
Poster: Resource-Efficient Deep Subnetworks for
Dynamic Resource Constraints on IoT Devices

Francesco Corti∗, Christopher Hinterer∗, Julian Rudolf∗, Balz Maag†, Joachim Schauer‡, and Olga Saukh∗
francesco.corti@tugraz.at, christopher@hinterer.at, julian.rudolf@student.tugraz.at, balz.maag@ch.abb.com,

joachim.schauer@fh-joanneum.at, saukh@tugraz.at
∗Graz University of Technology, †ABB Research, ‡FH JOANNEUM University of Applied Sciences

Abstract
Deep models running on edge and mobile devices typ-

ically encounter dynamic system states due to changes in
available resources, fluctuating energy levels and multiple
competing real-time tasks. State-of-the-art machine learn-
ing pipelines produce resource-agnostic models that can-
not dynamically adjust their resource demand at runtime.
We present Resource-Efficient Deep Subnetworks (REDS),
deep networks that can adapt their size and inference speed at
runtime by using structured sparsity to allow for further op-
timizations on typical embedded platforms. We extend the
TFMicro framework to support REDS and present prelim-
inary evaluation on Arduino Nano 33 BLE Sense showing
linear speedups and negligible overhead at a price of minor
loss in model’s test set accuracy.

1 Introduction
Integration of machine learning (ML) models into Inter-

net of Things (IoT) systems has led to rapid advancements
across various domains. ML algorithms running on edge
devices can extract valuable insights, identify patterns, and
make predictions based on the collected data. This facili-
tates the development of new tools and real-time decision-
making. However, machine learning models are resource-
agnostic monoliths, incapable of adapting their function to
dynamic resource availability. The problem is particularly
severe in scenarios where resource availability depends on
external factors that are difficult to predict in advance.

For example, low-power and intermittent computing sys-
tems [4, 6] make best use of their resources based on en-
ergy provisioning. Mobile agents such as drones, robots and
self-driving cars may have to adjust their task priorities in
response to a change in speed and thus the requirements of
a different safety profile. User-driven change in task priori-
ties, e.g., triggered by an event of interest, may consume or

provide more resources to a specific tasks [11]. Resource-
agnostic ML models can not make use of variable resources.

Several recent research studies recognize and address the
problem in specific domains. Bamusi et al. [4] propose the
concept of approximate intermittent computing by design-
ing support vector machines that can adapt to available en-
ergy while sacrificing accuracy. Kannan and Hoffman [9]
propose a RNN architecture that allows early exit predic-
tions, which prevents the input from being processed by
the entire model, thus implying less energy consumption.
DRESS [11] and NestDNN [2] design nested subnetworks
that are increasingly more resource-efficient yet somewhat
less accurate. DRESS trains nested models while making
use of 2:4 sparsity pattern and thus targeting NVIDIA Am-
pere accelerators. NestDNN converts a pre-trained model
into the nested structure by applying an iterative filter prun-
ing, growing and fine-tuning. REDS draw inspiration from
these works. However, in contrast to DRESS and NestDNN
the structured sparsity pattern chosen by REDS uses insights
in [8] and preserves model’s structure, i.e., dense layers re-
main dense in all lower-capacity subnetworks. This novel
nested DNN approach eliminates the need for any special-
ized hardware and maintains low overhead for switching be-
tween different subnetworks within a single model by ex-
ploiting contiguous memory. This design decision is moti-
vated by two observations: (1) Microcontrollers, e.g., ARM
Cortex-M4, often provide SIMD instructions to efficiently
execute FMA and MLA operations for several inputs, yet re-
quire these to be in contiguous memory. Therefore, sparsity
patterns that deviate from the original optimized model de-
sign may pay a performance penalty [1]. (2) REDS yield
high-accuracy nested subnetworks of comparable quality as
the models of the same architecture trained from scratch. In
Table 1 all REDS subnetworks closely follow the models of
the same architecture trained from scratch.

2 REDS Architecture and Training
REDS training closely follows DRESS, yet offers greater

flexibility by not being limited to the 2:4 sparsity pattern.
This pattern is rarely utilized on IoT devices because they
lack the necessary specialized hardware. REDS applies
structured sparsity (we iteratively prune neurons and convo-
lutional filters) by enforcing each subnetwork to keep half
the capacity of its parent network. The largest parent net-
work has the largest capacity and requires the highest FLOPs

|θ| 1-layer MLP / DIGITS 3-layer MLP / DIGITS 11-layer MLP / DIGITS CNN / SPEECHCMDS
% Scratch REDS Scratch REDS Scratch REDS Scratch REDS

100 96.96±0.1 96.28 ±0.3 95.18 ±0.6 94.58 ±0.8 96.81±0.4 96.49 ±0.4 86.43±0.8 87.16±0.3
50 96.48±0.3 96.16 ±0.2 93.55 ±0.4 93.62 ±1.0 95.85±0.4 96.11 ±0.5 78.18±0.5 81.19±1.8
25 95.33±0.7 95.49 ±0.4 92.51 ±0.8 91.80 ±1.8 95.25±0.4 94.90 ±0.5 69.5±0.3 68.05±1.0
12.5 92.11±0.6 89.54 ±1.6 90.63 ±19.0 91.24 ±5.3 64.92±1.5 81.74 ±0.8 41.84±0.2 46.38±0.5

Table 1. Performance comparison of REDS subnetworks to networks of the same architecture trained from scratch. |θ|
is the fraction of network parameters the largest network shares with the subnetwork at level i.

Weights 𝜽

Slice s1

Slice s2

Slice sN

Input i1

Input i2

Input iN

* 𝜋1ᐧ ℒ1

𝜋2ᐧ ℒ2

𝜋Nᐧ ℒN

Gradients
accumulation

N = number of subnetworks

*

*

Figure 1. The tensor weights of the network are dynam-
ically adjusted during training to decrease the number
of the network’s parameters θ used for inference. The
parameters πi

N
i=1 =

1
2i ensure that the contribution of the

loss from individual models aligns with the fraction of the
shared weights. Input and output layers are not pruned.

45 60 75 90
Accuracy [%]

0.0

0.8

1.6

2.4

3.2

In
fe

re
nc

e
Ti

m
e

[m
s] 1 layer MLP

3 layer MLP
11 layer MLP
CNN

100

200

300

400

500

600

0 4000 8000 12000 16000
Parameters number

0.8

1.6

2.4

3.2

In
fe

re
nc

e
tim

e
[m

s] 100%
50%
25%
12.5%

Figure 2. Evaluating REDS on three MLP architectures
of varying depth trained on the 10-class DIGITS dataset,
and a CNN architecture trained to classify 8 speech com-
mands of a SPEECHCMDS reduced version. Test accu-
racy as a function of inference time (left), inference time
as a function of model size (right). Execution time was
measured on Arduino Nano 33 BLE Sense platform fea-
turing ARM Cortex-M4 1MHz MCU and 256 kB SRAM.

to compute a prediction. The training procedure is sketched
in Fig. 1. The weights of each subnetwork i are reused by all
lower-capacity subnetworks {i+ k}N

k=1 by dynamically cre-
ating for each layer a tensor slice, i.e., a tensor object that
points to the original weight tensor, which uses half of its
size. Similarly to DRESS, we balance the contribution of the
loss of each individual model with parameters {πi}N

i=1 =
1
2i ,

aligned with the fraction of shared weights.

3 Evaluation on Arduino Nano 33 BLE Sense
We extend the TFMicro library [7] to support REDS.

We train three Multilayer Perceptron (MLP) models with
1, 3 and 11 layers, part of the TinyML Benchmarks collec-
tion [3], on DIGITS. We also train a 2-layer Convolutional

Neural Network (CNN) on SPEECHCMDS [10]. REDS per-
formance is presented in Fig. 2. The subnetworks can ef-
fectively reduce the inference time and the working memory
size. MLP architectures yield high test accuracy down to a
certain capacity when their performance falls of a cliff. CNN
subnetworks quality degrades slowly, allowing for a more
balanced trade-off. We observe a linear dependency between
each subnetwork size and the required inference time on Ar-
duino. This may however vary on other IoT devices that en-
joy hardware-specific accelerations supported by TFMicro.
4 Discussion

REDS supports training resource-aware models for IoT
devices by leveraging structured sparsity and preserving pe-
culiarities of model architectures. Similarly to DRESS and
NestDNN, the overhead of switching between REDS’ sub-
models is low. REDS requires updating just one variable
per layer – the active fraction of the network weights. More-
over, REDS preserves the optimizations done by the TFLite
converter, thanks to its dense memory layout across all the
subnetworks. Model compression methods were shown to
be specific to the application domain and training regime [5].
Therefore, our future work focuses on further exploring and
optimizing REDS by taking into account the dependencies
between structural elements of the subnetworks.
Acknowledgements. This research was funded in part by the Austrian Sci-
ence Fund (FWF) within the DENISE doctoral school (grant number DFH
5). For the purpose of open access, the authors have applied a CC BY public
copyright licence to any Author Accepted Manuscript version arising from
this submission.

5 References
[1] A. Howard et al. Mobilenets: Efficient CNNs for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.
[2] B. Fang et al. NestDNN: Resource-aware multi-tenant on-device deep

learning for continuous mobile vision. In MobiCom. ACM, 2018.
[3] B. Sudharsan et al. TinyML Benchmark: Executing fully connected

neural networks on commodity microcontrollers. In WF-IoT, 2021.
[4] F. Bambusi et al. The case for approximate intermittent computing. In

IPSN, pages 463–476, 2022.
[5] F. Corti et al. Studying the impact of magnitude pruning on contrastive

learning methods. arXiv:2207.00200, 2022.
[6] M-P. Gherman et al. Towards on-demand gas sensing. In DCOSS,

pages 72–74, 2021.
[7] R. David et al. TF Micro: Embedded ML on TinyML systems, 2021.
[8] R. Entezari et al. The role of permutation invariance in linear mode

connectivity of neural networks. arXiv:2110.06296, 2021.
[9] T. Kannan et al. Budget RNNs: Multi-Capacity Neural Networks to

Improve In-Sensor Inference Under Energy Budgets. In RTAS, 2021.
[10] P. Warden. Speech commands: A dataset for limited-vocabulary

speech recognition. CoRR, arXiv:1804.03209, 2018.
[11] Z. Qu et al. DRESS: Dynamic real-time sparse subnets. arXiv preprint

arXiv:2207.00670, 2022.

