an alternating word with u; € AU B.
Remark 4.6.

(i) Note that property (C'AC) implies 5(ujusz - - - u,) vanishes unless n is odd.

(ii) Augmentation is essential here to make sure that the definition of 3° does not depend on
the choice of basis. Indeed if instead we choose orthonormal bases {1} U (ax)ren € A and
{1} U (bg)ken C B then it follows from Proposition 2.16 that the alternating words in a;
and b; together with 1 form an orthonormal basis of the reduced free product. However
B(u,us, ..., u,) = 0 for any such word and thus the corresponding notion of 3° would
coincide with ¢ in this case.

As an immediate consequence of Proposition 2.13 and (2.5) we have the following.

Proposition 4.7. Consider the maps defined in Definition 4.5 with Assumption 4.1, ¢ not
necessarily faithful.

(i) The maps Eg and B° are well defined.

(1) The map Eg defined above is a conditional expectation.

Note that the above conditional expectation is universal and allows for calculations on the
level of arbitrary algebras.

Proposition 4.8. Let (M, @) be an arbitrary ncps with faithful state ¢ and A,B C M be free
subalgebras such that the conditional expectation Eg exists (e.g., when B and M are von Neu-
mann algebras or M = AxB). Pick elements ay,as, ..., a, € A and elements by, by, ..., b, € B.
Let
e C(Xy, Xoy oo, X, Y1, Y5,...,Y,) = C
be the joint distribution of the tuple (ay,asg, ..., am,b1,ba, ... by), i.e.,
p(P(X1, Xoy .., Y0)) = p(P(ay, az, .. -, Gm, by, ba, oo, by)

and let By + C(X1, Xo, ..., X, Y1, Yo, ..., Y,) — C(Y1,Ys, ..., Y,) be the conditional expecta-
tion from Definition 4.5 onto the subalgebra C(Y1,Ya,...,Y,). Then

Eg[P(a1,ag, ..., am,b1,ba,...,b,)] = (EL[P])(b1, b2, ..., by),
where (EY.[P]) (b1, ba, . .., by) is the polynomial B [P] € C(Y1,Ys,...,Y,) evaluated in by, by, . .., by.
Proof. This is an immediate consequence of the definition of p and Corollary 2.4. O
It is no surprise that this formal conditional expectation satisfies the recurrence (2.4).

Proposition 4.9. For any A-A monomial w the mapping By satisfies the following recurrence
(41) IEB[alblCQ U bn—lan] = 6271—1 (ala b1> ag, ..., bn—la an)
n—1
+ > Bora(ar, br,ag, .., ax) bEplagbriaars - an)
k=1
(4.2) = " (arbyag - - - by yan)

n—1
+ Z ﬁb(albﬂlz e 'ak) bk]EB[ak+1bk+1ak+2 e 'an]-
k=1
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Proof. Observe that in Definition 4.5 (iii) on the right hand side of the equation we sum over
all possible choices of subsets of {by,bs,...,b,_1} and for variables between the chosen b;’s we
apply Boolean cumulant, where we split b;’s from a;’s. In order to obtain the recurrence above
we reorganize the sum appearing in the definition of Ez according to the value of 7, i.e., we
have

n—1 k

E E biy biy - - by, H 52(z'j+1—z'j)—1(aij+1, bz‘j+1, Ai;+25 - - 7az‘j+1)

k=1 1<i1 << <n—1 7=0

n—1 n—2
= E Bai—1(ar, b1, ag, ..., a; )b, § g biybiy - -+ b,
i1=1 k=0 11 <t2<--<ip<n—1
X H /62 ’LJ+1 Z] aZ]—‘rl) bZ]—l-la aZ]—‘rQ) e 7a/i]'+1)‘

To conclude the proof observe that each fixed value of 71 the inner summation over s, ..., %,_1
reproduces exactly the definition of Eg|a;, 11bi,+1Gi, 42 - ap]- O

Proposition 4.9 offers a nice recursive formula for calculations of conditional expectations
in free variables, however a drawback is that it works only on monomials starting and ending
elements of algebra A. In order to make this formula useful for general calculations we need to
have a recurrence which works on any given polynomial. To this end we split the functional 3°
somewhat analogously to the partial block derivatives A=A A+ AB The latter turns out to
be the right tool to capture the structure of the recurrence from Proposition 4.9.

Definition 4.10. Under Assumption 4.1 we define the block cumulant functional 5% : AILB —
C by prescribing its values on monomials as follows:

Ba(1) =
5?4@151&2 T bn—lan) = 52n+1(@1, bi,as, ..., by_1, an)

for any A-.4 monomial w with A-B factorization w = a,bias - - - by_1a, and a; € A and b; € B.
For monomials w which are not of type A-A we set 8% (w) = 0.

We define the analogous functional 3%, which produces the value of Boolean cumulants of
“blocked” variables from A and B, which vanishes unless a words starts and ends with elements
from B.

Remark 4.11. Note that because of Property (CAC) we have
B —e=pY —e+ B —e

With the help of these functionals and the block derivatives from Example 2.27 we can now
extend recurrence (4.2) for Eg to arbitrary monomials and to compress it into an intuitive
formula, which is the main result of this section.

Theorem 4.12. Suppose M = Al B and Assumption 4.1, then for any w € M
Esfw] = 4(w) + (8% @ Es)[As(w)
(4.3) = Bh(w) + (8% ® Eg)[Vs(w))
= B(w) + (B @ B)[As(w)].

Proof. Consider the first identity. By linearity it is enough to consider monomials. For a
monomial of type A-A the statement is equivalent to Proposition 4.9.

If w is a monomial of type BB or B~A then by the definition of 3% only one term contributes
on the RHS and we obtain the trivial identity

Eslw] = (8% @ Eg)[1 ® w].
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If w is a monomial of type A-B then it can be written as w = w’'b, where w' is of type A-A
and b € B and the right hand side is

Ba(w't) + (84 & Eg)[Ba(u)(1 @) +w' @] = 0+ ((84 ® Eg) By w] + fa(w))b
= EB [w’]b,
where we observed that the term inside the parenthesis contains the recurrence (4.1) for the
conditional expectation of the word w’ which is of type A-A.
Fgr the second identity recall that Vg = Ag — Apz. and observe the additional terms produced

by Ap are tensors whose left legs are monomials of type B which are annihilated by 3Y.
The last identity is proved using the mirrored version (2.3) of the Boolean recurrence. U

Remark 4.13.

(i) It is straightforward to extend the functional 3° and the recurrence (4.3) to formal power
series (provided that the resulting series converge) and in particular compute conditional
expectations of resolvents of the form (1 — zw)~" with w € M.

(i) In the setting of Remark 4.2 (ii), i.e., A = C(X) for some alphabet X = {X;, Xo,..., X}
and B = C())) for some alphabet ) = {Y},Y5,...,Y,,} we can also use the partial divided
power derivations from Example 2.23

n

RN

dy(P) = Z(l ® Y;)0y, (P),

oy(P) =Y (Y; ® 1)dy,(P),

i=1
where Jy is the free different quotient from Example 2.22 and we can write
(4.4) E5[P] = B3(P) + (By © E)[0y(P)].
Again the additional terms are annihilated by 35

(iii) The map Ap produces the least number of terms and therefore is convenient for explicit

calculations. On the other hand, ?B (and gy in the case of polynomial algebras) are
derivations, which is a great advantage in connection with non—commutative formal power
series, in particular resolvents and other rational functions. Indeed, for simplicity let us
consider the resolvent ¥ = (1—2zP(X,Y)) ™! of a bivariate polynomial P(X,Y) € C(X,Y).
From identity (2.16) we infer that

Vx¥ = 2(¥ @ 1)Vx P(X,Y)(1® ¥)

and a similar formula is true for XX\I/. It does not hold for A x, which does not obey the
Leibniz rule, yet in the case of recurrence (4.3) we can pretend that it does and we have

)
Ex[V] = 87.(V) + 2(8) © Ex)[(¥ © 1)(dxw)(1 @ V]
= By (0) + 26} © Ex)[(¥ © 1) (Vxw)(1 © V]
= By (T) + 2(8) @ Ex)[(¥ © 1)(Ax w)(1© V]
because the extra terms arising in gxw and wa are annihilated by 3%.
Corollary 4.14. For any w € M
(B4 ® Ep)[Aaw] = (84 © Es)[Aaw].
Proof. Observe that from (4.3) we obtain the identity
(8% @ Ep)[Vuw] = Eglu] — B (w)
= (8% ® Eg)[Vpu);
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on the other hand, V= @A + @B and it follows that
(8% ® E)[Vaw] = 0
which is equivalent to the claimed identity. O

We illustrate this machinery with the problem of additive free convolution, done in two ways.

Ezample 4.15. Consider ¥ = (1 — 2(X +Y))™' =3 (2(X +Y))" then ox U =20 ® XU
and the conditional expectation is
Ex[¥] = 85 () + 287 @ Ex[¥ @ X U] = B2 (V)(1 + 2 XEx[V]).
Thus
b b -1 b -1
(4.5) Ex[W] = A (0)(1 =260 (9)X) = (1/57(0) = 2X) .
The evaluation of 8% (¥) will be discussed in Example 5.9.

In order to obtain the usual formulation of free additive subordination one has to consider
the resolvent R = (z — (X +Y))~! instead of .

Ezample 4.16. Let R = R(z) = (z — X — Y)™!, then xR = R® XR and the solution of the
recurrence for the conditional expectation
Ex[R] = By (R) + By (R) XEx|[R]
is immediately obtained as
Ex[R] = (By(R)~ = X)7.

Now % (R) is an analytic function of 2 (via R = R(z)) and its reciprocal w(z) = 1/8%(R) is
the subordination function from (1.2). For its further evaluation see Example 5.8.

In fact the recurrence (4.3) allows for finding a system of equations for the conditional
expectation of resolvents of arbitrary polynomials.
Proposition 4.17. Let P € C(X,Y) and suppose oxP = o uw®@Xv, e, OxP=>"" w®
vi, and let U = (1 — zP)~. Then we have

(4.6) Ex[¥] = B%.(¥) + 2 Y By (Vu;) X Ex[v; V]
i=1
where the conditional expectations on the right hand side satisfy the linear system of equations

Ex[v1Y] 6% [v19] Ex[v; U]
(4.7) Ex [?’2‘1’] B [i:fz‘lf] . [0y 0]
Exfon¥]]  [By[om?] Ex [0 7]

where Hy; = B (v;%u;)z + 5% (uy).

Remark 4.18. (1) Let us label each appearance of X in P(X,Y) by consecutive labels X7, X, . ..
and similarly for Y we label them as Yi,Y5,.... For example for XY + Y X we write
X1Y1+ X,Y5. Then one can see that the entry H;; is exactly the functional 6{} evaluated in
all possible subwords of ¥ which occur between X; and X;. More precisely if we consider
(1 —2P)~! then if X; and X; are in different monomials of P then these monomials are of
the form u; X;v; and u; X;v; and all subwords of (1 — zP)~! which are between X; and X
are exactly of the form v;(1 — 2P) tu; if X; and X, are in the same monomial then this
monomial is of the form u;X;u;; X;v;. Thus in this case we get the additional term w;; to
which we apply (5.

Observe this very matrix Hy (with slightly different powers of z) appeared in [14, The-
orem 6.1] in the computation of the anti-commutator. However there the goal was to
determine the distribution, not the conditional expectation.
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(2) At this point it is not clear how to determine the matrix H above. For this it is necessary
to evaluate the functional 3° and this will be done in Section 5.

(3) Equation (4.7) is linear and can immediately be turned into a linearization (in the sense of
[16]) of the rational function Ex [v;¥]. We will develop this systematically in Section 6.

Proof of Proposition 4.17. For the recurrence (4.3) we can use either A Xx Or EX. The latter has
the advantage of being a derivation. In any case

(4.8) Ex[¥] = B() + (5% © Ex[(¥ ® )(5xT)(1 ® V)]
(4.9) = B3(T) + (B @ Ex[(¥ ® 1)(Ax T)(1® D)
because the extra terms in (4.8) are annihilated by (2.

Write

ng: Zm:ul@)Xv@

i=1
ie, OxT =) ", u; ®v;. Then recurrence (4.3) reads

Ex[W] = B4(0) + 23 A4 (Vu,) X Ex[0,]

i=1

and we can finally establish a system of equations for the conditional expectations appearing
on the RHS of (4.6). Again we employ (4.3) and get

Ex[vi¥] = By (0;¥) + Z By (uif) X Ex[o;¥] + 2> By (0;0u;) X Ex[o;].

j i=1
Define a matrix H as
Hij = By (v;%u;)z + By (uij)-
It is straightforward to see that identity (4.7) holds with Hy defined as above. U
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5. CALCULUS FOR THE BLOCK CUMULANT FUNCTIONAL (3°

The recurrence from Theorem 4.12 opens a door to the study of conditional expectations and
in the case of resolvents the resulting linear system can be solved explicitly to obtain explicit
formulas in terms of the functional 3. Its evaluation is the subject of the present section.
However at the time of this writing we lack sufficient understanding of Boolean cumulants
required to handle this problem in the general setting of Assumption 4.1. Therefore in the
remainder of this paper we will mostly work in the formal setting of polynomial algebras
from Remark 4.2, which allows the reduction to univariate Boolean cumulants which are well
understood.

Assumption 5.1. We will work in a formal ncps, i.e., the free associative algebra C(X) over
some alphabet X' and some distribution p : C(X) — C. As usual the augmentation map
€ : C(X) — C is the constant coefficient map e(P) = P(0).
More specifically, we will work in one of the following settings:
(i) M =C(XUY) where X = {X1,Xo,..., X} and Y = {¥],Ys,..., Y, } are free from each
other with respect to u and so are A = C(X) and B = C(Y). In this case we will denote
the corresponding conditional expectations, derivations, and functionals by Ex, Ay, dx,

3% ete.
(i) M = (C(X1, X, ..., Xn), p) and
where IUJ = [n] is a partition and we assume in addition that all variables X1, Xs, ..., X,

are free from each other with respect to the functional p. In this case we will denote the
corresponding conditional expectations, derivations, and functionals by In this case we
will denote conditional expectations by Ey, Aj, 8 etc.

The typical case is

A:C<X17X27"'7Xk> B:(C<Xk+17Xk+27"'aXn>‘

The following functionals provide the key to evaluate the functionals 5°. They operate by
fully splitting monomials into their factors.

Definition 5.2. On the formal ncps (C(X), 1) we define the fully factored Boolean cumulant
% by prescribing their values on monomials

B(1) =1,

ﬂé(XllezXlk) :5/6(XZ17X1 >Xlk)

27 "

We can decompose the functional 4? along free subsets of variables similar to the functional 5°:
For a subset Y C X of the variables we define linear functionals 635, on monomials as follows:

63;7(1) =1,

- {m(XiI,XiQ,...,X%) if X, X, €Y

5
X X, - X
53; (X X, 0 otherwise

ik

Then 3° = 3% and if a set of variables Y is the disjoint union of mutually free (with respect to
) subsets ); then thanks to property (CAC) we have

ﬁg, =e+ Z(ﬁg,ﬂ —€).
Next we state Lemma 3.10 in terms of the functional 3°, which will turn out to be useful in

the proof of the next theorem.

Lemma 5.3. Assume the setting from Assumption 5.1 (i), i.e., M = C(XUY) with X and Y
mutually free. Then for any letters X;, € X and any elements V; € C(Y) we have

BA(X ViXi Voo Vi X)) = Borgr (Xi, Vi, Xy, Vs o Vi, X)),
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We emphasize that it is not required that V; have vanishing constant term.

For the next theorem we enhance our toolbox with yet another derivation, which implements
a kind of elementary unshuffie coproduct.

Definition 5.4. For a subset of variables ) = {Y},Ys,...,Yx} C X define the first order
unshuffie operator

Ly @0y =Y Ly ®dy, : C(X) = C(¥) ® C(X) @ C(X)
Wi > Y @0y W
Its iterations are defined on the left leg

(L3 © 0y)*W = ZY-Y- ® (O, ® id) Oy, W

(L © o)W Z WYY, ® (O, @10y, 1) oy, W

p
11,8250 0y0p

In the theorem below we summarize the relations between the functionals 4° and 3° which
will allow to evaluate these functionals on some non—commutative power series.

Theorem 5.5. Assume the setting from Assumption 5.1 (i), i.e., M = C(X UY) with X and
Y mutually free.

(i) For any element P € C(X UY) we have
B(P) = e(P) + (8% ® 0) (0xP)
= e(P) + (8% ® BY)(0x P).

(11) For any element P € C(X UY) we have
(5.2)

(P +Zﬁf5 [ (85)"" )®e} (L © 02)5(P))

+Z Z Br(Xiy, Xigy -+, Xiy) [6®(ﬁ§;>®(k_l)®€] <3xilaxi2"'axikp>

k=1 11,%2,...,1%

(5.1)

In particular, when X = {X} consists of a single variable, then
®(k—1)
(53) By (P) = e(P) + Zﬁk Vew (85)" " o] (P)

Remark 5.6. (1) It is straightforward to extend by linearity the functionals 8% and 83 and
Theorem 5.5 to formal power series. One the one hand, for elements of the algebra C{{X))
of formal power series in non—commuting variables X = {Xj, X»,..., X,,}, provided the
resulting series converges; on the other hand, to the algebra C(X)((z)) of formal power
series with non—commuting coefficients.

(2) Formula (5.2) can also be stated in terms of the half-shuffle coproduct A~ of [13], but this
will be dealt with elsewhere.

Proof of Theorem 5.5. (i) Essentially formula (5.1) is a reformulation of Corollary 2.7 in terms
of the functionals and derivations which we introduced above, after observing that the
extra terms vanish as a consequence of Property (CAC).

We will only prove the first of the two identities (5.1) as the proof of second equation is
essentially the same. By linearity it suffices to consider monomials w € C(X U )Y) and in
fact only words w of type XX, any word of different type being annihilated on both sides
of the equation by definition of 3%. So suppose w = u v us - - - VxUg 1 is a free factorization
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(i)
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into words u; € X" and v; € YT, then 8% (w) = Bogy1(ur,v1,Us, ...,V Upy1). On the
other hand
k+1

dpw = g U1V1Ug - Vi1 - 52((%’) cUiUi41 s Um4-1-
i=1

This produces the same splittings of the factors from X in the X-) factorization as in

(2.9), except for two kinds configurations:

(1) Formula (2.9) contains splittings of factors of w coming from both X and Y*. The
latter are absent from (5.4) because whenever a factor v; = v[vf is split, at least
one of the factors of the arising term 3% (ujvius - - - v)) 8% (V' Uit1 - - - Upm1) Vanishes by
definition of 35 and 3%

(2) In the derivative dyw there are extra terms of type ujviug - - - U @ VpUg 1Vt * * * U1
which do not appear in Corollary 2.9, but the application of 33 ® 3% creates the factor
BY (U5 ttgn) = 0.

For the proof of (5.2) first observe that both sides of this equation are 1 for the empty word

and that both sides are zero unless w is of type X~X. Thus fix a monomial w € (X UY)*

of the latter type. We write it as w = X v1. X vy - - -0 X;, | with v; € V7, ie., we allow

some v; = 1. However the latter will be considered later and we assume first that v; # 1

for i = 1,2,...,k. Comparing (5.2) with formula (3.2) observe that according to (3.2)

we have a sum over all choices of variables from X, with the restriction that both X,

and X;,,, are always selected. In formula (5.2), all choices of p X’s are given by the

p-th derivative, the variables annihilated by the free derivative are put to the outer block,

moreover application of € ® (53’,)@)(]{71) ® € evaluates to zero unless both X; and X;, are
annihilated by the derivative. Further from (5.2) we get a product of cumulants of type
Br(Vp, Xipirs - - » Xi,s Ug), which are extracted between the two X’s moved to the outer
block and this is exactly equal to 85(v,X; ,, - X;,0)-

It remains to consider the case where some v, = 1. Assume that it comes from a pocket
determined by X;, and X which are both chosen to the outer block, i.e., p < g <r. The
existence of such p and ¢ is guaranteed as we always choose the first and the last X to
the outer block. We will consider the contribution of this pocket in both formulas (3.2)
and (5.2). There are three possible cases depending on how v; is placed between j-th and
k-th Xll

e p=gq and r = p + 1 then the pocket created by these two elements contains only v,
and formula (3.2) gives £ (vy) = 1 while from (5.2) we get 54(1) = 1.

e p=gqand r > p+1, then the pocket contains v,X; ,, ---v,—1 and (3.2) gives pre-
cisely BQ(k_i)_l(vp,Xipﬂ,va,XipH, ...,Ur—1) = 0 because the first argument is 1
and (2.10) applies. On the other hand (5.2) we get 85(0,X;, ., Vp1Xip,, -+ V1) =
BY%(Xi, 1 Ups1Xi,,y -+ Ur—1) = 0 by definition of the functional 5%. The case p < ¢ =
r — 1 is treated similarly.

e Having eliminated all such units, it remains to consider the case p < ¢ < r — 1. By
(3.2) the contribution of the pocket containing v, equals

BQ(k—i)—l(vpa X’ip.H y Up+1, Xip+27 R Xiq7 17 Xiq.Ha ceey Xi,«_la /Urfl)

= /BQ(k—i)—l(vpy Xip+17 Up+1, Xip+2a s 7Xiqa X’iq+1a s 7Xi7717v7"—1)
= /BQ(k—i)—l(Upv Xip+1vvp+17 Xip+27 s 7XinZ'q+17 s 7Xi7~,17,UT71)

because of (2.12) and Lemma 3.10.
Assuming that vy, Upy1, ..., v—1 # 1, then 8% (v, X, Vps1 -+ - X, 04X, - Xin_,0r1)
evaluates to the same value. If there are v; = 1 for p <l < r —1 and [ # ¢ we repeat
the same argument. Observe that with the previous steps we have already made sure
that vy, v,_1 # 1.

O
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Let us illustrate this with some examples.
FExample 5.7. A direct calculation using VNRP shows that
BY (XY X) = 83(X, Y, X) = Bo(X)Bu(Y).
Let us calculate the derivatives of Ox (XY X) = 1Y X+ XY ®1 of course both corresponding
terms vanish after application of 8% and thus n = 1 does not contribute (it never will, effectively

the sum starts from n=2). The second derivative gives Do(XY X) = 1®Y ® 1, and hence from
the formula in the theorem we also get

5?((XYX) = B5(X,Y, X) = Bo(X)Bu(Y).
Ezxample 5.8 (The additive subordination function). In Example 4.16 we concluded that the

additive subordination function for R = (2 — X —Y) 1 is 1/8%(R). Now SyR=RY ® R and
the recurrence (5.1) yields

BU(R) = ¢(R) + (8% ® %)(3yR)
=~ + BURY)B(R)

and thus the subordination function is
w(z) = 1/8y(R) = z — 2By (RY)
cf. [23, Corollary 3.7].

Example 5.9. In anticipation of matrix valued formulas arising in Section 6 we continue Exam-
ple 4.15 and consider the simple example where n = 2 and the power series ¥ = (1 — z(X +
V)= (2(X+Y))" € C(X,Y)((2)). Since we work only with two variables we will
write 8%, 8% etc. which should not lead to any confusion.

Clearly we have

N

ox(U)=1+4200 XV,  6(0)=1+20QYV.
Thus from (5.1) we obtain
By (W) =14 285 (0)B% (X W), Ay(¥) = 1+ 265 (V)5 (Y1),

Hence we obtain
Be(@) = (1- 285 (x ), BL(0) = (1285 (Y D))
Comparing with (4.5) we conclude that
Ex[¥] = (1— 24 (Y ) — 2X)!
Moreover observe that
O (XU) = 2" @U%" 4+ "XV @ U®", O (YU) = 2" @ U 4+ "YU @ "
Thus equation (5.3) gives

B2 (XT) Zﬁn )" = (283 (D)),

B(vw) Zﬁn P = Gy (2B (W),
Finally we obtain the following system of equations
~ -1 _ -1
gexwy =i (= (1 =80m) ). B =i (= (1 2pxw) ).

We shall see below that this system of equations has unique power series solutions 35 (X ¥) and
B (Y0) analytic at 0 and in fact yields the fixed point equation for subordination function for
free additive convolution. Thus this system determines the function needed in Example 4.15.
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6. LINEARIZATION AND CONDITIONAL EXPECTATIONS

The procedure presented in Proposition 4.17 can be systematized using linearizations of resol-
vents from the very beginning. For the reader not familiar with rational series and linearizations
the basic facts are collected in Appendix B. Here we will adapt and amplify all previously de-
fined operations to the level of matrices and then lift Example 5.9 to the matrix-valued setting.

6.1. Amplifications of expectations and cumulants. Most concepts considered in the
present paper can be generalized to the operator valued case. Rather than do this in the general
case we restrict the discussion to amplifications to tensor products. In fact the matrix valued
case would suffice for later applications to linearizations, however the proofs are conceptually
simpler in the language of tensor products.

Notation 6.1. Let (A, ) be an ncps and C a unital algebra. We shall consider C ® A as a
C-bimodule with action ¢; - (c® a) - ¢ = ¢1c02 @ a.

In the case where C = My(C) is a matrix algebra we will denote the elements by > Cju;
where for a matrix C' € My(C) and u € A we denote by Cu = uC € My(A) the matrix with
entries

(CU)ZJ = CijU.
The following lemma is easily verified on elementary tensors.
Lemma 6.2. Let (A, ) be a neps and C a unital algebra. and denote by pe = ide @¢p : CRA —
C the amplification of .
(1) ¢ is a C-bimodule map:
welcr - u-cz) = crpe(u)es
for all ¢1,c5 € C and u € C ® A.

(ii) Let B C A be a subalgebra and Eg : A — B be a conditional expectation for w. Then its
amplification ide Eg : CR A — C® B is a C ® B-bimodule map and moreover it is a
conditional expectation for the amplification p¢ in the sense that

pc((ide ®Eg)[u]v) = @c(uv)
for anyu e C® A and any v € C® B.
(i7i) The C-valued Boolean cumulants defined by the amplification of the recurrence (2.2)

n
k=1

are given by
B(cr ®ay,ca @ ag, ..., cn @ ap) = C1Cy- - Cp Pulay, ag, . .. ay).

In the case where C = My (C) is a matrix algebra we can apply the usual identification of
M, (C) ® A with My(A) and reformulate the lemma in terms of matrix operations as follows.
Corollary 6.3. Let (A, ) be a ncps.

(i) The amplification ™) : My(A) — My (C) to the matriz algebra is the entry-wise appli-

cation oV ([a;j]) = [¢(ai;)]. These maps form a family of matriz bimodule maps:
PeBU-A-V)=UpM(A)V
holds for any matriv A € My(A) and any scalar matrices U € Mpxn(C) and V' €

MNXk(C); k € N.
(ii) Let B C A be a subalgebra and Eg : A — B be a conditional expectation for ¢. Then the

entry-wise application maps EgN) [[aij}ij} = [EB[GUH form a family of My (B)-bimodule
ij
maps:

(6.1) EXU-A-V]=U-E[A4]-V
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holds for any matric A € My(A) and any scalar matrices U € Myyn(C) and V €
My« (C). Moreover it is a conditional expectation for the map o) in the sense that
eM(EN(A)B) = ¢™(AB) for any A € My(A) and any B € My(B).

(i1i) The entries of the My (C)-valued Boolean cumulants defined by the amplification of the
recurrence (2.2)

M (A4 - ZB(N) A Aoy AR ™) (Apir Agso - - Ay)

are given by

5T(LN)(A17A27"'7ATL)U = Z ﬂn( 1117 212”227'"761/5:)1])

11,8250 0yin—1

Notation 6.4. The corresponding matrix valued versions of the functionals 5° and 3° are
defined analogously as

) (N)
B (A)yy = Ba(asy) B3 (A)y = B (ay).
whenever these are defined (Assumption 4.1, resp. Assumption 5.1).
6.2. Amplifications of derivations.

Lemma 6.5. Let A and C be algebras, D : A — 9M be a deriwation into an A-bimodule .
Then D© =ide @D : C® A — C M is a derivation, where C ® M is an C @ A-module with
action

(c1®ay) - (c@m)-(ca®ay) =creea @ (a; - m - ay)
Proof. It suffices to verify the Leibniz rule (2.15) for D©) on elementary tensors:
DO ((01 ® ay)(ca ® ag)) = c100 ® D(ajas)
= c162 ® (D(ay) - az) + cic2 @ (a1 - D(az))
=D, @a) (2@ az) + (1 ®ar) - D9 (c; ® a)

This is true in particular for C = My(C) (cf. [27, Section 3]).

Corollary 6.6. Let 9 be an A-bimodule and D : A — M be a derivation. Then My(9N) is
an My (A)-bimodule with action

il - [migli [Z i -afy]

and the matriz amplification DY) : My (A) — My (9M), i.e., entry-wise application
D™ ([ai;]) = [D(a)]
satisfies the Leibniz rule (2.15).
FExample 6.7. Let D : A — M be a derivation where 9t = A ® A is the bimodule with action
a (a1 ®ag)-ad" =da; ®ad =(d ®@1)(a1 ®az)(1®d").

Then using Notation 2.9 the Leibniz rule for the product of two matrices Ay, Ay € My(A)
reads

DM (A1 Ag) = DM(A1) (14 © As) + (A1 © 1) DM (Ay) € My(A® A),
ie.,

DM (A, Ay),, ZD Na®al)) + (af) ® 14)D(a};).
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In particular, for a resolvent ¥ = (Iy — zA)~! the derivation results in
DW= (¥ 1) DM (A)(1 o )
and in the case of an elementary tensor A = C' ® a with D(a) =) u; ® v,
DM =2 " Wu,C © ;¥

6.3. Computing conditional expectations via linearizations. In the following we will
omit the superscripts from ]Egv) etc. and write Eg etc. whenever the context is unambigu-
ous. Now the bimodule property (6.1) allows us to rewrite the conditional expectation of a
linearization

(1—2"P) ' =u'(I —2L)7!
as

(6.2) Eg|(1—2"P)!| = u'Bg[(I — L) |0

and the problem is reduced to the computation of conditional expectations of matrix pencils.
We shall see that this accomplished by repeating the computation from Example 1.6 with
matrix coefficients.

It is immediate to verify the amplification of the recurrence (4.3), namely

(ide ®Eg)[c ® P] = (ide ®84)(P) + (ide ®8Y ® Eg)[ide ® Ag(P)]

etc. The matrix analog of Theorem 4.12 in terms of the amplifications of Eg, %, 33 and ?B
from Lemmas 6.2 and 6.5 reads as follows.

Proposition 6.8. Let M € Mn(M) and A, B C M as in Assumption 4.1. Then

N) (N
B[] = 83(M) + (8% © Es) VA (01)
(NV)
W) + (8 @ E) V[V (M)
(V) A
= B4 (M) + (Es @ 5) VA " (M)]
In particular, for a linear matriz pencil L = ) Cia; + C7b; € My(M) the conditional expecta-

tion of the resolvent ¥ = (IN — 2> Cla; + > C],‘/bj)) { is
(6.3) EQ(W) = (Iy — 2Ha > CJb;) Ha,

where H = b(N)(\I’) € My(C).

Formula (6.3) is a matrix valued version of Example 4.15 and the proof runs along the same
lines.
Next we switch to Assumption 5.1 and lift (4.4) and Theorem 5.5 to the matrix level.

Proposition 6.9. Let M = My(C(X UY)) and X, free with respect to yu : M — C as in
Assumption 5.1. Then

N (V) <V
By [M] = 6% (M) + (B @ )[4 (A1)
Next, identity (5.1) trivially lifts to tensor products

(ide ®B%)(c® P) = ce(P) + - (8% @ %) (dx
= ce(P) +c- (B4 ® B5)(0x

which immediately translates to the case of matrices as follows.

P)
P)
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Proposition 6.10. Let M € My(M), then with Assumption 5.1 we have
) <
M) = M) + (8% @ By) M (8 M)

= M (M) + (85 @ BN (0L M)

In particular, for a linear matriz pencil L = ) CiX; + C]Y; € My(M) the block cumulant
1

functional at ¥ = <]N —z(>_CIX; + ZC”-’Y-))_ is
b(N)< (IN _ . Zﬂad\f ) (IN B zﬁ‘“m( ))—1
(=Y ) — (1 — )

Thus in order to conclude the computation of the conditional expectation (6.2) it remains

(6.4)

to evaluate 5§;N)(111Xi) for all 7. This can be done if we assume that all variables are free with
the help of (5.3) which we now lift to the matrix level.

Proposition 6.11. Let M € My(C(Xy, Xs,...,X,,)), then
i (N)
®(k—1)
(6.5) BN (M) = M () + > Be(X7) {e ® (Bp) ® e} (E)ﬁ;im (M)) .
k=1

We can now subsume the essence of the previous calculations as follows. Theorem 1.3 follows
by evaluating formula (6.7) in a specific algebra A.

Theorem 6.12. Let p: C(X1, Xo, ..., X,) = C be a distribution such that Xy, Xs, ..., X, are

free. In the following for an index set I C {1,2,...,n} the conditional expectation onto the

subalgebra generated by the subset {X;}ier will be denoted by Ey. Suppose that the resolvent of

a gien polynomial P = P(X1, Xs, ..., X,,) € C(X1, X, ..., X,,) of degree m has linearization
1

(6.6) U=(1-2"P) "' =u' Iy — 2(C: X1+ CoXa+ -+ C, X)) v
with Cl, CQ, ey Cn c MN((C)

Then the conditional expectations of ¥ are

E/(1 - 2"P)7Y] = ut (JN —2H, (Z CiXZ-)>_1HJv
(6.7) icl

1

= ut(IN — Z<ZC¢X¢ — ZCij>)_ v

iel jed
-1

where J = [n] \ I is the complement and H; = ([N — 2 iy C]-Fj> and the matrices F; =

5(N)(X W) e My(C), i =1,2,...,n are the unique solution of the system of matriz equations

~ —1 .
(68) -Fz:nX1<Z<IN_ZZC]-FJ) CZ> 221,2,...771
J#

which is analytic at z = 0. In particular,

1

A=y =it (1 - +(3 6 R))

Proof. Let
—1

v = (IN — Z(Cle + CQXQ + -+ Can))
be the matrix of the linearization ¥ = u'Wv from (6.6). In the following we abbreviate the

functionals
:Z/Bgfi ﬂﬁ:zﬂgﬁ’

i€l el
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Then from (6.3) with B the algebra generated by {X;}ic; and A the algebra generated by
{X,};es we obtain

B[] = (Iy — 2H, S CiX,) Hyo

i€l
where
H, = b(N)( Z(N—ZZCJ 5<N ) 1
Jj€J
by (6.4).
Next we apply Proposition 6.11 in order to establish equations for F; = ,B‘WV( W), similar

to Example 5.9. First observe that
Ox, U =z2(T0ol)Ci(1oW¥)=9C,0W¥

thus

and applying iterated derivatives to the left leg
KX =210 (RC)M 0¥+ 2 X,(¥C) 0 ¥
and (6.5) becomes

) - (N) _
(G =) Be(X)2 T B (WO
k=1
= 7x, (2 Hpp\iCi).-
Uniqueness of the matrices F; follows from the iteration in Lemma 6.13 below. O

We have seen that the matrices F(z) = ggv)(Xl\Il(z)) satisfy the fixed point equation (6.8)
and it remains to show that the latter has a unique solution analytic at 0. To this end we
expand F;(z) into a power series

(6.9) Fiz) = 8% (X ZW XLz

and show that iterating the fixed point equation produces a series whose coefficients converge
to those of the series (6.9).

Lemma 6.13. Start with constant matrices

O(2) = Bi(X:) Iy i=1,2,...,n
and iterate
1
Fi(r-l—l)(z) = 1); <z(IN - Z Oij(T)(z)) (J,-) i=1,2,....n
J#i

Then for all r € Ny we have
F(z) = Fi(2) = (=) i=12...n

7

Proof. We proceed by induction. First observe that if Fi(r)(z) — Fi(z) = O for i =
1,2,...,n then

(In =S GEO ) = (v = S CF(2) ¢ = 0=

i i



36 F. LEHNER AND K. SZPOJANKOWSKI

as well and thus

F () = Fy(z) = Z By (X:) 2 <(IN -3 ch;”(z))_lcj)k +0(21?)
k=0 J#i
——E:ﬁn+ﬂ)gyﬁ<(LN——E:C%FﬂznIC&>k+—O(J+ﬁ
k=0 J#1
— O(Zr-i-Q)

O

Remark 6.14. When it comes to the practical solution of the system (6.8) we are faced with a
large number of variables. It can be reduced by observing that the solutions F; enter the final
expression (6.7) for the conditional expectation only in the products C;F; and we can advantage
of the fact that the coefficient matrices C; usually are sparse. Indeed let P; be the projection
onto ker C; and Q; = I — P;, i.e., C;P; = 0 and C;Q; = C;. Then in the expression (6.7) we can
replace the matrices F; with the matrices F, = Q; F; and the latter satisfy the slightly modified
system

~ - —1 .
(6.10) F= Qi (2(Iv ==Y CF) G =12 n.
J#i
It follows that F; = Q;F;Q; can be obtained by iterating the fixed point equation (6.10) with
starting point Fi(o) = 51(X3)Q;.
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7. EXAMPLES

In specific calculations it is always clear which N we need to take in E®), thus we will write
E for E?) and similarly we will write 5%, 3% etc. for matricial versions all other mappings.

7.1. The product of free random variables. We start with the example 7' = XY which
can be solved directly without invoking linearizations.

The derivations are dxV = z¥ ® XYWV and 6y ¥ = 2V X ® YU, respectively. First notice
that from the resolvent identities

(7.1) U=1+2XY¥=1+20XY
we immediately infer
(7.2) A% () = py(¥) =1
and thus
(7.3) Ex[V] = 8% (V) + 282 @ Ex[¥ @ XY U] =1+ 2X Ex[VV];
further
Ex[YW] = By (Y¥)(1 + 2X Ex[Y'P])
and thus
(7.4) Ex[YW] = (Y W)(1 - 20(YU)X) .

Putting together (7.3) and (7.4) we find
Ex[¥] = (1 24(Y)X)
and the subordination equation
M(z) = Mx (26, (Y'0)).
We have thus identified the first subordination function
w(2) = 2p5(YU).
The conditional expectation with respect to Y is simpler to obtain, but the result is the same:
Ey[9] = 1+ 285 (UX)Y By [U]
and thus
Ey [0] = (1 - 285 (0X)Y) "
M(z) = My (26%(¥X)).
The second subordination function is
wa(2) = 2f5% (U X).

To find relations between these functions we will resort to Theorem 5.5. It is immediate to see
combinatorially that 8% (YV¥) = 3. (YW) and % (¥X) = B%(¥X) but let us verify this with
the recurrence from Proposition 5.5. Indeed,

BL(YU) =B @BL(Y @ U+ 2YUXY ® V)
— BLOV(1+ 2UXY))BL(W) = BV W)
because of the identities (7.1) and (7.2). Similarly
BL(UX) =85 @ BL(zUX @YUX +UX ®1) = BL(UX).

Thus we have
wi(2) = 285 (YD) wa(2) = 28% (TX).
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7.2. Conditional expectations of free commutators and anti—-commutators. As an ap-
plication of Theorem 1.3 we show that for symmetric and free X, Y the conditional expectation
of (1 —22P(X,Y))"! onto one of the variables coincide for commutator and anti-commutator.
First we consider the anti-commutator XY 4 Y X in free variables.
The linearization matrix described in Remark B.7 is given by

0 0 Y 0
X 0 0 Y
L = X 0 0V =COx X +CyY
0 X 0 0
where
0000 0010
1000 000 1
CX_1000 CY_0001
0100 0000
We have
0
(1-2(XY+YX)r=[0 10 0] 20" |
0

It follows that

Ex[(1-2*(XY +YX)) =0 1 0 0]Ex[(1—2L)"']

O~ = O

Next
Ex [(1-2L)7"| = (1— 2HxCxX) ' Hy
Ey [(1—2L)7] = (1 - 2HyCyY) " Hy,
where the the matrices Hx and Hy they satisfy the following system of equations from Theo-
rem 6.12 and Remark 6.14:
Hx = (I — 2Cy Fy)™!
Hy = (I — 20xFx)™!
Fx = Qunx(zHxCx)
Fy = Qany (2Hy Cy)

(7.5)

where
Fy =) (diag(X, X, Y, Y)(1—2L)7"), B =B (diag(X, X, V,Y)(1 - 2L)7"),
Q1 = diag(lala()ao)? Q2 = dlag(oa()al?l)

Since X and Y are symmetric, all odd cumulants vanish and hence

0 fe12 00 00 0 0

| fe2r 0 00 oo 0o 0
Fx=1"0" 0 00 Fr=19 0 o Foo

0O 0 00 00 fima O
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Substituting Fx and Fy into the first half of the system (7.5) we obtain

10 0  fy 1 0 00

01 fw2 0 = 00

(76) HX: 0 0 1_;1%21 O Hy: O 1{3‘51’2 1 O
y,21 fr 12

00 0 1 fee1 0 01

By assumption X and Y have symmetric distribution and thus

2) =) Bon(X)2 Ty(z) =) BanlY)2 N

We need to understand how odd powers of HxC'xy and and Hy Cy behave.
First let us note

fy,
(1) fy,12 0 0 1—f;,221 fO 00
0 0 0 =2 () 0
HxCx = | Th (HxCx)* = it
1—fy,21 0 00 0 1iyf—yzgl 0 0
1
0 1 00 T 0 00
This immediately implies that
n—1
(HXCX)Qn—l _ fy,12 HXCX
11— fy,21
Similarly we obtain
f n—1
(HyCy)™ = [ —22 HyCy.
1- fm,lQ
This gives
1— > !
fix (:HxC'x) = Z@Lzmwﬁkﬁlﬁw@Z@MW%iﬂﬂ
Jy12 ot L— fy=

fy12 1— fy21
= L2y : — HxCYx,
77X< 1_fy,21 fy,12 X
~ T 1-— x
ny(ZHYCY) =y |2 f ,21 f ,IQHYCY.
1_fm,12 fx,21

Substituting this into the second half of the system (7.5) results in two matrix equations with
exactly two non-zero entries which we can rewrite as

( B fyao B 1 fz21
nﬂ—a—@meGviﬁ;ﬂ @”‘EZW(Wl—nﬂ>

(7.7)
1 / [ Iz
fx 21 = fy 12 (Z 1— 7 .- fy’]lpj,m) fy,21 = (1 - fx,12) Ny (Z 1_f . f ’;:712>
Since

0
Ex[(1-2*(XY+YX)) =0 1 0 0](/—2zHxCxX) 'Hx }
0



40 F. LEHNER AND K. SZPOJANKOWSKI

Ey[(1-22(XY +YX) | =[0 1 0 0](I-zHyCyY) 'Hy

SO = = O

A direct calculation with Hx and Hy as in (7.6) gives

_ 1
EX[(l_ZQ(XY+YX)) 1]:1—f21_f 19X222
Y, Y,

1
Ey[(1-22(XY +YX)) = :
[< ( )) ] 1- fa:,lz - fa:,21YQZ2
Next we repeat the previous steps with the commutator, which are very similar. The lineariza-
tion matrix has the form

(7.8)

0 0 Y 0
iX 0 0 —ivy

L=1lix 0 o —iy| =X TEOY
0 X 0 0

Again the system of equations reduces to just four equations which after immediate simplifica-
tions boil down to the following:

fz,12 = (fy»21 - Z) Nx (z\/ fyvj;yljli Z) fy,12 = f%zl )% <Z Z,ix‘;;m)

1 f 12 . fx 21
fac, = z y—7 f 21 = \? + fw, ZA (= :
\ 21 fy,12 Nx fy,21 —; y,21 ( 12) Ny ix fw,l?

And the conditional expectation in this case is equal to

(7.9)

1
C l4ifyon —ify12X222
B 1
1 —ifyrn+ifan Y222
We are now ready to prove the following proposition.

Ex[(1—-2%(XY -Y X))

(7.10)
Ey[(1 - 2%(XY - Y X))}

Proposition 7.1. Assume that X,Y are free and symmetric, then
Ex[(1—-2%(XY —YX)) | =Ex[(1 - 22(XY +Y X))}
Ey[(1 - 2%(XY - Y X)) 1] =Ey[(1 - 22(XY +Y X)) 1.
Proof. Let us rewrite (7.8) and (7.10) as

1
Ex[(1-22(XY +Y X)) = ac ac
1- y,21 y,12X222
1
Ex[(1—-2%(XY —-YX) Y =
1
EY[(l - ’ZQ(XY + YX))il] = ac ac
L= [ — [inY?2°
1

Ey[(1 - 2%(XY - Y X)) =

1- if§,12 + if§,21Y222‘

Thus if
ac __ :pc ac . pre
711 y12 = Uy12 Jyo1 = _ny,21
( . ) ac __ :rc ac __ _ src
212 = Uz12 Jz21 = U g1
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then the desired equality holds.

It is straightforward to verify that the substitution of equations (7.11) into the system of
equations (7.7) for the anti-commutator results in the system (7.9) for commutator. Let us
verify this for the first of four equations

ac

12
w2 =1 = fys)nx | = 1_y—a,c
y,21
Substitution results in
1fy12
ifgro= 0+ ifgo)nx | 24—
© . Ltifso |
which is equivalent to
. fya2
5,12 = ( 5,21 —i)nx | 2 m
and the above is exactly the first equation in (7.9). O

7.3. A Lie polynomial. We consider next the conditional expectation of the Lie polynomial
X +i(XY —YX). First we show the general form of the subordination, and next we show that
for a special choice of the distributions of X, Y we can make a further step and obtain explicit
formulas for the functions present in the conditional expectation. The explicit example is as
follows, we take X having semicircular distribution with mean zero and variance one, while Y
has distribution %(5_1 + d1). In this explicit case we can use the conditional expectation in
order to find the distribution of X + (XY — Y X)), we obtain the following corollary.

Corollary 7.2. For a,b free, a being semicircle element of variance 1 and b being symmetric
Bernoulli element, the element a+i(ab—ba) has semicircle distribution with variance 3. More-
over elements a and i(ab + ba) are not free, while i(ab + ba) has semicircle distribution with
variance 2.

Note that ab and ba are free [15, Lemma 3.4], but a and ¢ = i(ab — ba) are not: indeed
a quick calculation shows that r4(a,a,c,c¢) = 1. Yet because of some nontrivial cancellations
kn(a+c¢) =0 for all n # 2 and thus a + ¢ has the same distribution as the sum of free copies
of a and ¢. This is another example of a pair of semicircular elements which are not free
independent, yet any real linear combination has semicircular distribution [8].

Let us describe the linearization for this example we have v’ = (1,0,0), v* = (1,0,0) and
L =CxX + CyY where

z 0 1 0 — O
Cx=11 00 Cy=10 0 O
0 0O 1 0 0
The complementary kernel projections are
1 00 1 00
Rx=10 00 Qy=10 10
0 0 1 0 0O
Now the compressed matrices ﬁX = QxFxQx and ﬁy = Qy FyQy have the form
Jrin 0 fags Jyn fyiz O
OxFxQx=10 0 0 QvFyQy = | fyan fy2 O

frs1 0 fass 0 0 0
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Hence the conditional expectations are of the form
)
i — fymz — 22(0 — fyi + fyo) X + 23 fyrn X2
Ey [(1—22P)1| = ! .
Y [( ZP) } i —ifr1122 4+ fosiz — 22 (frn — fags +ifrizz) Y — 23 fa3Y2
If we evaluate the above for X = a where ¢ has a semicircle distribution and Y = b where b

has Bernoulli distribution then we have that 277x(2)? — 7x(z) + 2 = 0 and 7}y (z) = 2. Thus we
solve the following system of equations

Ex [(1-22P)7!] =

ﬁy — ZQy<[ — ZCXﬁx)ilcy = O,
Qx([ — ZOyﬁy)_lcxﬁ)z( + ZQ)((I — ZCYﬁy)_ch — ﬁX =0.
Since all formal power series in z considered here are convergent in some neighbourhood of

zero, we obtain explicit solutions
2

a+1

Ey [(1—2*P(a,b)7!] =

3 (424 + 1)

]Ea 1_ 2P 7b —1 — .
[( z"P(a,b)) } 24(3a2(a_2)+0z+14)—24a26—3aaz2+a+2

where a = /1 — 1224
Since the conditional expectation on b is constant we immediately get the distribution of
a+i(ab — ba) as we have

2
1 —2P(a,b))™!) =

SO<( (@.5)) ) V1—-122241

and we can get the moments of a + i(ab — ba) which is A005159 entry at OEIS, we see that

¢ ((a +i(ab — ba)®")) = 3"C,,, where C,, is the n-th Catalan number and Corollary 7.2 follows.

We show a histogram of eigenvalues of a matrix approximation together with the graph of the
density see Figure 1.

020

015

0.10-

0.051

0.00

I I I I I I I
-3 -2 -1 0 1 2 3

FIGURE 1. Density of a + i(ab — ba) in the case a semicircle and b Bernoulli
together with matrix approximation.

7.4. An example with three variables. Next we consider the example of product XZY ZX.
The linearization matrix for (1 — 2°XZY ZX) is given by

0 X 0 0 0
0 0 Z 0 0
0 0 0 Y O
0 0 0 0 Z
X 0 0 0 0
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In order to state an explicit result let us assume that a,b,c are free a,b have distribution
1/2(6_1 4 61) and ¢ has distribution 1/2 (dp + d2). The distribution of acbca is the same as free
multiplicative convolution of ¢ and b, however the conditional expectation on a, b is a non-trivial
problem. We omit the lengthy calculation wich results in the expression

Eop [(1 - z%cbca)’l}
=1l—-ua ((225 <8le + 'y) — (b(fy —4)2° + 4210 + 2)71 (—Szlo + ’y))_

(b (y—4)2° + 42" + 2) <<—8210 + ’y) a+ 4a210> + a)

where v = /1 — 16219 + 1 for the conditional expectation.

7.5. A rational example. Non-commutative rational functions have linearizations just like
polynomials, (see, e.g., [16] for excellent discussion about relations between linearizations and
questions in free probability) and consequently our method is not restricted to polynomials but
also allows to compute conditional expectations and distributions of non—commutative rational
functions in free random variables. Let us illustrate this with the concrete example of a rational
function r(a,b) = a(I —a — b)~'a which will show that nevertheless certain technical issues
arise. First we must put conditions on the distributions of a and b in order for I —a — b to be
invertible. Next we compute the conditional expectation of (1 — zr(a,b))™! onto a and b and
then integrate the latter in order to determine the distribution of a(I —a — b)~'a. Using the
method described in Section B we obtain the linearization

(1-2X1-X-Y)"'X)  =u'(l— L)
where L = Cx X + CyY with
0 = 0 0
and v = v = (1,0)".

Let us record some observations here. In order to be able to use iteration from Lemma 6.13
we need to start with correct constant terms Fx = (1(X)I and Fy = £1(Y)I, however there
is a catch: The constant term in Fx(z) = 8%(X(1 — L)~1) is not equal to £;(X), as there
are more entries which do not depend on z. Therefore in order to be able to distinguish the
correct solution, which comes from Lemma 6.13 we introduce an extra parameter s € C and
we consider Fx(s,z) = 8%(X(1 — sL)™!), Then our iteration gives the unique solution to the
system of equations for matrices Fly, Fy whose entries are power series in s. When we want
to evaluate our conditional expectation in X = a and Y = b, of some free variables a,b € M,
we have to make sure that for p being their joint distribution functional 8% (X (1 —sL)™!) is
analytic at s = 1. The following rough estimate will ensure this.

Denote by W the set of monomials with coefficient 1 in C(X,Y), i.e., W = {X,Y, XY,...}.
For w = Zy---Z, € W we denote C,, = Cz, ---Cyz, . We will also use notation |w| for the
number of letters in w and |w|x, |w|y for the number of appearances of X and Y respectively
in w, of course |w| = |w|x + |w|y. We have

B (X1 —sL)™) = D sMB (Xw)C.

A standard estimate for Boolean cumulant gives |3% (Xw)| < 21w F1|a]|le+1||b||I*ls. Moreover
it is easy to verify that ||Cx||> < 2+ |z|* and ||Cy|| = 1. Thus we have

8% (X =sL)7') [ < D7 "Bk (Xw)] - [|Cu|

weWw
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<y st [t ][ Co [ [ Cy [
weWw
= 2]lal| (1 = 2s((lal - | + 11el] - [|Cw[1)) "
The last equality holds whenever 2s(||a|| - ||Cx|| +]b]| - ||Cy|| < 1 and a sufficient condition for
this inequality is 2s(||a|[y/2 + [2]> + [|b]|) < 1. Since we need to evaluate 3% (X (1 —sL)™") at
s = 1, our method applies for ||a||,||b|| and z such that 2(||a||\/2 + |[2|* + ||b]]) < 1.
We will apply this to a, b having Bernoulli distributions % (0_o + 9_4), where in order to have

a non-empty range of z we need to assume a < @ So let us consider the example av = 1/8.
Before evaluation in X = a and Y = b, taking s = 1 we obtain

_ 1— fyo—X
1 — fyoo — X — X2(fya + X)

Solving the system of equations for F'y and Fy, and next evaluating at the resulting expression
in X =a, Y =0 as described above we get

Ex [(1 CaX(1-X - Y)‘lX)_l}

- 1—2a+ a2 + 4/ (a2z — 1) — 4a?
E, [(1 —za(l—a— b)_la) 1} = \/( ) :
1—2a(az+ 1)+ /a*z? —2a%(z + 2) + 1 + a?z

Integrating with respect to the distribution of a we get the moment transform

o’z

\/(a2z —1)* — 402
Taking a@ = 1/8 we can calculate the density and compare it with the matrix approximation
shown in Figure 2.

Ma(l—a—b)*la(z) =1+

1000 -
800 -

600 -

400 -

200 -

=

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.014 0.016 0.018 0.020

FIGURE 2. Density of a(1 —a —b)~'a for a,b with distribution 0.5(6_1/s + d1/s).
together with matrix approximation.
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APPENDIX A. AN ALGEBRAIC APPROACH TO BOOLEAN CUMULANTS

In this first appendix we present purely algebraic proofs of basic facts about Boolean cumu-
lants and implement a formal calculus on the double tensor product.

A.1. Algebraic proofs of Lemma 2.6 and Corollary 2.7.

Proof of Lemma 2.6. Induction on n. We compute ¢(ajas - --a,) in two ways. First consider
a,a,+1 as one factor and apply recurrence (2.2), splitting the sum into two at the entry a,a, 1.

(A.l) go(alaz - (apap+1)ap+2 - an)

p—1
k=1
n—1
+ /Bk}—].(a]_) A2, ...,0p0p41,Apy2, ... 7ak') ¢<Qk+lak+2 e an)
k=p+1

+ Bn-1(ar,ag, ..., apGp11, Qpias - .., Q)
The left hand side is unchanged if we consider a, and a,;; as separate factors. We apply
recurrence (2.2), (artificially) splitting the sum at the entry a,.

(A.2) plaraz - apapi1api2---an)

p—1
= Z Br(ar, az, ... a) o(aks1@ps2 -~ an) + Bylar, as, ..., ap) O(api1apya - ay)
k=1

n—1
+ Z Br(ay,as, ... a) p(agr1apre - - an) + Pular, ag, ..., ap)
k=p+1

The first part is the same in both expressions. By induction hypothesis, the second part of
(A.1) can be replaced by

n—1
Z Br—1(ar, az, ..., apapi1, apra, - .o, ar) P(As1arr2 - ap)
k=p+1
n—1
= Z (Bplar, az, ..., ap) By—p(apt1, apso, - .- ak) + Brlar, az, . . . ay)) o(ar1ap42 - - - an).
k=p+1

On the other hand, applying recurrence (2.2) to the second part of (A.2) we obtain

Bplar, az, ..., ap) P(aps1api2- - an)
n—1
= Bplar, az, ..., ap) Z Br—p(Qpt1; Qpras - -, ax) P(Ak41ak42 - - an)
k=p+1
+‘ﬁ%(alaa2a-"7ap)5n—p(ap+17ap+27--'aan)
Finally canceling equal terms from (A.1) and (A.2) we arrive at (2.8). O

Proof of Corollary 2.7. By induction on the number r of multiplication signs. For r = 0 there
is nothing to prove; for r = 1 this is Lemma 2.6.

Assume that the formula holds up to r — 1 multiplication signs and consider a Boolean
cumulant of the form (2.9) with » multiplication signs, i.e., r = n —m — 1. Now apply (2.8) to
remove the first multiplication

/Bm+1(a1a2 Cr Ay, Ady41Qdy 42 0 Qdyy - -+ Adp +18Qd,, 42 ° ° an)

= Bi(ar)Bmyr(az - - - aq,, Gqy 4104, 42 -~ Qdy, - - -, Oy +1Gdy12 * * * G



46 F. LEHNER AND K. SZPOJANKOWSKI

+ 6m+2(a17 A2 - Qdyy Ady+1Ady+2 ** * Adyy -+ + 5 Adp, +1Ad,, 42 7 Cln).

In both terms there are now r» — 1 multiplications and the induction hypothesis can be applied
to obtain (2.9). O

A.2. Boolean cumulants via tensor algebras. For a vector space V' denote by T (V) =
@D, VE" its tensor algebra and T (V) = @D,.-, V" its augmentation ideal, i.e., T(V) = kere,
where € is the projection onto C = V& called the counit. In order to distinguish different
levels in the hierarchy of tensors we will denote the multiplication in 7 (V') by the symbol ®
and thus elementary tensors are written a1 ® as ® - - - ® a,,. The “outer” tensor on the double

tensor algebra T (7 (V)) is denoted by the usual symbol ®, i.e., any element of 7(7(V)) is a
sum of simple tensors of the form
(110630 ©a,) D (b1 ©by® - 0h) Q- R(1LOCO - ® ).
The tensor algebra has the following fundamental extension property [26, Prop. 1.1.2]:

Lemma A.1. Let V' be a vector space and M a T (V)-bimodule. Then any linear map f :V —
M can be extended to a deriwation T (f) : T (V) — M by setting

n
T(f)(vl©v2©"'©vn):Zvl©U2©"'©vk—l©f(Uk)©Uk+1@Uk+2©---©Un
k=1

In the following the underlying vector space will always be an algebra V' = A, whose multi-
plication will be denoted as usual by ab or a - b.

For example, let A be the free algebra and Aq: A -+ A® A C T(A) ® T(A) the reduced
deconcatenation coproduct

n—1

Ag(arag---a,) = E a1Qg - Qg @ Q41 - ° - Ap;
k=1

let further }

Aq(aras---a,) =a1®@a3®---©®a, € T(A)
the full deconcatenation, i.e., Ad(wlwg) = Ad(wl ® wy). Then the derivation from Lemma A.1
is

n—1

T(A) (w1 0w @---0w,) = > (w1 0wy @ws_1)®1) @ Ag(wy) © (1& (Wit @ @w,))

We will denote this derivation by Aq as well. -
The moment and cumulant functionals are defined on T (A) via

Pw @wy® -+ ©w,) = p(wyws - - - wy,)
Blwy ®wy ® -+ ® wy) = By(wy,ws, ... wy,)

and the recurrence (2.2) can be reformulated with the second level deconcatenation operator

A8 : T(A) = T(A) ® T(A) defined by
n—1
At?(wl@wQ@"'@wn):Zwl@w2©"‘@wk®wk+1@wk+2@"'©wn
k=1

as follows:
P(w Wy ® 0w, =Rw W@ - Ow,) + (BR ) AS(w; @ws @ -+ ® w,)
On the other hand, if we define the full Boolean cumulant 3°(w) = B(Aq(w)), i.e.
B(aras---ap) = Bla; ® ay © -+~ © a,) = Pulay, as, . .., ay)
and extend it to 7 (A) via
B(wy ©wy ® -+ ©wy) = B (wiwy - - - w,)



FREE INTEGRAL CALCULUS 47

= B(Ad(wl) ® Ad(wg) ® -0 Ad(wn))
then the full Boolean cumulants satisfy the corresponding recurrence
p(w) = B (w) + (8’ ® ) Ag(w)
which we can generalize to 7(.,4) In order to formulate it, we introduce some further notation.

Definition A.2. An interval partition is a partition whose blocks are intervals. The interval
partitions Int({1,2,...,n}) are thus in bijection with compositions C(n) = {(ki, ks, ..., kmn) |
ki + ko + -k, = n}. The bijection maps an interval partition = € Int(n) to the sequence
of block lengths (in their natural order). We denote this bijection by C' : Int(n) — C(n). A
composition A = (ky, k2, ..., ky,) € C(n) is uniquely determined by its partial sums, called
descents
D) ={ki, k1 +koy... . ki +ka+ -+ kpa} C{1,2,...,n—1}

and thus the compositions of order n are in bijection with the Boolean lattice of order n — 1,
The descents of an interval partition are the descents of the corresponding composition D(7) =
D(C(m)). This bijection is a poset anti-isomorphism and 7 < p if and only if D(p) D D(7). In
particular, D(7w V p) = D(7) N D(p).

Proposition A.3.
Bluw, ®wy ® - @ w,) = (w1 @ wy @ -+ ©wy,) + (82 ® B) o Ag(w, ®wy © -+ ® wy,)

Proof. Let k; = {(w;) be the lengths of the words and p = {I1,I5,...,I,} € Int(n) the in-
duced interval partition, i.e., |Ij’ = k; and C(p) = (k1,ka, ..., ky) with descent set D(p) =
{r1,r2, ..., tm_1} where ro = do(p) = 0, r1 = di(p) = k1, 79 = da(p) = k1 + ko, etc. Then if
Wi = Ay, 410r, 42 - - - ap, the product formula (2.7) can be rewritten in terms of descents as

Bm(@1ag -+ Qpy s Qryg1 - pyy ooy Gy 417 G

= Z Br(a, ..., an)

w€lnt(n)
D(w)ND(p)=0

:ﬁn(al,ag,...,an)—i—z Z Br(ar, ... a,)
s=1 relnt(n)\{1.}
D(m)ND(p)=0
dl(ﬂ‘)EIS
where we split off the term corresponding to 7 = 1,, (i.e., D(7) = ) and regroup the remaining
terms according to the location of the first descent d; (7). Fix 1 < s < m and assume that
d = dy(m) € I;. Then the first block of 7 is By = {1,2,...,d1} and # = {By} U7’ with
T = Tla41,n] € Intld + 1,n] and D(7") N D(p') = 0 where p' = p|g41,,). Now by assumption
re_1 < d < rg and thus

Z Brlar, ... ap)

m€Int(n)\{1,}
D(m)ND(p)=0
d1 (TI')EIS
rs—1
= E Balar, ag, ..., aq) E Br(Gds1, Cata, - - -, An)
d=rs_1+1 «' €Int([d+1,n])
D(n")ND(p')=0
re—1
= E ﬁd(al, ag, . .. ,ad) 5m—s+1(ad+1ad+2 Qg Wet 1, Weg 2,y - - - ,wn)
d=rs_1+1

= (BB (w 0wy ® - @ we @ 1)(Aqws)(1® (Wepy ® Weyg ® -+ © wpy)))
U
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Remark A.4. Although freeness implies property (CAC) (Lemma 3.5) and thus 8°(w; ® w; ®
-+ ®w,) = 0 if wy begins with X and w,, ends in Y, it is important to keep in mind that this
is not necessarily true for f(w, ® Wy ® - - - © wy,).

Ezample A.5 (Cumulants of products). Let us apply Proposition A.3 to
\II@) — Z(Xy>@nz2n
n=0

to compute the cumulant generating function
B(z) = B(T°) = Y Bu(XY)z™"
n=0

From this we can then obtain the moment generating function
1
— 1——B(z)
Applying the Leibniz rule to the identity ¥© ® (1 — 22XY) = 1 we obtain (2.17)
Aq(T°) = (T° 0 X)® (Y @ U°)22
Now by Proposition A.3 we have
BI°) = F(1°) + B (18 © X)B(Y © 1°)2

M(z)

and similarly
Ag(Y @ 0°) = (Y @1) @ Ag(V°)
=YoU®eX)® (Yo W)
BY oU®) =3 (YoU®) +(Yel%eX)s(Y e ¥°):2

Consequently,
oy _ BY ©¥°)
pY 0 07%) = 1-p(yeve e X)z?
oy _ asgey , (0 X) (Y @ 0°)?
PR =BV + =557 0 00 0 X2
where

BICeX)=> fpu(X,Y,X)Y,... X)

n=0

B eU®) = BV, XY, X, .., Y)z™
n=0
If we assume z and y free then we infer from the resolvent identity
U=1+222XYU

that °(¥®) =1 and B°(Y ® ¥® ® X) = 0 and thus

B(P°) —1=5(¥° 0 X) 5 (Y @ ¥°)
Thus

B(z) = S(¥°) = 1+ 205 (VX) By (YV)
and finally

2B(2) = z + wi(2) wa(2)

which reproduces [3, Theorem 3.2 (3)] and [11, (10)].
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APPENDIX B. RATIONAL SERIES AND LINEARIZATIONS

The non—commutative free field and in particular non—commutative rational functions have
seen many applications in free probability recently [16]. The main tool for their study are
linearizations. For technical reasons we restrict our study to regular rational functions, i.e.,
rational functions which can be represented as formal power series. These form a subalgebra
of C{(X)) and can be characterized in several ways [6].

Definition B.1. For a series S € C{(X)) we denote the extraction of coefficients by (S, w), i.e.,
S = Z (S, w)w.
WEX*

A series S € C({(X)) is called proper if it has no constant term, i.e., (S, 1) = 0. Proper series
have a quasi-inverse

St = iS’“ € C{xY).

() = ST is the unique solution of the equation
Q=5+0Q5S.

The algebra of rational series is the smallest subalgebra of C{(X’)) which contains all quasi-
inverses of its proper elements. This implies that for any element S without constant term the
element 1 — S is invertible and its inverse is given by the geometric series

(1-98)"=> srec(r)

and therefore rational.

A series S € C{(&X)) is called recognizable if there exists a matrix representation of the free
monoid, i.e., a multiplicative map p : X* — M,(C), and vectors u,v € C" such that the
coefficients of S are given by

(S, w) = u'p(w)v.
Here the representation p is uniquely determined by the matrices M, = p(z) for x € X. Indeed,
p(zyze -+ xp) = My, My, - - - M,, and thus a recognizable series has a linearization

S = ut< Z p(w)w)v = ut<1 - ZMxx)_lv.

wWEX*
Conversely, any series which is given by a linearization is recognizable.

Definition B.2. For a letter € X denote by L, the left annihilation operator on C{(X')), i.e.,

for a word w € X* set
{w' if w=aw
L,w=

0 otherwise

and extend this operator linearly to C{X)). For a word w = zy25---x, € X* we denote by
L,=L, L, ,---L, the composition of the annihilation operators.
A subspace U C C{(&X)) is called stable if it is invariant under L, for all x € X.

Remark B.3. With this notation the coefficients of a series are given by
(B.1) (S, w) = (L,S, 1)
One of the main results of the theory of rational series is the following

Theorem B.4 ([6]). For a series S € C{(X)) the following are equivalent,

(1) S is rational.
(ii) S is recognizable.
(i1i) S has a linearization.
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(iv) There is a finite dimensional stable subspace of C{(X)) containing S.
The last statement gives rise to an algorithm key to compute linearizations of rational series.

Algorithm B.5. Assume our series S is contained in a finite dimensional stable subspace
spanned by a basis (51, S2,...,Sy) C C(X)), say S = > u;S;.
1. Since the subspace is stable, for any X € X we can express

Lsz = Z Oéij({E)Sj.

2. Collect these coefficients in a matrix A, = [a;;(z)].
3. Then for a word w € X* after iteration we obtain

LwSi = Z(MW)USJ
J
4. From (B.1) we infer (S;,w) = (LS, 1) = (M,v);.
5. Finally (S, w) = u'M,v for every w € X*, i.e.,

—1
S = ut<IN — ZMxx) v.
zeX

To illustrate this let us start with polynomials which are clearly rational. Let w € X* be a
word. A word w” € X* is a right suffiz of w if there exists a word w’ € X* such that w = w'w”.
Equivalently, w” can be obtained from w by applying the left annihilation operator L.

Let now P € C(X) be a polynomial. If we successively apply annihilation operators Ly,
X € X we obtain elements contained in the span of all right suffixes of the monomials occurring
in P (including the empty word 1). Clearly the span of P and all its right suffixes is stable and
thus can be used to obtain a linearization for P.

From this basis we can immediately construct a basis of a stable subspace containing ¥ =
(1 —z™P)~! and construct a linearization of the latter, where m = deg(P), i.e., the length of
the longest monomial in P. Indeed let {S; = P, Ss,...,S, = 1} be a basis consisting of P and
the right suffixes of P spanning a stable invariant subspace for P. Now we use the resolvent
identity

U=(1-2"P)'=1+2"P¥
to obtain L,V = z™(L,P)¥ and thus {W¥, 225U, ... 2" 1S, ¥} spans a stable subspace
containing ¥, where m; = deg S;. Moreover (S;¥,1) =0 for i = 2,...,r — 1 and thus we can
set u = v = ey. The inclusion of the factor 2™ ensures that our linearization has the form
U = u!(I — zL) 'v, where the entries of L are polynomials in z and thus has a formal power
series expansion around zero, which is essential in the Section 6.

Ezample B.6. Consider P(X,Y) = X 4+ XY X, then we are looking for a linearization of
U =(1-2°P)"!. We have ¥ =1+ 2>PV and thus we have

Si =V, Ly¥ =230 + 23Y XU = 239, + 25,

where Sy = 22Y XW. Of course LyS; = 0. Next LxSy = 0 and Ly Sy = 22X VU = zS5. Finally
LxS3 = 2¥ = 25 and LyS; = 0. Hence we obtain ¥ = u'(1 — zL) 'v with

0 000
Ol X+ |0 0 z|Y.
0 000

3
zL=10
z

S O W

Remark B.7. Another way to obtain a linearization of ¥ = (1—2™P)~! for a polynomial P is to
directly follow the multiplication structure. Let us describe this with an example, occasionally
we will use this linearization instead of the one described above.

Consider the non—commutative polynomial XY X +Y XY and the corresponding polynomial
with numbered variablesX;Y; X5 + Y5 X3Y3. When we look at powers of this polynomial, we see
that:
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()
OZO0

F1GURE 3. Multiplication for X;Y; X, + Y5 X3Y5.

e X, is always followed by Y7,
e X, is followed by X; or Y3,
e Y] is followed by X; or Y5,

e Y5 is always followed by X5.

This can be represented graphically as an automaton, see Figure 3.

Let us name all variables in the considered polynomial Z;, Z,, ..., Z,, where n is the total
number of variables in the polynomial. The polynomial X;Y; X5 + Y5 X3Y3 we have 7,725,735 +
ZyZ5Zg, we will consider a square matrix in which each row and column corresponds to one of
the variables, more precisely we set L; ; = Z; if Z; follows Z;, otherwise we set L; ; = 0. We
obtain the following linearization matrix (we show the labels of rows and columns)

X1 Xo Xz Y1 Yo X5

Xif0 0 0 Y, 0 07
X, |X; 0 0 0 Y, 0
_ Xs5/0 0 0 0 0 Y
Vi [0 X, 0 0 0 0
Y0 0 X3 0 0 0
s LX, 0 0 0 Yy 0l

In order to get a linearization of (1 — 23(X Y1 Xy + Y5 X3V3))™! we look at (1 — zL)71, it is
clear that every term in expansion of (1 — z3(X Y1 Xy + Y5 X3Y3)) ™! starts with X; or Y,
hence u' = (0,1,0,0,0,0) or equivalently u* = (0,0,0,0,0,1). On the other hand each term in
(1 —23(X1YV1 X5 + Yo X3Y3) 7! ends in X, or Y3, hence we have to terminate with the second or
sixth column of L, thus v* = (0,1,0,0,0,1). Clearly we have the equality of formal power series

(1 - 2(X1YV1Xo + Yo X3Y3)) !t = uf(1 — 2L) M.
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