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Abstract
The correlation between the bifurcation of resonant magnetic perturbations (RMPs) to the
unshielded state and edge localized mode (ELM) suppression in ASDEX Upgrade is studied
using a kinetic plasma response model numerically and analytically. For the numerical studies,
the linear kinetic Maxwell solver KiLCA for cylindrical geometry and the quasilinear transport
code QL-Balance are used in combination with the ideal MHD solver GPEC to account for
realistic tokamak geometry. Based on this modelling, a numerical local bifurcation criterion is
introduced which estimates the effect of RMP-induced temperature plateau formation in the
resonant layer. Its analytical form is derived in constant-psi approximation. The kinetic model
reproduces the known gyrocenter resonance, Er = 0, and the electron fluid resonance. In
contrast to MHD theory, the latter is located at the zero of the perpendicular electron fluid
velocity computed only with half of the electron temperature gradient. The application of the
criterion to experimental data shows a correlation between bifurcation and the ELM suppression
phase. Moreover, an electron density limit is found resembling the one observed in experiments.

a See Stroth et al 2022 (https://doi.org/10.1088/1741-4326/ac207f) for the ASDEX Upgrade Team.
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1. Introduction

The operation of tokamaks in high confinement mode or
H-mode is usually accompanied by edge localized modes
(ELMs) [1]. These instabilities are characterized by large
transient heat loads to plasma-facing components [2]. Since
these heat loads are projected to be unacceptably high in big-
ger devices, e.g. ITER [3], methods to suppress ELMs are
required. ELMs occur if the plasma pressure gradient at the
edge exceeds a limiting value that is caused by the formation
of a transport barrier [2]. Thus, suppressing ELMs in H-mode
plasmas requires lowering the edge pressure gradient.

As experimentally demonstrated in several tokamak
devices [4–8] and observed as a density ‘pump-out’, lowering
the plasma-edge pressure gradient can be achieved by applying
small (δB/B≈ 10−4) externally generated resonant magnetic
field perturbations (RMPs). RMPs distort the axisymmetry of
the equilibrium flux surfaces, and, for high enough amplitude,
cause the non-ideal plasma to reconnect magnetic field lines
at rational surfaces and thus create magnetic island chains [9].
A rotating plasma, however, responds to RMPs by generating
localized shielding currents at respective rational surfaces [10–
12]. Nevertheless, if the amplitude of an RMP mode exceeds
a threshold value, the mode can penetrate and a bifurcation to
a ‘reconnected’ state occurs [13, 14]. Bifurcation of an RMP
mode resonant at the pedestal top was shown to be involved in
ELM suppression [15–17]. However, the specific conditions
necessary for bifurcation and, by extension, ELM suppres-
sion are not fully understood yet [18–20]. The purpose of this
paper is to advance our understanding of bifurcation and its
connection to ELM suppression.

As recently reported in [21], we study bifurcation and
ELM suppression with an extended linear and quasilinear
kinetic model [22]. This model is composed of the cyl-
indrical Maxwell solver KiLCA [23] and the 1D radial trans-
port code QL-Balance [22]. The former determines the lin-
ear kinetic plasma response to RMPs. The latter evolves the
plasma parameters in time by considering RMP-induced and
anomalous fluxes. The model includes a qualitative estima-
tion of poloidal mode coupling by rescaling the cylindrical
plasma response currents determined by KiLCA with the tor-
oidal plasma response current of the linear ideal MHD code
GPEC [24]. Within this model, we identify bifurcation with a
local criterion [21] that can approximately be written in an
analytical form using the constant-ψ approximation. Building
the bridge to the experiment, we apply the bifurcation criteria
to data from ASDEX Upgrade and assess their correlation to
ELM suppression.

The content of this paper is ordered as follows. We give
an overview of the model and discuss the linear and quasi-
linear plasma response as well as the role of fluid resonances

in section 2.1. In section 2.2 we explain the used ASDEX
Upgrade data and its preprocessing. Then, in section 3, we
investigate a specific bifurcating case and the accompanying
effects. In section 4, we discuss the approximate local bifurca-
tion criterion that we apply to an ASDEX Upgrade discharge.
We investigate the scaling of the bifurcation criterion with
electron temperature and density and determine an analytical
expression for the criterion in section 4.2. Finally, in section 5,
we summarize and discuss the important findings.

2. Methods

2.1. Model

The model employed here is based on previous work [11, 22,
23, 25]. In this section, a brief formulation of the RMP pen-
etration model developed earlier is presented together with an
improved method to couple our model with realistic tokamak
geometry. Besides that, general expressions derived earlier are
studied here in more detail, resulting in approximate analytical
expressions for the penetration factor and for quasilinear trans-
port coefficients used later in the formulation of the analytical
scaling of the RMP penetration threshold.

2.1.1. Linear plasma response, non-ideal parallel current.
To evaluate the non-axisymmetric electromagnetic field per-
turbation induced by the RMP coils, we use the kinetic
Maxwell solver KiLCA [23]. In this code, the total electric and
magnetic fields are represented as a sum of equilibrium and
perturbation field, E= E0 + δE and B= B0 + δB. The time
dependence of the perturbation field is assumed harmonic, i.e.
{δB, δE}= Re({B̃, Ẽ} eiωt), with the perturbation frequency
ω. The time harmonics of the perturbation fields are then com-
puted from the set of Maxwell equations,

∇× Ẽ− iω
c
B̃= 0, ∇× B̃+

iω
c
Ẽ=

4π
c

(
j̃+ jRMP

)
,

(1)

where c is the speed of light. The current densities on the right
hand side of Ampere’s equation are jRMP, the RMP coil current
density located outside the plasma, and j̃, the linear plasma
response current density computed in the kinetic approxima-
tion. Maxwell’s equations are solved for a simplified tokamak
geometry in the form of a radially inhomogeneous straight
plasma cylinder with identical ends (infinite aspect ratio limit
of a circular tokamak). Introducing cylindrical coordinates
(r,θ,z), respectively being the minor radius, the poloidal angle
and the axial position (toroidal coordinate z= R0φ where R0

is the major radius and φ is the toroidal angle), the cylindrical
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components of the electromagnetic field and the currents are
Fourier-expanded as

ã=
∑
m,n

am(r)e
i(mθ+kzz). (2)

Here, ã ∈ {Ẽi, B̃i, j̃i}, kz = n/R0, and m≡ (m,n) are poloidal
and toroidal mode numbers, respectively. This Fourier expan-
sion reduces the set of three dimensional partial differential
equations to a set of one dimensional ordinary differential
equations (ODEs) which is solved in amoving reference frame
where the perturbation frequency is finite. The moving refer-
ence frame is chosen since we consider static RMPs, while the
plasma response current is expressed in KiLCA solely via the
perturbation electric field. Note that the Fourier expansion in
cylindrical geometry neglects the coupling of poloidal modes
that is present in real tokamak geometry [26]. This geometrical
issue is discussed in section 2.1.4.

The plasma response current density j̃ which is generally
determined by an integral conductivity operator is modelled
in KiLCA in the form of a finite Larmor radius (FLR) expan-
sion. The conductivity kernel is computed from the solution of
the linearized kinetic equation, including an energy preserving
Fokker–Planck type collision operator (Ornstein–Uhlenbeck
operator with energy conserving term, for details see [23]).
In this case, the contravariant components of the plasma
response current density for a single species can be expressed
via the covariant components of the perturbation electric
field as [23]

jimα(r) =
1
r

NFLR∑
k,k ′=0

(−1)k
∂k

∂rk

(
rσilkk ′,α(r,m)

∂k
′

∂rk ′
Eml(r)

)
.

(3)

In this constitutive relation, the sum goes up to the desired
order of the FLR expansion NFLR, σilkk ′,α is the plasma con-
ductivity kernel and α ∈ {e, i} is the species index. In the fol-
lowing, the FLR expansion is used to first order which is suf-
ficient to reproduce the ideal plasma response described by
a single second order ODE of Furth et al [27]. This is valid
in the majority of the plasma volume, except for the resonant
layers localized around rational magnetic flux surfaces (see
[11]). Respective ‘ideal’ response currents, i.e. diamagnetic
and Pfirsch–Schlüter current, are contained in the first order
FLR expansion terms in (3). Further, the dominant, zero-order
contribution to the parallel current density responsible for the
shielding of RMPs is, in the laboratory reference frame, well
represented by the drift kinetic expression, equation (60) of
[22]. This drift kinetic expression is given as

jαm∥ =−nαeαvTα
ναB0

[(
(Aα1 +Aα2 ) I

10 +
1
2
Aα2 I

21

)
cEm⊥

+

(
(Aα1 +Aα2 ) I

11 +
1
2
Aα2 I

31

)
vTαB

r
m

]
. (4)

Here, eα,mα, nα, Tα, vTα = (Tα/mα)
1/2, and να areα species

charge, mass, unperturbed density, temperature, thermal velo-
city, and the transverse collision frequency [28], respectively.
Thermodynamic forces are given by

Aα1 =
1
nα

∂nα
∂r

− eαE0r

Tα
− 3

2Tα

∂Tα
∂r

, Aα2 =
1
Tα

∂Tα
∂r

,

(5)

where E0r =−∂Φ0/∂r is the equilibrium radial electric field.
Further,

Em⊥ = Em · (h×∇r), Brm = Bm ·∇r, (6)

are the tangential component of the perpendicular perturbation
electric field and the normal component of the perturbation
magnetic field, respectively. These are defined with respect
to the unperturbed magnetic flux surface, which is labelled
with the radius r. Here, h= B0/B0 is the unit vector along the
unperturbed magnetic field. The remaining quantities in (4)
are complex susceptibility functions Ikl ≡ Ikl(x1,x2) defined by
equations (56)–(59) of [22] as

Ikl = IklD+

(
Ik0D − Ik2D

)(
Il0D − Il2D

)
1− I00D + 2I20D − I22D

, (7)

where IklD is given by equations (A1) and (A2). The arguments
of Ikl = Ikl(x1,x2),

x1 =
k∥vTα
να

, x2 =−ωE
να
, (8)

are the normalized distance to the resonant surface and the nor-
malized radial electric field which also plays the role of colli-
sionality parameter, respectively. In these expressions,

k∥ = k ·h, k⊥ = k · (h×∇r), k= m∇θ+ kz∇z,
(9)

and

ωE = k⊥VE×B =−ck⊥E0r

B0
(10)

is, up to the minus sign, the perturbation frequency in the mov-
ing reference framewhere the equilibrium electric field is zero.

As shown in [22], the zeroth order parallel current is
absent if the perturbed electrostatic potential is constant
within the perturbed magnetic flux surfaces (see equation (47)
there). Using for the susceptibility functions the relations (A4)
derived in appendix A, the parallel current density (4) can be
expressed via a single component of the perturbed electrostatic
field as

jαm∥ =−cnαeαvTα
ναB0

(
(Aα1 +Aα2 ) I

10 +
1
2
Aα2 I

21

)
EMA
m⊥. (11)

Here, EMA
m⊥ is the Fourier amplitude of the tangential part of the

total perpendicular electric field with respect to the perturbed
flux surfaces. For infinitesimal perturbations, it is given as

EMA
m⊥ ≡ 1

B

(
E ·B×∇r[ψ]

)
m
= Em⊥ +E[ψ]

m⊥,

E[ψ]
m⊥ =

(
E0 ·h×∇r[ψ]

)
m
=
k⊥Brm
k∥B0

E0r. (12)

Here, r[ψ] = r+ r̃ is the perturbed magnetic flux surface label
satisfying the magnetic differential equation B ·∇r[ψ] = B0 ·

3
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Figure 1. The magnitude of the electron (top) and the ion (bottom)
parallel current density in kinetic (equation (3)) and drift kinetic
(equation (4) or equation (11)) approximation for the parameters of
section 2.2. The position of the resonant surface is indicated by the
vertical dashed line.

∇r̃+ B̃r = 0. The field EMA
m⊥ results from the misalignment of

equipotential and magnetic flux surfaces, and is absent in ideal
MHDwhere these surfaces are perfectly aligned.Within linear
theory, perfect alignment is only possible with complete RMP
shielding at the resonant surface since the part of the perpen-
dicular field resulting from the corrugation of flux surfaces,
E[ψ]
m⊥, is singular at this surface if B

r
m is finite there. This sin-

gularity, however, is an artifact of the definition of EMA
m⊥ and is

absent in the original expression (4).
The parallel current density from the first order FLR

expansion (3) is compared to the drift kinetic approximation
equation (4) (or equation (11)) in figure 1, where the electro-
magnetic field is computed by KiLCA using (3). We see that
for electrons, the drift kinetic model approximates the kin-
etic current density well. The ideal MHD contribution, i.e. the
Pfirsch–Schlüter current given by the first order terms of the
FLR expansion, is seen in the kinetic ion current outside of
the resonant layer. This contribution is of the same order for
electrons and for ions. However, due to the electron current
density being two orders of magnitude higher, the ideal MHD
contribution is not visible for the electrons. Thus, ions play
no direct role in the shielding of RMPs but contribute only
indirectly via their effect on the electrostatic field E⊥ and on
the misalignment field EMA

m⊥. The latter, together with its two
components, equation (12), is shown in figure 2. We see that
EMA
m⊥ rapidly drops to zero in the ideal region outside the res-

onant layer due to the mutual cancellation of the perturba-
tion electrostatic field Em⊥ and the flux surface corrugation
induced field E[ψ]

m⊥ (see also figures 6–8 in [22]). The latter
actually dominates in most of the resonant layer, especially
close to the resonant surface. This means that one can actually
ignore Em⊥ there and use, for the drift kinetic current, only
the terms in the second line of equation (4) describing the cur-
rent due to parallel streaming along the perturbed magnetic
field.

Figure 2. The magnitude of the misalignment field and its
components, equation (12), for the same parameters as in figure 1.
The resonant surface is indicated by the dashed line.

2.1.2. RMP shielding and fluid resonances. In order to
understand the relation between the parallel electron and ion
response currents and to analyse the so-called ‘fluid reson-
ances’, which are well known from two-fluid MHD theory
(see, e.g. [29, 30]), let us study equation (11) in more detail.
First, the electron fluid resonance, is seen in (11) in absence
of an electron temperature gradient, Aα2 = 0. In this case, the
parallel current density scales with the combination of thermo-
dynamic forces Aα1 +Aα2 = Aα1 and is proportional to the per-
pendicular fluid velocity Vα⊥. In general, the latter is given by

Vα⊥ = Vα · (h×∇r)

=
c

eαnαB0

d(nαTα)
dr

− cE0r

B0

= Vαd+VE×B = DBα

(
Aα1 +

5
2
Aα2

)
, (13)

where Vαd is the diamagnetic velocity andDBα = cTα/(eαB0)
is the Bohm diffusion coefficient. Considering electrons and
the case Ae1 = Ae2 = 0, for which Ve⊥ = 0 at the resonant sur-
face, the dominant electron response current (11) practically
vanishes, and thus shielding is lost for the respective RMP
mode.

The trend jαm∥ ∝ Vα⊥ remains valid close to the resonant
surface also in the case of a finite temperature gradient Aα2 ̸= 0.
This can be seen from the behaviour of the susceptibility func-
tions near x1 = 0 in figure 3. As shown in appendix A, close
to the resonant surface the susceptibility functions in question
are related as I31 = 3I11 (see equations (A15) and (A25)) and,
via equation (A4), as I21 = 3I10. These relations indicate that
the current density (11) scales linearly with Aα1 + 5Aα2 /2 and,
respectively, with Vα⊥, even in the case of a non-vanishing Tα
gradient. Since in the region near the resonant surface EMA

m⊥ →
E[ψ]
m⊥ we can use there equation (4) withEm⊥ = 0. Further, sub-

stituting in equation (4) the limit (A15) and using (13) and (8)
we arrive at

jαm∥ =− e2αnα
(να+ iωE)mαc

Vα⊥B
r
m. (14)

4
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Figure 3. Real (solid) and imaginary (dashed) parts of the
susceptibility functions I11 (blue) and I31 (orange) for high (top),
medium (middle) and low (bottom) collisionality. For convenience,
the function I11 is multiplied with factor 3. Real and imaginary parts
of the limiting case equation (A15) are plotted with black solid and
dashed horizontal lines, respectively.

In fluid theory, the same result follows from the projec-
tion parallel to B0 of the stationary α-species momentum
Equation, where the parallel friction force density is con-
sidered in the form Rα∥ =−mαnαναVα∥ and omitting the
diamagnetic term in the convective derivative of the paral-
lel fluid velocity perturbation. The latter term vanishes any-
way if the Braginskii [31] viscosity η4 is taken into account
(‘gyro-viscous cancellation’, see e.g. [32]), which is natur-
ally the case in kinetic theory. For the electrons, equation (14)
reduces at high collisionality to jem∥ =−σ∥Ve⊥Brm/c where

σ∥ = e2ene/(meνe) is the parallel conductivity (see equation
(2.11) of [33]), i.e. jm∥ ≈ jem∥ results from the dynamo effect
of the electron fluid moving in the perturbed magnetic field.

Note that equation (14) follows from the kinetic model of
KiLCA for both, electrons and ions, because the collision oper-
ator in the model was purposely chosen such that the energy is
conserved but not the momentum. This is actually a proper
approximation for electrons which collide with slow (prac-
tically immobile) and heavy ions while for the ions a rig-
orous treatment of the straight cylinder (or slab) magnetic
field geometry requires momentum conservation. Such a con-
servation would lead to the vanishing of ν i in the ion spe-
cies equation (14) and, respectively, to the increased role of
(anomalous) shear viscosity at small ωE. However, the ion
momentum conservation has been ignored in KiLCA on inten-
tion (it can be taken into account as an option, see [34]), in
order to model the neoclassical parallel momentum loss rate
in the real tokamak geometry in banana and plateau regimes
typical for the present day devices and future reactors. (This

effect leading to ‘poloidal friction’ is accounted for e.g. in
the reduced-MHD JOREK fluid model [35] using a heuristic
approach.) Although such a collision model exaggerates this
loss rate by an aspect ratio factor, this has little effect on the
shielding as ions are practically excluded from jm∥. This is
due to ions being mostly collisionless (νi ≪ ωE), while near
the point where ωE = 0 ions are collisional, the aspect ratio
still cannot compete with the (mi/me)

1/2 ratio between cur-
rents (14). In fact, the factor 200> (mi/me)

1/2 between elec-
tron and ion current densities we see in figure 1 is actually due
to the collisionless ions.

The scaling of the parallel current with Ve⊥ does not mean
that Ve⊥ = 0 corresponds to the maximum penetration point,
since this point is essentially determined by the integral paral-
lel current (see section 2.1.4) defined as

I∥m = 2π

rm+∆rˆ

rm−∆r

drrjm∥. (15)

Here, rm is the resonant surface radius, and δm ≪∆r≪ Lr,
where δm and Lr are the typical resonant layer width and the
radial scale length of plasma parameter profiles. Contributions
of various species to this current are well approximated by the
drift kinetic expression (11),

Iα∥m≈−2π cnαeαr2m
|skz|B0

∞̂

−∞

dx1

(
(Aα1 +A

α
2 ) I

10 +
1
2
Aα2 I

21

)
EMA
m⊥,

(16)

where we ignored the variation of plasma parameters and B0

within the resonant layer and replaced the radial integration
with an integration over x1 using (8) and, approximating k∥ by
a linear function of radius,

r≈ rm +
ναx1
vTαk ′∥

, k ′∥ =
dk∥
dr

=
skz
rm
,

s=
rm

q(rm)

(
dq
dr

)
r=rm

. (17)

Here, q and s are the safety factor and the magnetic shear para-
meter, respectively. For an estimation of integral (16) we again
ignore the electrostatic field Em⊥ and use for Brm the so-called
‘constant-ψ’ approximation, i.e. we assume it constant within
the layer. Thus, we arrive at

Iα∥m ≈− vTαr2m
2 |skz|cr2Dα

(
I11intVα⊥ +

1
2

(
I31int − 3I11int

)
VαdT

)
Brm(rm),

(18)

where rDα =
(
4πnαe2α/Tα

)−1/2
is the Debye radius of spe-

cies α, Iklint are integrated susceptibility functions defined in
equation (A13) and

VαdT =
c

eαB0

dTα
dr

(19)

is the temperature gradient contribution to its diamagnetic
velocity. Using equations (A24) and (8) we can cast (18) into

5
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Iα∥m ≈− π vTαr2m
|skz|cr2Dα

(
ωE

2πωE− 6iνα

)1/2

×
(
Vα⊥ − 1

2
VαdT

)
Brm(rm). (20)

In this relation, we identify two types of resonances where
the response current vanishes. The first one is the so-called
‘fluid resonance’, where

Vres
α ≡ Vα⊥ − 1

2
VαdT = 0 (21)

is the resonance condition. The origin of this resonance is the
same as for the vanishing of all other equilibrium currents (per-
pendicular, Pfirsch–Schlüter, bootstrap). All of them can be
presented in the form of a linear combination of thermody-
namic forces Aαk (equation (5)) allowing for a zero. Very close
to the resonant surface, the parallel response current density
scales with Aαk similarly with the perpendicular current and,
respectively, with the perpendicular fluid velocity, i.e. they are
proportional to each other via equation (14). This, however,
does not need to be the case for the whole resonant layer and,
respectively, for the total current (20), whose zero is gener-
ally shifted from the actual fluid resonance point Vα⊥ = 0 in
the presence of a temperature gradient [22]. Nevertheless, we
will use the well established term ‘electron fluid resonance’
for this zero-point of the electron response current since it res-
ults in the loss of shielding of the resonant field Brm due to the
overall dominance of electrons.

The other resonance we find in equation (20) is the elec-
tric or gyrocenter resonance ωE = 0. For this resonance,
both the electron and the ion current vanish simultaneously.
Remarkably, the magnitude of the current density (14) is even
slightly increasing when approaching this point. However,
the integral current (20) is decreasing because of a decreas-
ing width of the resonant layer. The gyrocenter resonance
becomes rather narrow at low collisionalities since it does
not exist in the collisionless limit ωE/να →∞, where the
decreasing width of the resonant layer δm ∼ ωE(k ′∥vTα)

−1 (see
equations (A12) and (17)) is balanced by an increasing current
density (14) leading to the unchanged integral current (20). In
the collisional limit, on the other hand, the resonant layer width
scales as δm ∼ (ναωE)

1/2
(k ′∥vTα)

−1.
The ratio of the radial magnetic field component at the res-

onant surface computed by KiLCA in plasma, Btot
r = |Brm(rm)|,

to the value computed in vacuum,Bvac
r , is shown in figure 4 as a

function of the electric drift velocity VE×B(rm), equation (10).
There, the location and the magnitude of the resonances can
be seen. In these scans of a perturbation mode m= (6,2),
the profile of the equilibrium radial electric field E0r was var-
ied by scaling the toroidal rotation velocity profile, which
determines E0r via the ion radial force balance (26). Here,
we use parabolic model profiles of the form y(r) = y(rm)F(r),
where y(rm) is the value the profile has at the resonant sur-
face, F(r) = (r2 − a2)/(r2m − a2) and a is the plasma radius.
The values at the resonant surface for the density and elec-
tron temperature were chosen as ne(rm) = 5 · 1012 cm−3 and

Te(rm) = 15 keV. There are two cases shown in figure 4.
First, the case of constant temperature, Te(r) = Te(rm) and
ne(r) = ne(rm)F(r), and second, the case of constant density,
ne(r) = ne(rm) and Te(r) = Te(rm)F(r). In both cases, the pro-
file of the electron fluid velocity Ve⊥ is the same. However,
the fluid velocity Ve⊥ is equal to the ‘resonant’ velocity Veres,
equation (21), only in the first case (figure 4(a)) since in this
case VedT = 0 and, thus, we see the fluid resonance peak in
the penetration factor at VE×B =−Ved. Note that Ved is taken
here in the negative direction by convention. Due to the finite
electron temperature gradient in the second case (figure 4(b)),
we see the fluid resonance peak (or ‘kinetic’ resonance peak
since the peak is shifted by kinetic effects) at VE×B =− 1

2Ved,
which is in agreement with the resonant velocity Veres. Here,
the different collisionalities were obtained by formally scal-
ing the Coulomb logarithm leaving the plasma parameters
unchanged.

In both cases, we see that the electron fluid resonance is
located precisely at zero of Veres at low collisionality while at
high collisionality it is shifted towards higher VE×B values.
The latter results from a violation of the constant-ψ approx-
imation which is more significant in the high collisionality
case where the layer width δm is ten times larger than at low
collisionality. Due to the increase of Brm(r) with radius, the
mid-point of the resonant response current (11) shifts from
the resonant surface outwards which requires a respective
outward shift of the Veres = 0 point for minimization of this
current.

Note that the loss of shielding is incomplete in the pres-
ence of a finite electron temperature gradient resulting from a
perturbation electric field and non-constant-ψ effects ignored
in the derivation of equation (20). The latter has a signific-
ant effect on the bifurcation criterion discussed below. Besides
that, the trend of the gyrocenter resonance to vanish at low col-
lisionality is also observed.

2.1.3. Quasilinear transport model. As discussed above, the
penetration of RMPs essentially depends on the equilibrium
plasma parameter profiles. Those, however, are affected by the
RMPs. Within quasilinear theory, the slow evolution of the
unperturbed plasma parameters, namely, the plasma particle
density ne = ni, the toroidal rotation frequency Vφ, the elec-
tron and the ion temperature profiles Te and Ti, respectively,
is described by a set of 1D transport equations (see equations
(63)–(66) of [22]),

∂ne
∂t

+
1
S
∂

∂r

[
S
(
ΓEM
e +ΓA

e

)]
= S0n, (22)

∂

∂t

(
mi ni ⟨gφφ⟩⟨Vφi ⟩

)
− 1
S
∂

∂r

(
Smi ni ⟨gφφ⟩µA

⊥
∂ ⟨Vφi ⟩
∂r

)
= T 0

φ −
√
gBϑ0
c

∑
α=e,i

eαΓ
EM
α , (23)

∂

∂t

(
3
2
neTe

)
+

1
S
∂

∂r

[
S
(
QEM
e +QA

e

)]
= S0w,e− eeE0rΓ

EM
e ,

(24)
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Figure 4. The penetration factor Btot
r /B

vac
r as a function of VE×B at the resonant surface for (a) constant Te and (b) constant ne, where the

constant value is the one at the resonant surface, Te(rm) = 15keV and ne(rm) = 5 · 1012 cm−3. Both are given for low (blue), medium
(orange) and high (green) collisionality as shown in (c) and (d). The MHD fluid resonance VE×B =−Ved (dashed), the kinetic resonance
VE×B =− 1

2Ved (dotted) and the gyrocenter resonance VE×B = 0 (dash-dotted) are indicated with vertical lines. The dependence of the
collisionality parameter |x2|, equation (8), in the lower panel is shown with |x2|= 64, 0.64 and 0.06 at the point VE×B =−Ved for low,
medium and high collisionality, respectively.

∂

∂t

(
3
2
niTi

)
+

1
S
∂

∂r

[
S
(
QEM
i +QA

i +QNEO
i

)]
= S0w,i− eiE0rΓ

EM
i , (25)

where ⟨. . .⟩ denotes the flux surface average and S the flux
surface area. The flux surface label r is fixed by the condi-
tion ⟨|∇r|⟩= 1. Further,

√
g is the metric determinant of the

flux coordinates (r,ϑ,φ), Bϑ0 and B0φ are the contra-variant
poloidal and covariant toroidal components of the equilibrium
magnetic field, and gφφ = R2

0 is the covariant toroidal compon-
ent of the metric tensor (the same in any coordinates with rota-
tional symmetry). The quantities S0n and S

0
w,α denote the equi-

librium sources of particles and energy, respectively, whereas
T 0
φ is the equilibrium toroidal torque density. These three equi-

librium quantities are determined in a way that, without the
perturbation field, the transport equations result in a steady
state for the experimental profiles of density, rotation fre-
quency and temperatures. The equilibrium radial electric field
E0r is linked with the toroidal rotation Vφ via the ion radial
force balance equation (see, e.g. [22, 36]),

E0r ≡−∂Φ0

∂r
=

1
ei ni

∂(niTi)
∂r

+

√
gBθ0
c

(
Vφi − qVθi

)
,

Vθi =
ckB0φ

ei
√
g⟨B2

0⟩
∂Ti
∂r
, (26)

where the coefficient k is computed with the code NEO-2 [36,
37]. Note that only the solid body rotation is included in
equation (23) because the modification of the ion temperature
profile by the RMPs is weak.

The effect of anomalous transport is modelled with the
anomalous particle ΓA

α and heat fluxes QA
α, given by [11, 22]

ΓA
α =−Da ∂nα

∂r
, QA

α =−3
2
Da ∂(nαTα)

∂r
, (27)

and the anomalous shear viscosity µA
⊥ is approximated as

µA
⊥ ≈ Da. The anomalous diffusion coefficient Da accounts

for the net-velocity-independent perpendicular diffusion due
to turbulence in a reference frame where the equilibrium radial
electric field is zero [22]. In this simplified model, anomalous
transport is ambipolar and thus does not produce any torque
that has to be included in the momentum equation (23).

In equation (25), we included the main effect of neoclas-
sical physics, which is a contribution to the ion heat flux given
by [38]

QNEO
i =−1.32ni

(
R0

r

)3/2 q2v2Ti
ω2
ciτi

∂Ti
∂r
, τi =

3m1/2
i T3/2i

4π1/2e4i niΛ

(28)

where ωci is the ion cyclotron frequency and τ i is the ion col-
lision time containing the Coulomb logarithm Λ.

The transport resulting from the electromagnetic perturba-
tions induced by the RMPs is described here within quasilinear
theory [22]. The particle and heat flux density, ΓEM

α and QEM
α ,

respectively, are linked to the thermodynamic forces (5) by the
Onsager-symmetric matrix of transport coefficients, Dql

α,ij, as

ΓEM
α =−nα

(
Dql
α,11A

α
1 +Dql

α,12A
α
2

)
,

QEM
α =−nαTα

(
Dql
α,21A

α
1 +Dql

α,22A
α
2

)
. (29)

Within quasilinear theory, these transport coefficients have a
quadratic dependence on the electromagnetic field induced by
the RMP coils and are approximated by the straight cylinder
geometry expressions, given by equations (49) of [22] as pos-
itive definite quadratic forms in Em⊥ and Brm, Equation (6).
Similar to the parallel current density (11), the coefficients can
be simplified by using the relations (A6) of appendix A to
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Dql
α,11 =

c2

2ναB2
0

∑
m

|EMA
m⊥|2Re

(
I00
)
,

Dql
α,12 =

c2

2ναB2
0

∑
m

|EMA
m⊥|2Re

(
I00 +

1
2
I20
)
= Dql

α,21,

Dql
α,22 =

c2

2ναB2
0

∑
m

|EMA
m⊥|2Re

(
2I00 + I20 +

1
4
I22
)
. (30)

Thus, we find that the perpendicular electric field perturbation
EMA
m⊥ caused by the misalignment of equipotential and mag-

netic flux surfaces is solely responsible not only for the shield-
ing current but also for the quasilinear transport. Considering
the quasilinear diffusion coefficients for a single RMP mode
m= (m,n) in the limit x1 = 0, i.e. close to the respective res-
onant surface, we can simplify equation (30) by using the lim-
iting case expressions (A26) to

Dql
α,11 =

1
2
v2Tανα
ν2α+ω2

E

|Brm|2

B2
0

,

Dql
α,12 =

5
4
v2Tανα
ν2α+ω2

E

|Brm|2

B2
0

,

Dql
α,22 =

1
8

v2Tανα
(
47ω2

E+ 279ν2α
)

ω4
E+ 10ω2

Eν
2
α+ 9ν4α

|Brm|2

B2
0

, (31)

which holds for arbitrary collisionality. Here, we considered
only the electric field perturbation generated from the cor-
rugation of flux surfaces, E[ψ]

m⊥, since it provides the main
contribution.

2.1.4. Account of realistic geometry. The Fourier expan-
sion given in (2) treats toroidal and poloidal modes separately
since they are not coupled in cylindrical geometry. However,
poloidal mode coupling in realistic, toroidal tokamak geo-
metry may result in a considerable change of amplitudes of
the magnetic field perturbation compared to the poloidal spec-
trum of the external field [39, 40]. In the previous model [22],
realistic tokamak geometry was accounted for by rescaling
the Fourier amplitude of each electromagnetic field harmonic
with the ratio of the perturbation field vector potentials from
the two vacuum models, Cm = Ator

θm/A
cyl
θ,m, where A

tor
θm is the

Fourier amplitude of the poloidal component of RMP coil vec-
tor potential computed in straight field line flux coordinates in
realistic tokamak geometry and Acyl

θ,m is the respective amp-
litude of the KiLCA vacuum solution in cylindrical geometry.
Accordingly, squares of these factors were used for rescal-
ing the contributions of different modes computed by KiLCA
to quasilinear diffusion coefficients (30). However, poloidal
mode coupling in plasma generally differs from coupling in
vacuum leading, in particular, to a significant phase shift of
the resonant field components upon phasing the RMP coil cur-
rents [4]. To account for this effect, we upgrade the model by
redefining the rescaling coefficients as

Cm =
Itor∥m

Icyl∥m

, (32)

where I∥,m denotes the integral of the Fourier amplitude of
the resonant plasma response current density for the mode
m= (m,n). The integral is performed over the poloidal cross-
section, φ = const. For the denominator, Icyl∥m, we take the
integral parallel current (15) determined in the cylinder. In par-
ticular, we integrate jm∥ computed by KiLCA in a thin annulus
around the resonant surface estimating the width of this res-
onant layer via fitting a Gaussian function to the parallel cur-
rent density and taking five times the standard deviation. The
numerator, Itor∥m, takes the same quantity but calculated in flux
coordinates for the realistic tokamak geometry. For this pur-
pose, we use the generalized perturbed equilibrium code GPEC
[24, 39] that calculates the ideal MHD plasma response in tor-
oidal geometry.

The rescaling with the coefficient (32) follows from the
similarity of the solutions from ideal MHD and kinetic the-
ory in the case of strong RMP shielding. The ideal MHD
solution of GPEC assumes the intact (in the leading order, see
below) embedding of flux surfaces in the presence of RMPs,
which requires that all resonant components of the perturb-
ation magnetic field, (Br/Bφ0 )m, computed in symmetry flux
(PEST) coordinates, are zero at respective rational magnetic
surfaces. This is achieved by the presence of current sheets
at each resonant surface. In turn, the current sheets result in
jumps of the components of respective Fourier amplitudes
of the perturbation field that are tangential to the flux sur-
face. The integrated currents of these sheets, Itor∥m, are directly
related to the jumps of the tangential field (and respective
jumps of radial derivatives of (Br/Bφ0 )m), which are required
to annihilate the resonant components. Since the jumps are
fully determined by the ‘outer’ solution of the ideal MHD
equations in the plasma volume excluding rational surfaces the
currents Itor∥m are so as well. In particular, in the straight cylin-
der geometry, jumps of the physical poloidal RMP compon-
ent [B̂ϑm] = B̂ϑm|rm+o− B̂ϑm|rm−o and of the derivative of the
radial component [∂Brm/∂r] are related to the integral current
Icyl∥m by

Icyl∥m =
chzr3mk

2
⊥

2m2

[
B̂ϑm

]
=

ichzr2m
2m

[
∂Brm
∂r

]
, (33)

where k2⊥ = m2/r2m + k2z follows from (9) at the resonant sur-
face r= rm and hz = B0z/B0. For an estimate ignoring the
plasma response in the ‘outer’ solution and assuming a large
aspect ratio (m≫ kzrm and hz ≈ 1), one can relate the jump in
the radial derivative to the vacuum field at the rational surface
by [

∂Brm
∂r

]
≈ 2mBrVm

rm
(34)

and estimate the integral current required to shield the vacuum
perturbation as

Icyl∥m ≈ icrmB
r
Vm. (35)

In the non-ideal case, i.e. for visco-resistive MHD or kin-
etic models, where the width and the amplitude of the shield-
ing current density are finite, the integral current I∥m and the
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Figure 5. Poloidal and radial components of the magnetic field
perturbation and the plasma response current due to a single mode
RMP for different collisionalities. The resonant surface is indicated
by the grey dashed vertical line.

respective jump [B̂ϑm] are weakly dependent on the details of
j∥m in the resonant layer as long as the shielding is strong (see
figure 5). Thus, quasilinear coefficients approximated in tor-
oidal geometry by the rescaling of variousmodes contributions
Dql,cyl
jk,m to the coefficients (30) in respective resonant layers,

Dql,tor
jk ≃

∑
m

Dql,cyl
jk,m |Cm|2, (36)

allow us to perform quantitative estimations for toroidal geo-
metry even though our model is formulated in a straight
cylinder.

It should be noted that in the case of finite RMP amplitudes,
the embedding of flux surfaces is destroyed in higher order of
the perturbation amplitude by the formation of residual islands
even in ideal MHD with current sheets fully eliminating the
normal magnetic field component at the resonant surface [41,
42]. The radial size of these islands, however, scales linearly
with RMP amplitude and, therefore, is negligibly small com-
pared to the unshielded island width which scales as a square
root of the amplitude. Another issue occurring at finite RMP
amplitudes is a ‘breakdown’ of linear theory [43]. Formally,
the breakdown occurs as an overlap of perturbed flux sur-
faces r[ψ] = const computed within linear theory (see the text
below equation (12)). A criterion for this overlap is given by
|∂r̃/∂r|> 1, i.e. if the modulus of the radial derivative of the
radial displacement r̃ exceeds one elsewhere in the plasma
volume an overlap is signified. However, such an event does
not necessarilymean that linearMHD results cannot be used as

an order of magnitude estimate. Note that the absence of such
events also does not mean that linear MHD is strictly valid.
In cases of [43] such a ‘breakdown’ happens in a limited part
of the volume or does not happen at all which indicates that
nonlinear terms which prevent the overlap of perturbed flux
surfaces and which are ignored in linear MHD model are of
order one, and thus the results are still valid as an estimate. In
our case such a derivative is much smaller than one, i.e. linear
approximation of GPEC is well applicable.

2.2. ASDEX Upgrade data

The experimental data used for the analysis within this paper
was taken from the ASDEX Upgrade shot 33353 which aimed
for the optimization of ELM suppression. In this shot, the tor-
oidal field was Bt =−1.8 T, the plasma current Ip = 0.9 MA
with a corresponding edge safety factor q95 = 3.65, normal-
ized beta βN = 1.9, elongation κ= 1.65, and upper and lower
triangulartiy δu = 0.23 and δl = 0.42. The equilibrium data
is of type EQH computed by the code CLISTE at ASDEX
Upgrade [44]. Note that this equilibrium is not constrained by
kinetic profiles. From the equilibrium data, we calculate the
toroidal magnetic field B0z and the safety factor q. We fitted
the plasma profiles via the tool augped by free-knot-spline fit-
ting, with the poloidal flux coordinate ρpol =

√
ψn as the radial

variable, where ψn is the normalized poloidal flux. The effect-
ive radius r is then defined via the toroidal flux ψtor and the
toroidal field at the magnetic axis Bref by

r=

√
2ψtor

Bref
, (37)

where the assumption of a circular toroidal cross-section area
was made. The profiles include the particle density ne, toroidal
rotation frequency Vφ, electron temperature Te and ion tem-
perature Ti. As an example, profiles for a single time point
can be seen in figure 6. The data for the electron temperat-
ure and density profiles is from the core and edge Thomson
diagnostics [45]. The data for the Ti and the Vφ profiles is
from the charge exchange recombination spectroscopy dia-
gnostics [46]. To fit a profile, we used data from a symmetric
time interval (100 ms) centered around the time point (time
slice) of interest.

To use the plasma profiles in KiLCA, they need to be exten-
ded beyond the separatrix (rmax ≈ 62 cm, varying with equi-
librium) and the RMP coil (rcoil = 67 cm) up to the position
of the ideally conducting wall (rW = 70 cm). This is done by
applying a smoothed step function,

Texte = fstepT
orig
e +(1− fstep)T

∞
e ,

fstep(r) =

(
1+ exp

(
r− rc
d

))−1

, (38)

where Torige is the original profile with polynomial extrapola-
tion to r> rmax and T∞e = const is the value at r→∞. We
chose parameters d= 0.1 and rc = rmax + 0.2 cm resulting in
the profiles shown in figure 6.

9



Nucl. Fusion 63 (2023) 126007 M. Markl et al

Figure 6. Density ne, electron temperature Te, ion temperature Ti
and toroidal rotation velocity Vtor = R0V

φ profiles for shot 33353 at
time t= 2.9 s. The four profiles ne, Te,i and Vφ were fitted with the
tool augped (dashed part of the lines) and extended beyond the
separatrix (grey dash-dotted) with the smoothed step function (38)
(solid part).

We also extend the safety factor profile beyond the sep-
aratrix, though this case is more subtle, since the safety factor
diverges at the separatrix. Substituting in the relation between
the physical equilibrium field components, qR0B̂0ϑ = rB̂0z, the
safety factor profile from the 2D equilibrium and using the
radial force balance, the magnetic field strength profile B0(r)
is obtained from the ODE

∂B2
0

∂r
+

2rB2
0

r2 + q2R2
0

= 8π
∂p
∂r
, (39)

where p is the plasma pressure. The solution to (39) fully
determines the components of the equilibrium field and, via
Ampere’s law, the components of the equilibrium current
density. The later components are extended outwards using
the function (38) and are, in turn, integrated within Ampere’s
law to get the new magnetic field. This is then used to calcu-
late the modified safety factor profile which coincides with the
original profile up to q≈ 4.5 so that all relevant resonances are
unaltered, as shown in figure 7.

The rational mode numbers that we consider are all for tor-
oidal mode number n= 2. This is the one dominating the coil
spectrum in the ASDEX Upgrade shot we study. The poloidal
mode numbers that we examine are m= 5,6 and 7 which cor-
respond to rational surfaces further inside the plasma, close to
the pedestal top and inside the gradient region, respectively.

Finally, profiles of the poloidal rotation velocity Vpol and
of the radial electric field E0r follow from (26). In the straight
cylinder geometry with

√
g= rR0, B0z = B0φ/R0, Vpol = rVϑ,

Vtor = R0Vφ, Bϑ0 = B0z/(qR0) and B0 ≈ B0z,

Vpol =
ck
eB0

∂Ti
∂r
,

E0r =
Ti
ei ni

∂ni
∂r

+
(1− k)
ei

∂Ti
∂r

+
rB0Vtor

cqR0
. (40)

Figure 7. Plot of the reconstructed profiles of the poloidal rotation
velocity Vpol, the radial electric field E0r and the safety factor q for
shot 33353 at time t= 2.9s. The poloidal rotation and the radial
electric field were reconstructed with the code NEO-2 [36, 37] using
the extended profiles. Compared to the original safety factor profile
from CLISTE, the modified safety factor profile does not diverge at
the separatrix (dash-dotted line) and has a discontinuous derivative
due to the extension of the profiles beyond the separatrix.

An example of such reconstructed profiles is given in figure 7.
Since Vpol and E0r are calculated after the extension of the
required profiles they are already defined up to the wall (rW =
70cm). It should be noted that, due to the rescaling proced-
ure of section 2.1.4, the details of the profile extension have
no significant effect on the final results as long as the reson-
ant layers for the Fourier modes of interest are well separated
from the profile extension region. It should also be noted that
the negative electric field at the separatrix and beyond results
from using the neoclassical reconstruction in the whole radial
range of themain plasma volume and the subsequent extension
outside the separatrix. Such a reconstruction loses its validity
in some vicinity of the separatrix (at the pedestal foot) where
the shear viscosity and the ergodization of the magnetic field
play a significant role in the formation of the E0r profile, and
where the experimentally measured electric field tends to zero
instead. This vicinity, however, is well separated from the res-
onant layers of interest in this study.

2.2.1. Anomalous diffusion. In the previous version of the
model [22], the anomalous diffusion coefficient, due to micro
turbulence, was estimated either by a constant value Da

0 =
104 cm2 s−1 or by a simple function Da = Da

0(1− 0.8(r/a)3),
where a is the minor radius of the plasma. In this work, we
improve the previous estimations. We calculate the anomal-
ous diffusion coefficient for the time slice t= 2.9 s with the
transport code ASTRA [47], as this case is used in the ana-
lysis of scaling relations in section 4.2. For the other time
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Figure 8. Profiles of the anomalous diffusion coefficient determined
with ASTRA (blue) and with the estimation procedure based on heat
fluxes given by equation (41) (orange) for time t= 2.9 s of AUG
shot 33353. The estimation agrees well with the result of ASTRA in
the region containing the rational surfaces we are interested in.

slices, we estimate the anomalous diffusion coefficient based
on heat fluxes in the plasma. In ASDEX Upgrade, the plasma
is heated by neutral beam injection and electron cyclotron res-
onance heating. Subtracting from the heating power the radi-
ation losses and assuming an equipartition of input power
between electrons and ions, results in the total input power
into the electrons of Pe,inp = (Pheat −Prad)/2. For Prad we
take the radiated power in the main plasma from the BPD
diagnostic, which is the total radiated power of the plasma
above the X point derived from the bolometric line integrals
of radiation [48]. Respectively, the electron heat flux dens-
ity is given by a steady-state value Qe = Pe,inp/S, where the
flux surface area S is calculated from the flux tube volume as
S= dV/dr. Assuming the heat transport to be purely conduct-
ive, Qe ≈−neDa∂Te/∂r, we arrive at an approximate expres-
sion for the anomalous diffusion coefficient

Da ≈−
Pe,inp
Sne

(
∂Te
∂r

)−1

. (41)

A comparison of the anomalous diffusion coefficient pro-
files calculated with ASTRA and the flux estimation procedure
is shown in figure 8. In this example, the results agree well in
the region we are interested in (50–60 cm). As the flux sur-
face area goes to zero when approaching the center, the flux
estimation of the anomalous diffusion diverges. For time slices
without results from ASTRA, equation (41) improves the estim-
ation of the anomalous diffusion significantly, compared to
the previously chosen constant value of Da = 104 cm−2 s−1

(dashed horizontal line in figure 8).
During the quasilinear time evolution, the anomalous dif-

fusion would change due to the effects the RMPs have on the
profiles, see e.g. [19]. In particular, since the transport barrier
is eroded by the RMP-induced effects the turbulence becomes
more important. This is for example prominent in the influence
the RMPs have on the LH transition [49]. However, our model

does not consider the evolution of turbulence as it is focused
on the RMPs.

3. Bifurcation

3.1. Identifying bifurcation in the quasilinear evolution

To identify the bifurcation of a mode for a given plasma con-
figuration, i.e. profiles and equilibrium field, we linearly ramp
up the RMP coil current during the quasilinear time evolu-
tion, while keeping the equilibrium magnetic field and shear
fixed. We do it slowly, over a time scale of about two seconds
which is much larger than the typical profile relaxation time
at the edge. The quantity providing the information about
the penetration of the RMP mode is the penetration factor
Btot
r /B

vac
r , which is evaluated at the resonant surface in ques-

tion. Here, Btot
r (Bvac

r ) is the radial magnetic field perturbation
with (without) plasma response. A low value of this ratio indic-
ates strong shielding. However, we are not interested in the
value per se but in its behaviour during the ramp-up of the coil
current. If the linear ramp-up of the current results in an abrupt
non-linear incline in the penetration factor, we define this to be
an indication for bifurcation.

In the following, we consider the ASDEX Upgrade dis-
charge 33353 at time 2.9 s which is some time after the RMP
coil current was turned on (∼1.7 s) and shortly after the trans-
ition to ELM suppression (∼2.77 s). The quasilinear evolu-
tion of the penetration factor in figure 9 shows a non-linear
behaviour for mode m= (6,2), which is indicating bifurca-
tion of this mode. Moreover, the mode bifurcates approxim-
ately when the experimental MP coil current value is reached
(IMP = 1.3 kA), meaning that for this plasma configuration,
the mode might bifurcate. For mode m= (7,2), there is no
increase in the penetration factor visible at all. The mode
m= (5,2), on the other hand, seems to start bifurcating at the
very edge of the ramp-up. However, the trend is not abrupt
enough yet to be deemed bifurcating. If the RMP coil cur-
rent value would be increased further, and, thus, significantly
beyond the experimentally possible value, we might find this
mode bifurcating.

3.2. Cause for bifurcation

Now, since we observe bifurcation of mode m= (6,2) of the
time slice 2.9 s we are interested in the specific processes
involved in the bifurcation. To investigate the involved mech-
anisms, we scan the penetration factor at different stages of
quasilinear evolution over the range of VE×B values evaluated
at the resonant radius. We perform this scan by scaling the tor-
oidal rotation velocity profile V tor and keeping the other pro-
files fixed. Figure 10 shows scans for different evolution stages
during the ramp-up of the RMP coil current. We find that the
quasilinearly evolving VE×B (green line) and the electron fluid
resonance (orange line) move towards each other and eventu-
ally meet. There are two different mechanisms leading to the
bifurcation.

First, the change of the quasilinearly evolved VE×B ori-
ginates in the RMP-induced non-ambipolar particle transport

11



Nucl. Fusion 63 (2023) 126007 M. Markl et al

Figure 9. Quasilinear time evolution of the penetration factor
during the linear ramp-up of the RMP coil current up to and beyond
its experimental value Iexpt. The non-linear behaviour of mode
m= (6,2) beginning at IRMP/Iexpt ≈ 1.0 indicates the penetration of
this mode.

that leads to a torque changing the toroidal rotation and,
respectively, the E0r profile globally. For an estimation of this
trend, we apply a standard analysis [50] using the steady state
momentum balance equation (23) alone. The only momentum
source for the change in toroidal rotation frequency due to
RMPs, ∆Vφi = Vφi −Vφi0, is the RMP-induced torque density
T EM
φ . This torque density is strongly localized around the res-

onant surface (see appendix B). Thus, using a zero boundary
condition for the momentum flux at the axis the momentum
equation can be integrated once over the radius,

∂⟨∆Vφi ⟩
∂r

=−
T tot
φmΘ(r− rm)

mi ni ⟨gφφ⟩µA⊥S
. (42)

Here, T tot
φm is the integral torque, Θ(x) is the Heaviside step

function, and we ignored the finite width of the resonant layer.
With a zero boundary condition for ⟨∆Vφi ⟩ at the separatrix we
integrate (42) once more. Assuming the density and the tem-
peratures unchanged, we express the resulting value of ⟨∆Vφi ⟩
at the resonant surface via the change in the VE×B velocity
using equations (26) and (10) as

∆VE×B =−
√
gBϑ0 T tot

φm

miB0

aˆ

rm

dr
ni ⟨gφφ⟩µA⊥S

. (43)

Using the estimate (B4), we see that ∆VE×B =−|const|/Veres
tends to reduce the distance to the fluid resonance Veres = 0,
see equation (21). This is the main mechanism responsible for
the bifurcation of the modes in the core plasma [13, 14]. For
the quantitative comparison below, it is convenient to estim-
ate the integral torque T tot

φm assuming for simplicity no elec-
tron temperature gradient, Ae2 = 0, via the maximum value of
the quasilinear diffusion coefficientDql

e,11 (normally reached at
the resonant surface) and the resonant layer width δm discussed
in section 2.1.2. The result is T tot

φ ∼ ee
√
gBϑ0 SneA

e
1D

ql
e,11δm/c,

Figure 10. Penetration factor as a function of VE×B evaluated at the
resonant surface during the quasilinear evolution of plasma
parameter profiles with linear ramp-up of the RMP coil current. The
quasilinearly evolving value of VE×B velocity (green line)
progresses towards the fluid resonance Ve⊥ =∆V (orange line).
The fluid resonance evolves towards the gyrocenter resonance
VE×B = 0 (black dashed-dotted line). The fluid resonance differs
from the MHD prediction Ve⊥ = 0 (blue dashed line) by a shift ∆V
that is proportional to the electron temperature gradient (purple
arrow), given in constant-ψ approximation (21) by
∆V= Ve⊥ −Veres = VedT/2∝ ∂Te/∂r. As a plateau in Te forms, the
shift decreases during the evolution. Also shown is the collisionality
parameter |x2| defined in equation (8).

where we used (29) and the explicit flux-force relation in (23).
Using equations (21) and (13) for the resonant velocity Veres =
Ve⊥ and replacing all functions of radius in the sub-integrand
of (43) with their values at the resonant surface, we can
roughly estimate the relative change of the resonant velocity
∆Veres =∆VE×B driven by the torque as

(
∆Veres
Veres

)
torque

∼ Ct/p
Dql
e,11

µA⊥
, Ct/p =

δmLped
ρ2pol

. (44)

Here, we used ⟨gφφ⟩ ≈ R2
0 and

√
gBϑ0 /B0 ≈ rm/q(rm), and

defined the distance to the separatrix, which is of the
order of pedestal width, as Lped = a− rm. Further, the pol-
oidal sound gyroradius is ρpol = qR0vs/(rmωci) with vs =

(Te/mi)
1/2. Expressing the resonant layer width using (9)

and (17) as

δm =
|ωE|
|k ′∥|vTe

max

(
1,
√

νe
|ωE|

)
≈ qR0|VE×B|

vTe
max

(
1,
√

νe
|k⊥VE×B|

)
, (45)
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Figure 11. Effects of quasilinear evolution due to linear ramp-up of the RMP coil current. Local plateaus form in the density ne and electron
temperature Te profiles. A global change in the radial electric field E0r profile is caused by the RMP-induced torque.

and estimating |VE×B| ∼ DBe/rm = Vsρpol/(qR0) we can
present the coefficient in (44) as

Ct/p ∼
Lped
ρpol

√
me

mi
max

(
1,

√
qR0νe

ρpol|k⊥|vs

)
. (46)

Estimating Lped ∼ 7 cm from figure 7 and Te ∼ 1 keV from
figure 6 we get vs ∼ 3 · 107 cm s−1 and ρpol ∼ 3 cm, which,
together with νe ∼ 2.5 · 106 s−1, qR0 ∼ 500 cm and k⊥ ∼
0.1 cm−1 results in Ct/p ≈ 0.5∼ 1.

The second mechanism, which moves the fluid reson-
ance towards the gyrocenter resonance (black dash-dotted
line in figure 10), is the result of the formation of a plat-
eau in the electron temperature and density profiles by the
RMP-induced transport within the resonant layer [22, 51, 52]
(with a finite E0r in the layer, this effect may lead even to
positive density gradients [51]). Considering that a steady-
state particle flux at the resonant layer is determined by
the sources in the core plasma and, therefore, stays mostly
unchanged with the appearance of the RMP-induced transport,
Γe =−neDa [Ae1]no RMP ≈−ne(Da +Dql

e,11) [A
e
1]RMP. Here, we

again have set for simplicity Ae2 = 0. In this case, the change
in the resonant velocity driven by the plateau formation is
estimated as (

∆Veres
Veres

)
plateau

∼
Dql
e,11

Da
. (47)

Similar to (44), this change tends to reduce Veres via the reduc-
tion of Ae1 (see equations (21) and (13)). Due to Ct/p ∼ 1 and
µA⊥ ∼ Da, both effects are of the same order, as seen in the
evolved profiles in figure 11. Note that the decrease in the shift
of the resonance (purple arrow) also demonstrates the reduc-
tion of the electron temperature gradient. This has a similar
effect on ∆Veres as the plateau formation and can be estimated
by replacing in (47) Dql

e,11 with D
ql
e,22 being, in the end, of the

same order.
It should be noted, that the formation of the plateau in quasi-

linear theory is not the result of magnetic islands opening. The
width of the plateau structure is determined in this theory by
the linear width of the resonant layer assuming that the size
of the islands is small. At the same time, when the field fully
penetrates the islands can become comparable in size or even
larger than the linear resonance layer width. In the second case,
the quasilinear theory loses its validity.

3.3. Plateau formation in experiment

As discussed above, quasilinear evolution with RMP-induced
transport shows the formation of a local plateau in the elec-
tron temperature and density profiles. Due to the small radial
extent of the plateau, it is not directly observable in experi-
mental measurements. Thus, instead of identifying the plateau
directly, we establish an estimation that may hint towards its
existence.
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Figure 12. Assessment of the existence of the local electron temperature and density plateaus during the ELM suppression phase of
discharge 33353 in ASDEX Upgrade. The existence of the plateaus is indicated by the rational surfacem= (6,2) lying between the
modified fluid resonance with perfect electron temperature plateau (purple ×) and the fluid resonance without any plateau (blue triangle).
For comparison, the location of a modified fluid resonance (red circle), with Vevol

e⊥ being the fluid velocity determined with evolved profiles
in a multi-mode RMP run (m= 5,6) evaluated at rm = r(6,2), is indicated.

Note that the toroidal rotation velocity Vtor measured in the
experiment is that of boron impurities seeded to determine the
rotation, though so far, we assumed it to be the one of deu-
terium. This assumption has an impact on the calculation of the
poloidal rotation Vpol and thus on the calculation of the radial
electric field profile, E0r. Therefore, to increase accuracy, for
the plateau formation analysis we determined the radial elec-
tric field with the multi-species neoclassical transport code
NEO-2 [36, 37] assuming the toroidal rotation to be the one
of boron. This is in contrast to the approach of calculating E0r

described in section 2.2 where we attributed toroidal rotation
to the deuterium ions and computed the rotation in the cyl-
indrical geometry limit (40).

We crudely estimate the existence of the plateau in the
experiment in the following way. During the course of the
ELM suppression phase of the discharge, where the plateau
should already have formed, we determine various versions
of the electron fluid resonance for different time slices in
figure 12. Here, we assume that the alignment of the fluid res-
onance with the resonant surface m= (6,2) causes bifurca-
tion. Considering the original profiles, i.e. without any plateau,
the electron fluid velocity crosses zero at some radial position
marking the location of the (MHD) fluid resonance (blue tri-
angle). If a perfect plateau is established in both electron tem-
perature and density, i.e. the gradients are identical to zero, the
diamagnetic part of the fluid velocity vanishes and the fluid
velocity equals VE×B. Thus, the fluid and gyrocenter reson-
ance coincide (green triangle). Additionally, the case of only
a perfect electron temperature plateau but no density plateau
is shown (purple ×). This case lies in between the gyrocenter
resonance and the fluid resonance without plateaus.

To improve this crude estimation, we use our model
to evolve the plasma parameters for each time slice while
ramping up RMP modes m= (5,2) and m= (6,2) until a

steady-state is reached. Note that we use here multiple modes
since a bifurcation of mode m= (5,2) might shift the fluid
resonance towards the core. In the corresponding evolved pro-
files, plateaus have formed at the respective rational surfaces.
To take this into account, we shift the original electron fluid
velocity profile by the ‘height’ of the resulting local change
in the evolved fluid velocity at the surface m= (6,2), i.e. by
(Vevol

e⊥ −Ve⊥)r(6,2) . Here, V
evol
e⊥ is the fluid resonance calculated

with the evolved density and electron temperature profiles. The
result is shown in figure 12 by the red circles. The closeness
of this ‘most realistic’ case to the relevant rational surface
(m= (6,2)) suggests the existence of the local plateau there.

4. Local bifurcation criterion

Based on the estimates of section 3.2 we define the approx-
imate local bifurcation condition [21] of the RMP mode m
via quasilinear, Dql

e,22, and anomalous, Da, electron heat dif-
fusion coefficients evaluated at the relevant resonant surface
r= rm as

Dql
e,22

Da

∣∣∣∣∣
r=rm

⩾ 1. (48)

This heuristic condition is reasoned on the observation that an
RMPmode bifurcates during the ramp-up when this condition
is approximately fulfilled. The onset of plateau formation
caused by Dql

e,22 reduces V
e
res which leads to the increased field

penetration and respective increase inDql
e,22 (see equations (20)

and (31)) which further pulls the electron fluid resonance to the
resonant surface, resulting in a positive feedback loop. If a very
strongly shielded mode fulfills the criterion (48) this bifurca-
tion can be rather abrupt (not the case in figure 11). Note that
the unity on the right-hand side of the condition (48) is based
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Figure 13. Local bifurcation criterion (48) for shot 33353 at
t= 2.9 s. For the rational surfaces m= (6,2) the diffusion ratio is
nearly above the threshold, in accordance with the exact criterion
(see figure 9). To estimate the location of the pedestal top, the total
pressure ptot is plotted.

on experience and, thus, it has to be seen with error margins
in mind.

In application to RMPs at the edge, the condition (48)
appears more practical than the condition on the rotation [13,
14] since it is local and is not affected by the interaction with
othermodeswhichmay pull the rotation in opposite directions.

Considering the local criterion at time t= 2.9s in figure 13,
we find that the ratio of diffusion coefficients is nearly above
the threshold for m= (6,2) indicating that this mode might
be close to bifurcation or might start to bifurcate. This agrees
with the exact criterion, cf figure 9.

4.1. Local criterion during experiment

To check the correlation of the local bifurcation criterion with
ELM suppression in the experiment, we determine the dif-
fusion ratio for various time slices during shot 33353. We
find that the local criterion for the RMP mode m= (6,2)
exceeds the threshold shortly before ELM suppression starts
(t∼ 2.7 s), as shown in figure 14. This indicates the bifurca-
tion and the penetration of the respective mode. Additionally,
this correlation supports the assumption that the bifurcation
of the mode on top of the pedestal is responsible for ELM
suppression.

Note that mode m= (7,2) is already in the steep gradient
region which is characterized by high plasma rotation, hence,
this mode is strongly shielded. This fact is indicated by the
low value of the diffusion ratio compared to the threshold
value. Also, despite the diffusion ratio of mode m= (5,2)
being above the threshold quite early after the onset of the
RMP coil current, there is no correlation to ELM suppression.
This is as expected since the corresponding rational surface
is already too far inside the plasma to be responsible for sup-
pressing ELMs.

Moreover, the density evaluated at the resonant surfaces
is plotted in figure 14. We see that ELM suppression starts
shortly after the pedestal density (m= (6,2)) is below the
empirical threshold value [4] ne,ped = 3.3 · 1019m−3. After

some time in the ELM suppression phase, a single ELM
event occurs (t∼ 3.2 s), despite the density staying below the
threshold value. This event is forecasted by the decline in the
local bifurcation criterion of modem= (6,2) after ELM sup-
pression starts. Nevertheless, the exact reason for this event is
unknown.

4.2. Scaling relations

In the following, we want to determine scaling relations for the
RMP coil current corresponding to the threshold Dql

e,22 = Da

which follows from the local criterion (48) indicating bifurca-
tion. To separate the main effect of the plasma parameters on
the resonant layer from their effect on the ‘outer’ ideal MHD
solution (the latter effect is of the order one or smaller), we
assume that the shielding current in the resonant layer scales
only with the RMP coil current but not with plasma paramet-
ers, I∥m ∝ IRMP. Besides that, we fix also the anomalous coef-
ficientDa. Thus, due to the quadratic scaling of the quasilinear
diffusion coefficients with the shielding current (36), the scal-
ing of the coil current threshold is determined solely by the
scaling of the quasilinear electron heat diffusion coefficient
IthRMP ∝ (Dql

e,22)
−1/2.

4.2.1. Numerical scaling. Wedetermine the scaling relations
of Dql

e,22 given in equation (30) by scaling the original electron
density and electron temperature profileswith constant factors,
and keeping the ion temperature and toroidal rotation velocity
profiles unchanged. Note that in this case the radial electric
field profile, E0r, is unchanged. Moreover, one should note that
rescaling the density with a constant factor does not change
the diamagnetic velocity which keeps the fluid resonance velo-
city (21) unchanged, in contrast to a temperature scaling.

We are interested in the density scaling,

Dql
e,22 ∝ n−αe ⇒ IthRMP ∝ nα/2e . (49)

By scanning the quasilinear diffusion Dql
e,22 in density space

for multiple electron temperature values (figure 15), we find a
value range for the scaling for all three considered modes as

1.2< α < 2.2. (50)

Comparing the temperature averaged values ᾱm, we find
that for mode m= (5,2) the scaling is steepest with ᾱ5 =
1.92, whereas for modes m= (6,2) and m= (7,2) it is
slightly smaller with ᾱ6,7 ≈ 1.4. Overall, this result agrees
well with two-fluid nonlinear MHD simulations done by
Nazikian et al [53] for DIII-D, which show a density scaling
for the penetration threshold of the radial magnetic field for a
mode resonant on top of the pedestal as B̃r ∝ n0.7e .

Note that the scaling of the quasilinear heat diffusion coef-
ficient with density in combination with the local criterion
implies a density limit for bifurcation. This limit qualitatively
resembles the density threshold for ELM suppression found
in AUG [4] and DIII-D [54]. The AUG threshold value [4] is
indicated in figure 15 by a vertical dashed line.
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Figure 14. Local bifurcation condition and densities evaluated at resonant surfaces in shot 33353 in ASDEX Upgrade. The ELM
suppression phase starts [4] at t= 2.77s (dashed vertical line). The bifurcation condition for mode m= (6,2) is fulfilled shortly before
ELM suppression starts, indicating a correlation of the criterion (48) with the experiment.

Figure 15. Density scan of the local bifurcation criterion for multiple electron temperatures for shot 33353 at t= 2.9s. The empirical
density threshold limit 3.3 · 1019m−3 determined in [4] is marked (vertical dashed line). The original pedestal temperature value is
Te,ped = 1.14keV.

4.2.2. Analytical scaling. To get an analytical approxima-
tion of the trends of the local bifurcation criterion for given
plasma parameters, we consider the expression for the quasi-
linear diffusion coefficient close to the resonant surface (31).

In constant-ψ approximation [13], we can use the kinetic
integral plasma response current Iem∥ from equation (20) to
substitute the radial magnetic field perturbation in (31) and we
can write the local bifurcation criterion analytically as
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Figure 16. Comparison of numerical and analytical bifurcation criterion. The former is determined with the solution of KiLCA, whereas the
latter is determined by the analytical formula equation (51).

Dql
e,22

Da
≈ r4De

4π r4m

s2c2

|Veres|
2

(
1+

9ν2e
π2ω2

E

)1/2

× 279ν4e + 47ω2
Eν

2
e

9ν4e + 10ω2
Eν

2
e +ω4

E

k2z

∣∣∣Iem∥

∣∣∣2
νeDaB2

0

⩾ 1. (51)

Here, the occurring equilibrium plasma parameters are evalu-
ated at the resonant surface r= rm and Veres is defined in (21).
A corresponding vacuum field required for bifurcation can be
roughly estimated by replacing here Iem∥ with Icyl∥m given by
equation (35).

It should be noted that equation (51) is valid in the case
of strong shielding, for which Brm given by equation (20) is
much smaller than its vacuum value, |Brm| ≪

∣∣I∥m∣∣/(crm), see
section 2.1.4. If the saturation of |Brm| around its vacuum value
is taken into account [13, 50] in the case of a loss of shielding,
equation (51) would not be singular at the resonances Veres = 0
and ωE = 0.

To assess the analytical version of our local bifurcation cri-
terion (51), we compare it to the numerical one where Dql

e,22 is
calculated with equation (30) using the electromagnetic field
provided by KiLCA. As shown in figure 16, we find that the
analytical version of the bifurcation criterion gives the same
qualitative picture as the numerical one, which is discussed in
section 4.1. Thus, the analytical bifurcation criterion is advant-
ageous when processing a large amount of cases.

Further, with equation (51), we check the density scaling
of the local bifurcation condition for different collisionality
limits. Recall that we assume Da to be constant. In case of
high collisionality, νe ≫ ωE, we get

Dql
e,22

Da
∝ r4De ∝ n−2. (52)

Whereas in the case of low collisionality, νe ≪ ωE, we have

Dql
e,22

Da
∝ r4Deνe ∝ n−1. (53)

Thus, the analytical approximation for both cases agrees with
the numerically obtained scaling (50).

Note that equation (51) as well as the numerical cri-
terion (48) are valid for the case of intermediate or high col-
lisionality, |x2|= |ωe|/νe ≲ 1, which are typical for AUG and
ITER parameters at the pedestal top. In case of low collisional-
ity, |x2| ≫ 1, the maxima of the shielding current density and
quasilinear diffusion coefficients (which are driven by Landau
damping in this case) are split at the resonant surface. There,
in turn, these quantities tend to zero due to the absence of res-
onant particles (see figure 3 and equation (A21)). In this limit,
one should use in equation (48) the value of Dql

e,22 at one of the
two actual (shifted) maxima which results in

(
Dql
e,22

Da

)
x2=∞

≈ C∞
r4De
r4m

s2c2

|Veres|
2

k2z

∣∣∣Iem∥

∣∣∣2
|ωE|DaB2

0

⩾ 1, (54)

with C∞ ≈ 4.97. The same result, up to the coefficient of
the order one, can be obtained formally by replacing νe →
max(νe, |ωE|) in equation (51).

Note that the analytical bifurcation criterion (51) and (54)
as well as the torque estimate (B4) are based on the integral
current (20) computed while ignoring the perturbation of the
electric field Em⊥. This field annihilates the corrugation field
E[ψ]
m⊥ in the ideal regions outside the resonant layers. In some

regimes, this may reduce the effective resonant layer width
compared to δm of equation (45) which is suggested by the
susceptibility functions, as seen, e.g. in figure 2. In fact, this
effect is the main reason for the very low contribution of the
ions to the shielding current since their δm is larger than the
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Figure 17. Scan of the local bifurcation criterion (48) in the density ne,ped and electron temperature Te,ped space. The density and
temperature are evaluated at the poloidal radius value [4] ρpedpol = 0.84. Figures (a)–(c) were determined with the numerical and figures
(d)–(f ) with the analytical (equation (51)) bifurcation criterion. Indicated are the original parameters (star), the threshold of the bifurcation
criterion (thick dashed line), the empirically determined ELM suppression limits [4] (straight dashed lines), and the two-fluid MHD
threshold determined with TM-1 by Nazikian et al [53] (red line).

electron layer width in the typical case of collisionless ions. In
the case that the electric perturbation field reduces the reson-
ant layer width, equation (20) overestimates the shieling, and,
therefore, the analytical criterion (51) should be viewed as a
sufficient rather than a necessary condition for bifurcation, as
it yields lower values of Dql

e,22 compared to the numerical cri-
terion (see, e.g. figure 16 for mode m= 7 at t< 2.7 s).

4.2.3. Density and electron temperature parameter
space. Similar to the operational boundaries in pedes-
tal electron density and electron temperature space of figure
15 in [4], we want to establish regions of bifurcation in the
two-dimensional density and electron temperature parameter
space. To do so, we scale the respective profiles as described
in section 4.2.1 and check Dql

e,22.

Modem= (7,2) lies in the steep gradient region of the con-
sidered profiles, i.e. the high rotation causes strong shielding.
In figure 17(c), we find that the threshold of bifurcation for
this mode lies at very low pedestal densities. Though since
the bifurcation of a mode in the steep gradient region may
deteriorate the edge transport barrier completely [53] it is not
desirable for this mode to bifurcate anyway. Modem= (5,2)
shown in figure 17(a), which lies already too far inside the
plasma to be responsible for ELM suppression, seems to be
close to an extended region in which bifurcation occurs that
can be identified as the fluid resonance.

Finally shown in figure 17(b) is mode m= (6,2), were
we find that the threshold of the bifurcation criterion qual-
itatively agrees with the structure of figure 15 in [4], as
well as a comparable scaling established in [53] for DIII-
D. Our results show a ‘knee’ structure close to which the
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experimental parameters (star) lie. This structure is absent
in the fluid analysis (red line) and is caused by the fluid
resonance Veres = 0. Hence, the fluid resonance provides a
more or less extended operational region for which bifurcation
occurs. Further, comparing the fluid resonance structure with
the empirically observed thresholds [4] nemp

e,ped = 3.3 · 1019m−3

and Temp
e,ped = 1.0keV, we find qualitative agreement, as the

knee resembles boundaries in both density and electron tem-
perature. Additionally, a limit similar to the lower collisional-
ity limit (ν∗e = 0.25) shown in figure 15 (dotted line) in [4]
occurs in figure 17(b) at the bottom side of the knee. Still,
due to the qualitative nature of our approach, quantitatively
the limits do not coincide.

Further, scans done with the analytical criterion (51) are
shown in figure 17(d)–(f ). Quantitatively, the constant-ψ
approximation introduces differences. In particular, the fluid
resonance ‘knee’ ofmodem= (6,2) is squeezed to lower tem-
perature values. However, qualitatively, the analytical result
provides a similar picture as the numerical one.

5. Summary and discussion

In this work, we advanced an earlier kinetic model [11, 22,
23, 25] by coupling the cylindrical Maxwell solver KiLCA
[23] to the ideal MHD code GPEC [24] to incorporate tor-
oidal effects. We used this extended model to qualitatively
study the bifurcation of RMPs, which are used to suppress
ELMs. Based on observations in the quasilinear time evolu-
tion, we defined an approximate local bifurcation criterion (48)
that suggests bifurcation if the ratio of the quasilinear elec-
tron heat diffusivity is of the order of the anomalous diffus-
ivity. A more approximate, analytical form of the local cri-
terion (51), which can be viewed as a sufficient condition for
the bifurcation of a given RMPmode, was derived in constant-
ψ approximation, i.e. assuming a constant radial magnetic
field perturbation over the resonant layer, and ignoring the
electric field perturbation. The criteria were used to analyse
multiple time slices of an ASDEX Upgrade discharge. Both
criteria suggest bifurcation of the RMP mode m= (6,2) just
before the transition to ELM suppression (figure 16). Further,
using the criteria to investigate electron density and elec-
tron temperature scalings of bifurcation we find a limit in
the electron density that resembles an empirically observed
limit [4]. The limit we find varies with the electron tem-
perature and is strongly influenced by the electron fluid
resonance.

At this point, it is important to note two caveats. First,
the mode we find to be correlated with ELM suppression,
m= (6,2), differs from the one suggested by experiments.
In the latter case, the expectation is that mode m= (7,2) or
m= (8,2) are connected to ELM suppression [4]. So far, we
do not know the reason for this mismatch. Second, experi-
mental measurements are inevitably accompanied by uncer-
tainties, however, so far our modelling lacks an uncertainty
analysis. This will be remedied in future works.

In the following, we summarize and discuss the five most
important points that we observe within our model.

(i) Both RMP shielding and RMP-driven quasilinear
transport are determined solely by the perpendicular
electrostatic field arising due to the misalignment of per-
turbed equipotential surfaces and perturbed magnetic flux
surfaces. This field is absent in ideal MHD.

(ii) The shielding of an RMPmode breaks down if the electron
fluid resonance is close to the resonant surface. However,
we find in our model that the electron fluid resonance
condition, Veres ≡ Ve⊥ − 1

2V
e
dT = 0, which must be real-

ized at the resonant surface r= rm, differs from the MHD
predicted value of this resonance at zero electron fluid
velocity, Ve⊥ = 0. Therefore, the electron fluid resonance
point is normally located closer to the gyrocenter reson-
ance E0r = 0 than the zero of the electron fluid velocity.
This can be one of possible reasons of experimentally
observed ELM suppression in case that the point Ve⊥ = 0
moves further inside from the pedestal [54]. This change
in the fluid resonance position in the presence of an elec-
tron temperature gradient is the case for arbitrary plasma
collisionality. For the collisionless regime, this has been
pointed out earlier [22]. Besides the above shift, non-
constant-ψ effects, i.e. a radially increasing radial mag-
netic field perturbation, tend to shift the fluid resonance
position Veres(rpen) = 0, required for maximum field penet-
ration, radially outwards from the resonant surface, rpen >
rm. This typically results in an opposite trend as compared
to the effect of a finite electron temperature gradient.

(iii) In contrast to the result of the simplified analytical
constant-ψ approximation, a full penetration at the fluid
resonance is not observed in the presence of an elec-
tron temperature gradient at low and mild collisionalities
(figure 4). Although the reduction of the maximum pen-
etration factor is of the order one, it effectively increases
the bifurcation threshold for the RMP coil field.

(iv) The analytical result of our kinetic plasma response model
can be compared to the drift-MHD response regimes of
Cole and Fitzpatrick [14] via the measure for the strength
of the current sheet ∆. In our model, the measure is
determined by equating the currents in equations (20)
and (33),

∆≡ 1
Brm

[
∂Brm
∂r

]
= 2πi sign(m)

qR0ω
2
pe

|s|c2

(
ωE

2πωE− 6iνe

)1/2 Veres
vTe

, (55)

where ω2
pe = 4πnee2/me is the electron plasma frequency.

At high collisionality, νe ≫ |ωE|, and in the absence of
an electron temperature gradient, Veres = Ve⊥, this formula
agrees with the second semi-collisional regime (SCii,
table I) of Cole and Fitzpatrick [14] to within 4%, which
is due to different numerical prefactors. Note that at low
collisionalities, where the shielding is fully determined
by Landau damping, ∆ is independent of the mode num-
bers. In this case, no corresponding regime is found in
drift-MHD theory. Note also that the ratio of the per-
turbation field in plasma to its value in vacuum can be
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approximated by equation (55) in a view of equation (34)
as Brm/B

r
Vm ≈ 2m/(rm∆).

(v) The bifurcation criterion (51) strongly depends on the
electron density and temperature but not on the collision
frequency. This means that the effective ion charge num-
ber Zeff is predicted to have a weak or even no effect on the
penetration. Hence, bifurcation is predicted to occur under
almost the same conditions for plasmas with different ion
species.

Note that RMP shielding and quasilinear electron trans-
port induced by the misalignment electric field in the reson-
ant layer is only weakly affected by toroidal effects because
the whole electron population (essentially passing electrons) is
involved in these processes. An account of the misalignment-
induced transport of trapped particles in general toroidal geo-
metry [55] gives a correction in the resonance layer of the order
(|ωE|/νe)(a/R0)

3/2 ≪ 1. This transport, however, may be sig-
nificant outside resonant layers. In the case that RMPs couple
with an electrostatic (drift) mode propagating further in the
pedestal region, this could play an important role.

Suppressing ELMs requires bringing the plasma-edge pres-
sure below a stability limit. In that regard, the experimentally
observed density ‘pump-out’ plays a key role and needs to be
explained. Concluding this article, it appears that the bifurc-
ation of RMPs is a necessary but not a sufficient condition
for ELM suppression. There could be more than one mech-
anism involved. Locally, there is the formation of vacuum-
sized island chains after the bifurcation which prevents pedes-
tal propagation to the core [16, 56]. A further mechanism may
be due to the strongly increasing RMP-driven torque [57–59].
Such a torque may modify the edge rotation globally, in par-
ticular in the pedestal, leading to the change in the turbulence
spectrum and, consequently, in the anomalous transport [60].
Moreover, as already mentioned, coupling of RMPs to electro-
static drift modes might produce relevant transport across the
pedestal. To fully resolve drift modes, an upgrade of the FLR
expanded conductivity operator to a full integral one is the
necessary next step in the improvement of our model. With the
integral model available, analysing drift modes will shed light
on their role in density ‘pump-out’ and, subsequently, on ELM
suppression.
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Appendix A. Properties of susceptibility functions

The dimensionless moments IklD defining the susceptibility
functions (7) are given by

IklD(x1,x2) =

{
∂k+l

∂αk∂βl
I(x1,x2,α,β)

}
α,β=0

, (A1)

I(x1,x2,α,β) =
∞̂

0

dτ exp

[(
ix2 − x21

)
τ +(α+ ix1)(β+ ix1)

×
(
e−τ − 1

)
+

(α+β)
2

2

]
. (A2)

Explicitly differentiating in (A1) integral (A2) once overα and
using the integration by parts, a recurrence relation is obtained
for IklD as follows,

IklD(x1,x2)

=

[
∂k+l−1

∂αk−1∂βl
exp

(
(α+β)2/2

)
+

(
α2 + ix2

)
I(x1,x2,α,β)

α+ ix1

]
α,β=0

=Rkl +

k−1∑
j=0

Rk
l I
j l
D(x1,x2) =R(kl) +R(k)

l I0lD(x1,x2), (A3)

where coefficients R are rational functions of x1 and x2, and
the last expression is obtained by iterating the preceding one.
With the help of this expression, we used Mathematica [61]
to determine the following relations between the susceptibility
functions (7) which enter parallel current density (4),

I11 =
√
2zαI

10, I31 =
√
2zαI

21, (A4)

where

zα =
x2√
2x1

=
−ωE√
2vTαk∥

. (A5)

Moreover, real parts of susceptibility functions entering quasi-
linear diffusion coefficients given by equations (49) of [22] are
related by

Re(I11) =
√
2zαRe(I

10) = 2z2αRe(I
00),

Re(I31) =
√
2zαRe(I

30) =
√
2zαRe(I

21) = 2z2αRe(I
20),

Re(I33) =
√
2zαRe(I

32) = 2z2αRe(I
22). (A6)

Thus, representing the misalignment electric field (12) as

EMA
m⊥ = Em⊥ +

√
2zαB

r
m
vT
c
, (A7)

one can compact current density (4) with help of (A4) to the
form (11) and quasilinear diffusion coefficients, equations (49)
of [22], with help of (A6) to the form (30).
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A.1. High collisionality limit

Using relations (A3) susceptibility functions entering
equation (11) take the explicit form

I10 =
ix1

[
(x21 − ix2)(1− ix2)I00D − 1− x21 + ix2

]
(I00D − 1)x41 − x21(x2 + i)(2I00D x2 − i)+ x2(x2 + i)2(I00D x2 − i)

,

I21 =
ix1

[
(x21 − ix2 − ix32)I

00
D − 1− x21 − x22

]
(I00D − 1)x41 − x21(x2 + i)(2I00D x2 − i)+ x2(x2 + i)2(I00D x2 − i)

,

(A8)

where I00D can be expressed in terms of the lower incomplete
gamma function [62] γ(s,x) as follows,

I00D = ex
2
1x2ix2−2x21

1 γ
(
x21 − ix2,x

2
1

)
. (A9)

Close enough to the resonant surface, x1 ≪ 1, we can approx-
imate it as

I00D ≈ 1+ x21 + x41/2
x21 − ix2

− x21
x21 − ix2 + 1

, (A10)

resulting in case of high collisionality, x2 ≪ 1, in

I10 ≈
x1
(
x2 + ix21

)
x22 + 4ix2x21 − x41

, I21 ≈
x1
(
3x2 + ix21

)
x22 + 4ix2x21 − x41

, (A11)

and also, via relations (A4), in

I11 ≈
x2
(
x2 + ix21

)
x22 + 4ix2x21 − x41

, I31 ≈
x2
(
3x2 + ix21

)
x22 + 4ix2x21 − x41

. (A12)

The last two asymptotical expressions can be integrated over
x1,

Iklint = Iklint(x2)≡
∞̂

−∞

dx1I
kl(x1,x2), (A13)

to give

I11int = 2π

(
|x2|
6

)1/2

exp

(
− iπ

4
sign(x2)

)
, I31int = 2I11int.

(A14)

In close vicinity of the resonant surface where x21 ≪ x2
functions I11 and I31 can be computed taking in (A8) next order
correction in x2 as follows,

I31 ≈ 3I11 ≈ 3
1− ix2

. (A15)

A.2. Low collisionality limit

For the collisionless limit, x2 ≫ 1, the susceptibility functions
simplify to

Ikl = IklD =

√
π

2
1
x1
Wσ

(k+l)(zα),

Wσ
(k)(zα) =

2k/2

iπ

∞̂

−∞

du
uk exp(−u2)
u− zα− iσo

, (A16)

as follows from equations (50) and (53) of [22]. Here, o→ 0
and σ = sign(x1) = sign(k∥). Using the recurrence relations

Wσ
(k)(zα) =

√
2zαW

σ
(k−1)(zα)−

i
π
2k/2Γ

(
k
2

)
δ2{k/2},1,

(A17)

where Γ(x) is gamma function and δ2{k/2},1 = 1 for odd k and
zero otherwise one obtains

I10 =− i
x1

(1+σzαZ(σzα)) ,

I21 =− i
x1

(
1+ 2z2α (1+σzαZ(σzα))

)
, (A18)

where Z(z) = i
√
πW(z) is the plasma dispersion function and

W(z) = σWσ
(0)(σz) = e−z2

(
1+

2i√
π

ˆ z

0
et

2

dt

)
(A19)

is the Kramp function. Note that relations (A6) are the straight-
forward consequence of Equation (A17) which allows to
express at low collisionalities the real part of susceptibility
function of any order as

Re(Ikl) =
√
π2(k+l−1)/2 z

k+l
α

|x1|
e−z2α . (A20)

In the collisionless limit, the quasilinear diffusion coeffi-
cients (equation (30)) can then be explicitly written with help
of (A20) as

Dql
α,11 =

√
π

8
c2

vTαB2
0

∑
m

|EMA
m⊥|2

|k∥|
e−z2α

Dql
α,12 =

√
π

8
c2

vTαB2
0

∑
m

|EMA
m⊥|2

|k∥|
(
1+ z2α

)
e−z2α

Dql
α,22 =

√
π

8
c2

vTαB2
0

∑
m

|EMA
m⊥|2

|k∥|
(
2+ 2z2α+ z4α

)
e−z2α , (A21)

where zα is defined in equation (A5). The exponent in
equation (A21) indicates that not only the shielding current but
also the quasilinear diffusion is the effect of resonant particles
in this limit.

Similarly to (A12) we obtain

I11 =− ix2
x21

(1+σzαZ(σzα)) ,

I31 =− ix2
x21

(
1+ 2z2α (1+σzαZ(σzα))

)
, (A22)
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Figure 18. Real (solid) and imaginary (dashed) parts of
integrals (A13) of the functions I11 and I31 computed numerically
and using their analytical scaling (A24). The agreement between all
three is up to the numerical integration error.

being even functions of x1. Their integrals (A13) are

I11int =
√
2π,

I31int = 2I11int, (A23)

where only the first term in (A19) responsible for Landau
damping within drift-orbit resonance between parallel motion
and E×B rotation contributes while the contribution of
adiabatic particles integrates to identical zero. An expres-
sion which reproduces both, collisional (A14) and collision-
less (A23) limits is the following,

I11int = 2π

(
x2

2π x2 + 6i

)1/2

, I31int = 2I11int. (A24)

So far, the authors were unable to check analytically the obser-
vation that equation (A24) perfectly fits the result of numerical
evaluation for any x2 (see figure 18).

In close vicinity of the resonant surface where zα ≫ 1
using the respective asymptotic of Kramp function (A19) func-
tions (A22) approximately are

I31 ≈ 3I11 ≈ 3i
x2
. (A25)

This expression would be the same with (A15) used form-
ally in the limit x2 ≫ 1. Actually, it can be checked using
equation (A10), which is valid for small x1 but not necessarily
small x2, that equation (A15) is valid in the limit x1 → 0 in the
general collisionality case.

A.3. Close vicinity of the resonant surface

For the susceptibility functions relevant for the quasilinear dif-
fusion coefficients, we are also interested in the limiting case
x1 → 0, i.e. in their values close to the resonant surface at arbit-
rary plasma collisionality. In this respect, we need to consider

(A10) to higher orders in x1. Then, to leading order in x1, we
get for real parts of the susceptibility functions

Re
(
I00
)
≈ 1

2z2α

1
1+ x22

+O
(
x41
)
,

Re
(
I20
)
≈ 1

2z2α

3
1+ x22

+O
(
x41
)
,

Re
(
I22
)
≈ 1

2z2α

9
(
3x22 + 11

)
x42 + 10x22 + 9

+O
(
x41
)
. (A26)

An alternative way of deriving these expressions is by using
the recurrence relations (A6). Exact expressions for I11, I31

and I33 at the resonant surface can be determined by setting
x1 = 0 in the integrand of (A2), performing the derivative with
respect to α and β, setting α= β = 0 and integrating over τ .
Thus, we get

I11 =
1

1− ix2
, I31 =

3
1− ix2

, I33 =
9i

x2 + i
+

6i
x2 + 3i

,

(A27)
leading to equations (A26) via (A6).

Appendix B. Toroidal torque in constant-ψ
approximation

For the estimations in section 3.2, the RMP-induced tor-
oidal torque density obtained from the flux-force relation [22],
i.e. the last term in toroidal momentum balance equation (23),
can be approximated. This is done by using equations (29)
and (30) and gives

T EM
φ ≈

√
gBϑ0
2c

∑
m

∣∣∣∣BrmB0

∣∣∣∣2
×
∑
α=e,i

nαeαv2Tα
να

Re

(
(Aα1 +Aα2 ) I

10 +
1
2
Aα2 I

21

)
,

(B1)

where we ignored the electric field perturbation Em⊥ and
used (A6) (similar to the derivation of equation (14)).
Alternatively, the direct computation of the torque density
using the magnetic Lorentz force density [50] yields

T EM
φ =

〈
1
c
j̃× B̃ · ∂r

∂φ

〉
≈
〈
1
c
j̃∥h× B̃ · ∂r

∂φ

〉
=−

√
gBϑ0
c

〈̃
j∥
B̃r

B0

〉

≈−
√
gBϑ0
2c

∑
m

∑
α=e,i

Re

(
jαm∥

Br∗m
B0

)
. (B2)

In this expression, we retained only the largest, parallel com-
ponent of the current density perturbation, and the last expres-
sion corresponds to the straight cylinder limit. Substituting
here the non-ideal parallel current density (4) with Em⊥ = 0
leads to the same result as (B1). Note that the ideal plasma
response is dominant outside the resonant layers and ignored
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here since it does not produce torque on average [50]. (Since
the Lorentz force density equals the pressure gradient in ideal
MHD, it cannot produce any integral torque.) Assuming a
single perturbation mode m and integrating (B2) over the
volume in constant-ψ approximation, i.e. replacing all func-
tions of radius except for jαm∥ with their values at the reson-
ant surface r= rm, we get the integral torque from a single
mode as

T tot
φm =− πσϑrmR2

0

2c
√
q2(rm)R2

0 + r2m

Re
(
I∥mB

r∗
m (rm)

)
. (B3)

Here, I∥m is the integral parallel current (15), σϑ =

sign
(√

gBϑ
)
, and we have set

√
g= rR0 and Bϑ0 /B0 =(

q2R2
0 + r2

)−1/2
for the straight cylinder. Substituting here

a vacuum estimate for the shielding current, equation (35)
agrees with equation (67) of [50]. Assuming strong shielding
by electrons, i.e. using equation (20) for Br∗m with I∥m ≈ Ie∥m,
we can express the integral torque (B3) via the shielding cur-
rent as

T tot
φm =

σϑ |skz|r2DeR2
0

∣∣I∥m∣∣2
2vTeVeres rm

√
q2(rm)R2

0 + r2m

Re

(
2π− 6iνe

ωE

)1/2

,

(B4)

where Veres is the electron fluid resonance velocity (21). By
similar arguments as in the discussion of equation (51), in the
case that shielding is lost in the vicinity of a fluid resonance,
the torque has no singularity there. In fact, it smoothly goes
through zero at Veres = 0 which is a stable point of the toroidal
momentum balance, e.g. see figure 9 in [25]).

It should be noted that the above estimates of the (dom-
inant) electron torque ignoring the perturbation electric field
Em⊥ should not be used in close vicinity of the gyrocen-
ter resonance ωE = 0, where the effect of Em⊥ is significant.
Especially, for ions, whose torque exceeds the electron torque
there, the ωE = 0 resonance is a stable point as well (see figure
11 of [22])
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