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Super-Resolution Estimation of UWB Channels including the
Diffuse Component — An SBL-Inspired Approach
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Abstract—In this paper, we present an iterative algorithm that
detects and estimates the specular components and estimates
the diffuse component of single-input—multiple-output (SIMO)
ultra-wide-band (UWB) multipath channels. Specifically, the
algorithm super-resolves the specular components in the delay–
angle-of-arrival domain and estimates the parameters of a para-
metric model of the delay-angle power spectrum characterizing
the diffuse component. Channel noise is also estimated. In
essence, the algorithm solves the problem of estimating spectral
lines (the specular components) in colored noise (generated by
the diffuse component and channel noise). Its design is inspired
by the sparse Bayesian learning (SBL) framework. As a result the
iteration process contains a threshold condition that determines
whether a candidate specular component shall be retained or
pruned. By relying to results from extreme-value analysis the
threshold of this condition is suitably adapted to ensure a pre-
scribed probability of detecting spurious specular components.
Studies using synthetic and real channel measurement data
demonstrate the virtues of the algorithm: it is able to still detect
and accurately estimate specular components, even when their
separation in delay and angle is down to half the Rayleigh
resolution limit (RRL) of the equipment; it is robust in the sense
that it tends to return no more specular components than the
actual ones. Finally, the algorithm is shown to outperform a
state-of-the-art super-resolution channel estimator.

I. INTRODUCTION

Future wireless communication technologies will support a
variety of services with high quality requirements, addressing
performance metrics such as reliability, ultra-low latency, high
data rates, and resource-efficient use of the infrastructure [1],
[2]. Holistic approaches that combine different functionalities
have proven to offer promising solutions to meet these require-
ments. Illustrative examples are integrated sensing and com-
munications (ISAC) and radio-based simultaneous localization
and mapping (SLAM) [2]–[4]. These examples emphasize the
reliance of these technologies on extended, accurate channel
state information. High-performance feasible parametric multi-
antenna channel estimators can provide this information.

A. State of the Art

Parametric channel models typically represent multipath
propagation as a linear superposition of weighted Dirac delta
distributions - or spectral lines - with distinct supports in the
underlying dispersion domain (delay, angle of arrival, angle
of departure, Doppler frequency, and combinations thereof).
Each component in the superposition is meant to represent a
specular component (SC). Note that in this paper we shall
use the terms SC and spectral line indiscriminately. The
finite aperture of the measurement equipment imposes some

S. Grebien, E. Leitinger, and K. Witrisal are with the Laboratory of Sig-
nal Processing and Speech Communication, Graz University of Technology,
Graz, Austria, and Christian Doppler Laboratory for Location-aware Elec-
tronic Systems (e-mail: {stefan.grebien, erik.leitinger, witrisal}@tugraz.at).
B. Fleury is with the Institute of Telecommunications, Vienna University of
Technology, Vienna, Austria, (bernard.fleury@tuwien.ac.at). S. Grebien and
E. Leitinger have equally contributed as first authors.

limitation on the ability to resolve SCs closely spaced in the
dispersion domain.

If the number of spectral lines is known, (constrained and
unconstrained) maximum-likelihood (ML) methods, see e.g.
[5] or subspace-based methods [6], [7] are standard super-
resolution1 tools to estimate their parameters. Expectation-
maximization and related algorithms [8], [9] have proven
viable approximations of the computationally prohibitive di-
rect implementation of the constrained ML method. These
estimators have in common that they do not incorporate the
estimation of the number of spectral lines into the estimation
problem. Schemes that perform jointly detection of the spectral
lines and estimation of their parameters have been designed
within a Bayesian framework [10], [11]. Traditional methods
combining detection and estimation select among multiple
candidate models, each corresponding to a specific hypothesis
on the number of spectral lines, the one that optimizes a so-
called information criterion, such as the Akaike or Bayesian
information criterion, and the minimum description length,
see [12] and references therein. Yet, the information-based
approach suffers from two shortcomings: (a) it is computa-
tionally intensive as the adopted information criterion needs to
be computed first for each model candidate before a decision
can be made; (b) the number of spectral lines of the selected
model tends to be positively biased in non-asymptotic regimes
of the signal-to-noise-ratio (SNR) and the number of observed
samples [13]. Hence, inference schemes designed with this
approach are prone to return spurious spectral lines that
have no real counterpart. Alternative penalty terms have been
proposed that prevent [14] or control [15] this bias.

Model-order selection is inherently realized in sparse signal
reconstruction (SSR), see [16] and references therein. SSR
aims at recovering a sparse weight vector in an underdeter-
mined linear model with a known and fixed dictionary matrix.
To that end it computes an estimate of the weights as the
solution to a regularized optimization problem in which the
regularization term is selected to promote sparse solutions.
A popular instance of SSR is basis pursuit denoising [17],
also called LASSO (least absolute shrinkage and selection
operator) [18], that uses an ℓ1-norm regularization. SSR can
be formulated within the Bayesian framework as maximum-a-
posteriori (MAP) estimation while imposing a sparsity promot-
ing prior on the weight vector. Typically this prior is endowed
with a hierarchical structure involving a hyperparameter for
each weight. Several hierarchical models have been considered
so far: gamma-Gaussian2 [20], [21], Bernoulli-Gaussian [22],

1Super-resolution is the ability of an algorithm to resolve spectral lines
even if the separation of their support in the dispersion domain is below the
intrinsic resolution of the measurement equipment.

2This Bayesian formulation with this choice of hierarchical model is
also referred to as sparse Bayesian learning or relevance vector machine to
stress its link with automatic relevance determination [19] that uses a similar
hierarchical model.
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[23], and generalized-gamma–power-exponential [24]. This
Bayesian formulation has proven to be a particularly flexible
and effective tool for SSR. Since direct implementation of the
estimators is typically computationally prohibitive, one has to
resort to iterative schemes, often designed using variational
inference methods [25], [26].

SSR can be straightforwardly applied in the context of line
spectral estimation by discretizing (gridding) the dispersion
domain, see e.g. [27]–[29]. The benefit of doing so is that the
complex optimization problem needed to estimate the supports
of the spectral lines is replaced by a linear programming
procedure that returns a sparse estimate of the weight vector.
The shortcoming is that gridding of the dispersion domain
induces spectral leakage due to the resulting model mismatch.
This effect can be mitigated by selecting a denser grid, yet
at the cost of increasing the coherence of the dictionary
matrix, which impairs the sparse reconstruction capability and
increases the computational complexity. Variants of gridding
methods that employ some interpolation method [30]–[34]
or apply a grid refinement technique [29], [35] have been
proposed to circumvent the leakage effect.

Atomic noise minimization (ATM) provides an elegant natu-
ral means to operate with a continuous, i.e. infinite, dictionary
in SSR and thereby to relax the need for discretizing the
dispersion domain [36]–[38]. However, some specificities of
our underlying model — namely a two-dimensional disper-
sion domain and unknown colored noise — prevent a direct
application of the method, see Subsection IV-5 and a related
discussion in [38]. Moreover, numerical evidence shows that
ATM requires the supports of spectral lines to be sufficiently
separated in the dispersion domain in order to be able to
recover them [37]. In [39] an alternative is proposed that
circumvents this shortcoming.

In theory, gridding-based line spectral estimation methods
can be straightforwardly extended to account for continuous
dispersion parameters by relaxing the discretization constraint
and instead including the estimation of the support of the
spectral lines in the inference process. Clearly, this approach
is an instance of SSR with learning the continuous (vector-
valued) parameter of a parameterized dictionary matrix. It
has been extensively pursued in connection with the Bayesian
formulation of SSR [40]–[46]. These algorithms differ in their
specific design criteria, such as (i) the chosen sparsity-inducing
hierarchical prior model, e.g. gamma-Gaussian [40]–[44],
Bernoulli-Gaussian [45], [46], (ii) the assumed absence [40],
[46] or presence [41], [44] of correlation among the weights
of the spectral lines, and (iii) whether point estimates [40],
[42]–[45] or posterior probability density functions (PDFs) of
the dispersion parameters of the SCs are inferred [46]. Exper-
imental evidence shows that the algorithms computing point
estimates of the supports of spectral lines show a positive bias
in the number of detected spectral lines, i.e. are prone to detect
spurious spectral lines. Including inference of the posterior
PDF of the supports allows for mitigating this bias, yet at
the cost of an increased computational complexity [46]. We
remark that the previously mentioned (iterative) SSR methods
that apply grid refinement techniques [29], [35] can be viewed
as particular instances of SSR methods with continuous-
parameter learning, which adapt their inherent restricted range

of the dictionary parameter during the iterations.3

The above SSR methods with continuous-parameter dic-
tionary learning include an inherent pruning procedure that
determines which ones among the columns of the dictionary
matrix are inferred as relevant and switch the others off, see
e.g. [47], [48]. It is shown in [44] that the number of detected
spurious spectral lines can be significantly reduced by suitably
adapting the threshold of the pruning stage. The analysis pro-
vided there relies on some heuristic, yet realistic, assumptions
that allow for approximating the probability of detecting a
spurious line with the probability that the maximum of a
continuous χ2 random field exceeds the selected threshold
[49], [50]. The analysis shows that a prescribed probability
of detecting spurious lines can be guaranteed, provided the
threshold increases as C + log n + 1

2 log log n where n is
the number of observation samples and C is a constant that
depends on that probability [14], [44]. Numerical analyses
have shown that using this adapted threshold leads to almost
vanishing bias in the number of detected SCs in medium
and high SNR regimes with a tendency to underestimate said
number in the low SNR regime, see also Section VII.

In recent years, an extension of the channel model has
been considered, that includes a dense component (DC) [9].
The DC incorporates diffuse components as well as SCs that
cannot be resolved with the finite aperture of the measurement
equipment. Including the estimation of the DC can improve
the accuracy of the estimation of the parameters of resolved
SCs [9].

B. Contributions of the Paper

We propose an iterative algorithm that performs combined
detection and estimation of SCs and estimation of the DC
plus additive white Gaussian noise (WGN) (AWGN) in single-
input—multiple-output (SIMO) ultra-wide-band (UWB) mul-
tipath channels.4 The algorithm resolves the SCs in the delay–
angle-of-arrival (angle) domain. The contributions of this
paper are as follows:

• We model the impact of the DC and AWGN as a colored
noise, so that the problem becomes that of line spectral
estimation [52] in such noise when the relative delays
that the (UWB) complex envelope of the sounding wave
exhibits when it is sensed by the elements of the antenna
array cannot be neglected.

• The design of the algorithm is inspired by the SBL
approach [20]. The probabilistic model is extended by
assuming that the weights of the spectral lines are inde-
pendent circularly-symmetric complex Gaussian random
variables with unknown variances. In a first stage ML es-
timation of the variances and all other parameters but the
weights is performed after integrating out said weights.
These estimates are then used to compute a tractable
(Gaussian) approximation of the weights’ posterior PDF.
The algorithm computes these two stage, the former one
in an iterative fashion.

3For instance, the “gridless” SBL-based method presented in [29, Sec. IV]
is similar to the methods proposed in [42], [43].

4The extension of the algorithm to a multiple-input—multiple-output
(MIMO) system is straightforward [51].
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• We suitably modify the threshold inherent to the above
ML estimation stage to meet a prescribed probability of
detecting spurious lines. To do so we apply results from
extreme value analysis [49], [50].

• Using synthetically generated observation data we study
in-depth the behavior of the proposed algorithm and espe-
cially how the adapted threshold affects its performance.

• We compare the performance of the algorithm with that
of a state-of-the-art combined detection and estimation
scheme that relies on the information criterion derived in
[14].

• We apply the algorithm to UWB measurement data
collected in an indoor environment. A simple ray-tracing
tool is used to identify plausible propagation paths that
can be associated to the SCs detected by the algorithm.

The remainder of the paper is organized as follows: In
Section II we present the generative signal model for the
considered SIMO measurement set-up. Section III describes
the probabilistic signal model for inference. We derive the
proposed algorithm in Section IV. Section V addresses the
analytical correspondence between the probability of detecting
spurious spectral lines and the threshold of the ML estima-
tion stage. Section VII reports results from numerical and
experimental studies. Concluding remarks are provided in
Section VIII.

II. SIGNAL MODEL

A. Continous-Time Signal Model
The experimental measurement setup consists of an UWB

transceiver operating in an indoor environment. The transmit-
ter (Tx) is equipped with a single antenna, while an antenna
array with colocated elements is emulated at the receiver (Rx)
using a single antenna mounted on a positioning table. For the
sake of simplicity we assume horizontal-only propagation.5

The array at the Rx has M elements located at pm ∈ R2,
m ∈ {1, . . . ,M} ≜ M, see Fig. 1. Its center of gravity is
p = M−1

∑M
m=1 pm and its orientation determined by the

angle o as depicted in the figure.
Signals are represented by means of their complex envelope

with respect to a center frequency fc. Under the plane-wave
assumption, the signal at the output of the mth antenna
element reads

rm(t) =

∫ ∫
s
(
t; τ, φ,pm

)
h(τ, φ)dτdφ+ wm(t) . (1)

In this expression

s
(
t; τ, φ,pm

)
= ej2πfcg(φ,pm)s(t− (τ − g(φ,pm))) (2)

where s(t) is the transmitted signal with bandwidth B and
g
(
φ,pm

)
= [cos(φ) sin(φ)](pm − p)/c with c denoting the

speed of light, expresses for a plane wave incident with angle
φ ∈ [−π,+π) the wave’s excess (propagation) delay at pm
relative to the reference point p. The function h(τ, φ) ∈ C
defined on ∈ R × [−π,+π) characterizes the spread in
(relative) delay τ and angle φ of the signal sensed at p.
Finally, wm(t), m ∈M are independent WGN with double-
sided power spectral density N0/2.

5An extension to three dimensional propagation scenarios including
polarization is straightforward, but more involved.

We see from (1) that sufficient conditions for this identity
to be accurate are that (a) the plane wave assumption holds
over the Rx array aperture (determined by {p1, . . . ,pm})6,
i.e. the array is located far away enough from the Tx and the
objects in the environment that notably contribute to multipath
propagation, such as walls, boards, etc., and (b) that the spread
function h(τ, φ) stays constant over the bandwidth (frequency
aperture) of the sounding signal. The latter assumption implies
that the electromagnetic properties of said objects, like reflec-
tion and transmission coefficients, are nearly constant over the
sounding bandwidth.

In this study we assume that the delay-angle spread function
h(τ, φ) is the sum of the superposition of a finite number, say
K, of spectral lines representing SCs and a (spread) function
ν(τ, φ) describing the DC, i.e.

h(τ, φ) =
∑
k∈K

α̃kδ(τ − τ̃k)δ(φ− φ̃k) + ν(τ, φ) (3)

where δ(·) denotes the Dirac delta distribution. The kth
SC, k ∈ K ≜ {1, . . . ,K} is characterized by its complex
amplitude α̃k ∈ C, its (relative) delay τ̃k ∈ R and angle
(of arrival) φ̃k ∈ [−π,+π). We model ν(τ, φ) as a complex
circular symmetric (i.e. zero-mean) Gaussian random process
[9], [53]. Furthermore, we assume uncorrelated scattering, i.e.,
E[ν(τ ′, φ′)ν∗(τ, φ)] = P (τ, φ)δ(τ ′− τ)δ(φ′−φ) [54], where
E[·] denotes expectation and P (τ, φ) is the delay-angle power
spectrum (DAPS) of the DC [54]. We make the following
additional hypotheses: (a) The spread function h(τ, φ) has
bounded support, i.e., without loss of generality, h(τ, φ) = 0
whenever [τ φ] /∈ [0, T ) × [−π, π) = Ψ with T > 0; (b) the
equipment is designed in such a way to ensure an aliasing-
free estimation of h(τ, φ) over Ψ. Condition (a) implies that
P (τ, φ;ϑ) = 0 whenever [τ φ] /∈ Ψ. It also imposes that the
dispersion vector [τ̃k φ̃k] of any kth SC, k ∈ K belongs to
the dispersion domain Ψ.

Inserting the decomposition (3) in (1) yields

rm(t) =
∑
k∈K

α̃ks
(
t; τ̃k, φ̃k,pm

)
+

∫ ∫
s
(
t; τ, φ,pm

)
ν(τ, φ)dτdφ+ wm(t) . (4)

The rationale behind the selection of model (3) is as follows.
The SCs originate from electromagnetic interactions with
objects in the environment that are essentially non-dispersive,
such as line-of-sight (LOS) propagation, specular reflection
and transmission, and can be resolved with the used aperture.
The DC incorporates the contributions from all other inter-
actions, e.g. diffuse scattering and diffraction. It also includes
components from specular interactions that cannot be resolved
with the used aperture.

B. Discrete-Frequency Signal Model

The signals rm(t), m ∈ M are Nyquist filtered, Fourier
transformed, and then synchronously and uniformly sampled
with frequency spacing ∆ over the bandwidth B to collect
for each branch m N = B/∆ samples that are arranged in a

6Strictly speaking the aperture of the virtual array that we emulated in
this study also incorporates the radiation pattern of the used antenna.
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Fig. 1. Layout of the array with its center of gravity p, the mth element
position pm and reference orientation o. The 1th SC originates from propa-
gation along the direct path from the Tx to the Rx with angle φ̃1 and path
distance cτ̃1. The kth SC is incident with angle φ̃k and path distance cτ̃k .

N -dim. vector ym. These M vectors are then stacked to form
the NM -vector y= [yT

1 · · · yT
M ]T, which is expressed as

y = S(ψ̃)α̃+ n ∈ CNM×1 (5)

with α̃ = [α̃1 · · · α̃K ]T ∈ CK×1, ψ̃ = [ψ̃1 · · · ψ̃K ] ∈ ΨK ,
and S(ψ̃) = [s(ψ̃1) · · · s(ψ̃K)] ∈ CNM×K with columns
given by

s(ψ̃k) = [s1(ψ̃k)
T · · · sM (ψ̃k)

T]T ∈ CNM×1 , k ∈ K . (6)

With S(f ; τ, φ,pm) denoting the Fourier transform of
s(t; τ, φ,pm), i.e.,

S
(
f ; τ, φ,pm

)
= ej2πfcg(φ,pm)S(f)e−j2πf(τ−g(φ,pm)) (7)

where S(f) is the Fourier spectrum of s(t), the mth entry in
the vector in (6) reads

sm(ψ̃k) ≜
[
S
(
n∆; τ̃k, φ̃k,pm

)
: n

= −(N − 1)/2, . . . , (N − 1)/2
]T ∈ CN×1 , (8)

i.e., it contains the Fourier-transformed samples collected at
the mth antenna element. The NM -vector n = v + w in
(5) aggregates the vectors v and w that collect the samples
(arranged in the right order) corresponding to, respectively,
the integral term and the noise term in (4) when m ranges in
M. From the assumptions on the DC, v is a complex circular
symmetric Gaussian random vector with zero mean and MN×
MN covariance matrix Qv = [[Qv]m,m′ , m,m′ ∈ M] with
submatrices

[Qv]m,m′ =

∫ ∫
P (τ, φ)sm(τ, φ)sm′(τ, φ)Hdτdφ (9)

with (m,m′) ∈ M2. From the assumptions on the noise mea-
surement process w is a complex circular symmetric Gaussian
random vector with covariance matrix Qw = σ2INM where
σ2 = N0/Ts and I(·) is the identity matrix of dimensions
specified by the number given in the subscript. We assume
that v and w are uncorrelated. As a result n is a circularly
symmetric Gaussian random vector with covariance matrix

Q = Qv + σ2INM . (10)

C. Selected Model for the DC

We impose some structure on the covariance matrix Qv
in (10) via some assumptions on the behaviour of the DC
and simplifying approximations in the derivations of the
submatrices in (9). This structure will ensure the feasibility
of the estimation algorithm.

a) The DAPS factorizes as P (τ, φ) = P p(τ)p(φ). Here,
P =

∫∫
P (τ, φ)dτdφ is the power of the DC, and p(τ) and

p(φ) are, respectively, the normalized delay power spectrum
(DPS) and the normalized angle power spectrum (APS) [55].

b) In the computation of (9) we discard the second occur-
rence of the term g

(
φ,pm

)
in (7), i.e., S(f ; τ, φ,p(m)) =

ej2πfcg(φ,pm)S(f)e−j2πfτ . This step amounts to adopting a
narrowband representation that neglects the relative delays
across array elements of the modulating signals of incident
waves [9], [56]. It follows from Assumptions a) and b) that
the covariance matrix of v factorizes as

Qv = P Qs ⊗Qf (11)
with ⊗ denoting the Kronecker product [9], [56]. The first
factor is the spatial correlation matrix

Qs =

∫
p(φ)ss(φ)s

H
s (φ)dφ (12)

with ss(φ) = [e−j2πfcg(φ,p1) · · · e−j2πfcg(φ,pm)]T ∈ CM×1

being the array response. The second factor is the delay
correlation matrix

Qf =

∫
p(τ)sf(τ)s

H
f (τ)dτ (13)

with sf(τ) =
[
S
(
n∆
)
ej2πn∆τ : n = −(N − 1)/2, . . . , (N −

1)/2
]T ∈ CN×1.

c) Experimental evidence shows that the DPS typically
exhibits an exponentially decaying tail [9], [53], [57] and a
smooth onset [53], [58]. This behaviour is well represented
by a truncated and normalized gamma PDF given by

p(τ)=p(τ ;ϑ)

=

{
a

θξΓ(ξ)

(
τ−β

)ξ−1
e−

τ−β
θ u(τ−β) , τ ∈ [0, T )

0 , elsewhere
(14)

where u(τ) is the unit step function, Γ(·) is the gamma
function, and ϑ = [β θ ξ] collects the onset (β > 0), scale
(θ > 0), and shape (ξ > 0) parameters. The normalization
constant a> 0 guarantees that

∫
p(τ ;ϑ)dτ =1. The range of

the parameter β is restricted in such a way to ensure that the
integral of the truncated tail of the gamma PDF is negligibly
small, i.e., a(β) ≈ 1 for any such values of β.

d) We neglect the spatial correlation across antenna ele-
ments, i.e., we set Qs=IM [9], [59]. This choice provides a
good approximation of Qs under the assumption of uniform
APS for the antenna-element spacings used in practice.7

By combining Assumptions a)–d) the covariance matrix Q
takes the following form:

Q = Q(η) = IM ⊗ PQf + σ2IMN (15)
where η = [σ2 P ϑ] with ϑ defined above and Qf given in
(13) with p(τ) = p(τ ;ϑ) according to (14). Hence, because
of Assumption c), Q(η) is block-diagonal with M identical
N ×N diagonal submatrices equal to

Q̃ = Q̃(η) = PQf + σ2IN . (16)

III. SPARSE BAYESIAN FORMULATION

If the number of components K of the model (5) were
known, the vectors of dispersion parameters ψ̃ and complex
amplitudes α̃ of the SCs and the parameter vector η of
colored noise could be inferred using a standard MAP or

7This assumption is exact for a uniform linear array with half-a-
wavelengh element-spacing in the case of 3 dimensional propagation with
uniform direction dispersion. For horizontal-only propagation with uniform
APS, an antenna spacing equal to approximately 40% of the wavelength leads
to practically uncorrelated entries in v.
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ML estimation technique. Since we can view the family
{S(ψ̃)}ψ̃∈Ψ as a continuous dictionary, atomic-norm methods
seem at first glance to be an inference method particularly
tailored to our model. However, as detailed in the discussion
of Section IV, some specificities of the model prevent a direct
application of these methods.

We propose an approach inspired from SBL [20] for SSR
to include the estimation of the unknown K. This approach
requires a two-fold modification of the generative signal model
that we address below.

A. Discrete-Frequency Signal Model for Inference

In a first step the initial generative signal model (5) is
modified as follows. The number of hypothetical SCs is set
to a fixed number, say L. Parameter L is a design parameter
that is selected large enough so that K ≤ L. In addition,
L ≪ NM . Actually we only need that L ≤ MN . The
further restriction ≪ is for feasibility issues. Similarly as in
Subsection II-B, we define the vector ψ = [ψ1 · · · ψL] with
entries ψl = [τl φl] ∈ Ψ, l ∈ {1, . . . , L} ≜ L. With these
modifications, we arrive at the discrete-frequency signal model
given by

y = S(ψ)α+ n ∈ CNM×1 (17)
where α = [α1 · · · αL]T ∈ CL×1 and S(ψ) =
[s(ψ1) · · · s(ψL)] ∈ CNM×L with s(ψl) defined similarly
to (6). Under the assumptions made in Subsection II, the
likelihood function of this model reads

f(y|ψ,η,α) = [πNM det(Q(η))]−1

× e−(y−S(ψ)α)HQ(η)−1(y−S(ψ)α) (18)
with det(·) denoting the determinant of a matrix. The second
step consists in specifying a hierarchical prior for each entry
αl in form of a Gaussian scale mixture. Specifically, we define

f(α,γ) = f(α|γ)f(γ) = Πl∈Lf(αl|γl)f(γl) (19)

where f(αl|γl) =
√
γl/2π exp{−γl|αl|2/2}, l ∈ L and γ =

[γ1 · · · γL]T ∈ RL×1
+ with R+ = {r ∈ R; r ≥ 0}. Note that

all entries in γ have the same prior with PDF f(γ). These
entries and their prior are referred to as hyperparameters and
hyperprior, respectively. We postulate priors for the parameter
vectors ψ and η with respective PDFs f(ψ) and f(η). With
these specifications, the probabilistic model for inference reads

f(ψ,η,α,y) = f(y|ψ,η,α)f(α|γ)f(γ)f(ψ)f(η) . (20)

B. Inference Method

The proposed method is inspired from SBL [20]. First it
computes a MAP estimate of ψ, η, and γ from the joint
posterior of these random vectors; then it uses this estimates
to infer an approximation of the posterior distribution of α.

The posterior PDF f(ψ, η, γ|y) is obtained from (20) by
marginalizing out the complex amplitude vector α, i.e.,

f(ψ,η,γ|y) ∝
∫
f(y,ψ,η,α)dα

= f(y|ψ,η,γ)f(γ)f(ψ)f(η) (21)

where

f(y|ψ,η,γ) ∝ det(C(ψ,η,γ))−1e−y
HC(ψ,η,γ)−1y (22)

with C(ψ,η,γ) = Q(η) + S(ψ)Γ−1S(ψ)H and Γ =
diag([γ1 · · · γL]). The MAP estimates of ψ, η and γ are
then computed using (21). From (20) we get

f(α|y,ψ,η,γ) ∝ f(y|ψ,η,α)f(α|γ), (23)

which is readily shown to be Gaussian with mean

µ = ΣS(ψ)HQ(η)−1y (24)

and covariance matrix

Σ =
(
S(ψ)HQ(η)−1S(ψ) + Γ

)−1
. (25)

The approximate posterior PDF of α results by plugging the
MAP estimates of ψ, η and γ in (23), and thus in (24) and
(25).

In our design, we select non-informative improper priors
for ψ, γ and η: f(ψ) ∝ 1, f(γ) ∝ 1, f(η) ∝ 1. With
this selection, the above MAP estimates coincide with the ML
estimates

(ψ̂ML, η̂ML, γ̂ML) = arg max
ψ,η,γ

f(y|ψ,η,γ)

= arg min
ψ,η,γ

{log(det(C(ψ,η,γ)))

+ yHC(ψ,η,γ)−1y} (26)

and the posterior PDF of α is inferred using the approximation
f(α|y, ψ̂ML, η̂ML, γ̂ML).

IV. ITERATIVE DESIGN OF THE ESTIMATOR

Since the ML estimator in (26) cannot be calculated ana-
lytically, even though the likelihood function is given in an
analytical form, and a direct numerical solution is computa-
tionally prohibitive, we resort to a sequential update of the
parameter vectors ψ, η, and γ resulting in the estimates ψ̂,
η̂, and γ̂.

1) Estimation of the Supports of the Spectral Lines:
Inserting the current estimates η̂, and γ̂ in (26) the new
estimate of ψ is computed to be

ψ̂=arg min
ψ

{log(det(C(ψ, η̂, γ̂)))+yHC(ψ, η̂, γ̂)−1y}. (27)

2) Estimation of the Parameters of Colored Noise: Simi-
larly, the new estimate of η is computed based on the current
estimates ψ̂, and γ̂ to be

η̂=arg min
η

{log(det(C(ψ̂,η, γ̂)))+yHC(ψ̂,η, γ̂)−1y}. (28)

3) Estimation of the Hyperparameters: Finally, given the
current estimates ψ̂ and η̂, the new estimate of γ is updated
according to

γ̂=arg min
γ

{log(det(C(ψ̂, η̂,γ)))+yHC(ψ̂, η̂,γ)−1y}. (29)

In the sequel we consider instead of (29) a sequential method
in which the estimate of each entry in γ is updated while the
estimate of the other entries are kept fixed [47]:

γ̂l =

{
(|ρl|2 − ζl)

−1 , |ρl|2
ζl

> κ

∞ , |ρl|2
ζl

≤ κ
l ∈ L (30)

with κ = 1. In this expression

ζl =
(
s(ψ̂l)

HQ(η̂)−1s(ψ̂l)− s(ψ̂l)HQ(η̂)−1

× S(ψ̂l̄)Σ̂l̄S(ψ̂l̄)
HQ(η̂)−1s(ψ̂l)

)−1

(31)
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ρl = ζls(ψ̂l)
HQ(η̂)−1y

− ζls(ψ̂l)
HQ(η̂)−1S(ψ̂l̄)Σ̂l̄S(ψ̂l̄)

HQ(η̂)−1y

= ζls(ψ̂l)
HQ(η̂)−1ȳl (32)

with
ȳl = y − S(ψ̂l̄)µ̂l̄ (33)

µ̂l̄ = Σ̂l̄S(ψ̂l̄)
HQ(η̂)−1y (34)

Σ̂l̄ = (S(ψ̂l̄)
HQ(η̂)−1S(ψ̂l̄) + Γ̂l̄))

−1 (35)

Γ̂l̄ = diag([γ̂1 · · · γ̂l−1 γ̂l+1 · · · γ̂L]) (36)
where diag(·) describes a square diagonal matrix with the
elements of the vector given as an argument on the main
diagonal and ψ̂l̄ = [ψ̂1 · · · ψ̂l−1 ψ̂l+1 · · · ψ̂L].

Note that the computation step of γ̂l (30) contains a
condition that determines when the lth spectral line shall be
discarded (γ̂l = ∞).

4) Estimation of the Weights: Inserting the estimates ψ̂, η̂,
and γ̂ in (23) yields the Gaussian PDF with mean (see (24))

µ̂ = Σ̂S(ψ̂)HQ(η̂)−1y (37)

and covariance matrix (see (25))

Σ̂ =
(
S(ψ̂)HQ(η̂)−1S(ψ̂) + Γ̂

)−1
(38)

that is used as an approximation of the posterior PDF of α.
In (38), Γ̂ = diag([γ̂1 · · · γ̂L]).

5) Fitting of the Pruning Threshold κ: Numerical exper-
iments have shown that the iterative algorithm obtained in
the above subsections overestimates the number of spectral
lines and thereby returns estimates of spurious components.
This bias in the number of detected components increases
when either the SNR or the number of samples increases [40,
Subsec. V.A], [44]. Following the approach adopted in [14],
[60], we increase the initial threshold κ = 1 in the pruning
condition (30) to κ = κ∗ > 1. The value κ∗ is set in such a
way to reduce the bias. The next section describes in detail
this procedure, which yields κ∗ given in (49).

Discussion
The updating step (27) in its form looks very similar to the

classical unconstrained (also called stochastic) ML estimator
in sensor array signal processing [5] with the additional as-
sumption that the precision matrix of the weights be diagonal,
i.e. equal to Γ as a result of the gamma-Gaussian hierarchical
model.8 Despite the resemblance (27) is not an instance of
unconstrained ML estimation. Unconstrained ML estimation
requires a scenario where at least as many observations
(snapshots, assumed uncorrelated) as the number of sensors
are collected9, while in our scenario only one observation, i.e.
y in (17), is available. Our estimator also deviates from being
an instance of SBL [20] in three respects: (a) the underlying

8Sensor array signal processing considers a signal model similar to (17)
where the entries of y are the outputs of an array of sensors, S(ψ) is the
array response matrix, ψ and α contain respectively the dispersion parameters
and the amplitudes of the sources, and n is the measurement noise vector [5].
The number of sources is assumed to be known and smaller than the number
of sensors in order for the model parameters to be identifiable. In practice
the number of sources is estimated using an additional model-order selection
procedure based on an information theoretic criterion, see Section I.

9This condition ensures that the sample array covariance matrix has full
rank, which is a mandatory condition in the derivation of the unconstrained
ML estimator.

model of SBL is undetermined, which is not the case for
our model (17) with L≪NM ; (b) the “dictionary matrix”,
namely S(ψ) in (17), is not fixed but is parameterized by
the continuous parameter vector ψ that is estimated; and
(c) the inherent threshold of SBL is adapted to control the
probability of detecting spurious SCs.10 Our method belongs to
the parametric class estimators in the nomenclature introduced
in [27].

Atomic noise minimization (ATM) provides an elegant, nat-
ural means to operate with a continuous, i.e. infinite, dictionary
in SSR [36], [37]. At first glance this method looks promising
for dealing with the continuous dictionary {S(ψ)}ψ∈Ψ in our
problem at hand. However, some specificities of the generic
model (5) prevent its straightforward application to our sce-
nario. Note that ATM primarily “denoises” the observed signal
with the estimation of the spectral lines being subsequently
performed based on this denoised signal. While the estimation
problem can be solved with an exact semi-definite program
when the dispersion domain is one-dimensional [36], only
an approximate such program could be formulated to date
for higher dimensional dispersion domains [38].11 In addition,
ATM operates on Nyquist-sampled signals and requires knowl-
edge of the noise characteristics, e.g. its spectral height when
noise is white. These conditions do not hold in our application
scenario.

V. COMPUTATION OF THE PRUNING THRESHOLD

To compute the threshold value κ∗ we adapt the approach
described in [44] to our application scenario; see also [14] for
a similar approach applied to constrained ML estimation. To
make it tractable the analysis is carried out under the following
assumptions.

Assumption 1. The spatial and frequency apertures [62] of
the sounding equipment are centro-symmetric12 [63]. Further-
more, sf = sf(0), see text below (13), fulfils Jsf = s∗f ,
where J is the exchange or reversal matrix [52, Sec. 4.8].
The covariance matrix Q in (15) is known.

It is shown in [51] that as a result of the first part in the
assumption the matrix Qv in (11) is centro-hermitian13 [63]
and therefore Q in (15) too. The next assumption reflects
an empirical evidence based on extensive simulations of the
proposed algorithm.

Assumption 2. Asymptotically as the dimension MN grows
large the estimator in Section IV with κ = 1 exhibits the
following behaviour: (a) it resolves all K active SCs and accu-
rately estimates their parameters, i.e. without loss of generality
ψ̂l ≈ ψ̃l for l = 1, . . . ,K; (b) it computes estimates ψ̂l,
l = K+1, . . . , L of L−K (spurious) SC components in such

10Strictly speaking, SBL is derived under the assumption of AWGN. It can
be straightforwardly applied when noise is non-white, by merely applying a
whitening filter first.

11In [38] the matrix-enhancement-matrix-pencil method [61] is used to
compute estimates of the support of spectral lines from the denoised signal.

12Specifically, referring to Subsec. II-A for any m ∈ M, there exists an
index m′ ∈ M such that pm′ − p = −(pm − p). The statement for the
vector defining the frequency aperture is similar.

13Since these matrices are hermitian, their centro-hermitian property
implies per-symmetry.
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a way that with high probability s(ψ̂l) is nearly orthogonal
to any columns of S(ψ̂l̄) for each l = K + 1, . . . , L.

As a result of Assumption 2, as MN grows large, with
high probability (31) and (32) can be approximated for l =
K + 1, . . . , L as ζl ≈ ζ̄(ψ̂l) and ρl ≈ ρ̄(ψ̂l), respectively,
where we have defined ζ̄(ψ·) = (s(ψ·)

HQ−1s(ψ·))
−1 and

ρ̄(ψ·) = ζ̄(ψ·)s(ψ·)
HQ−1n, respectively, with ψ· = [τ φ] ∈

Ψ. Therefore, the probability that the algorithm decides that
the lth component (l = K + 1, . . . , L) is active, i.e. γ̂l < ∞
in (30), with threshold set to κ is close to

Pf(κ) = P
[
sup
ψ·∈Ψ

|ρ̄(ψ·)|2/ζ̄(ψ·) ≥ κ
]

(39)

when MN is sufficiently large. Let us consider the circularly-
symmetric complex Gaussian random field on Ψ defined as

x(ψ·) =
ρ̄(ψ·)

ζ̄(ψ·)1/2
=

s(ψ·)
HQ(η)−1n

[s(ψ·)HQ(η)−1s(ψ·)]1/2
. (40)

with ψ· ∈ Ψ. Then, (39) can be recast as

Pf(κ) = P
[
sup
ψ·∈Ψ

|x(ψ·)|2 ≥ κ
]
. (41)

Theorem 1. Under Assumption 1 we have the asymptotic
equivalence

Pf(κ) ∼
[
1

π

∫
Ψ

√
det(Λ(ψ·)) dψ·

]
κe−κ , κ→ ∞ . (42)

Furthermore,
1

π

∫
Ψ

√
det(Λ(ψ·))dψ·

=4π

∫ ∆−1

0

∫ 2π

0

[( 1

M

∑
m∈M

d2m(φ)
)
a(τ)

]1/2
fc b(τ)dτdφ. (43)

Here, Λ(ψ·) is the non-negative definite matrix
given in (45), dm(φ) = ∂g(φ,pm))/∂φ, m ∈ M,
b(τ) =

[(
ṡ(τ)HQ̃−1ṡ(τ)

)
/
(
4π2s(τ)HQ̃−1s(τ)

)]1/2
,

a(τ) = 1 − ℜ
{
ṡ(τ)HQ̃−1s(τ)

}2
/
((
s(τ)H

Q̃−1s(τ)
)2(
ṡ(τ)HQ̃−1ṡ(τ)

)2)
with Q̃ given in (16)

and ṡ(τ) = ∂s(τ)/∂τ .

The term [ 1
M

∑
m d

2
m(φ)]1/2 incorporates the impact of the

array aperture, while b(τ) and a(τ) incorporate the impact of
the frequency aperture (spectrum S(f)) and colored noise.

Proof. As shown in [51] it follows from Assumption 1 that
the real and imaginary parts of the Gaussian field x(ψ·) in
(40) exhibits the following properties:
1) They have equal constant variance: E

[∣∣ℜ{x(ψ·)
∣∣2] =

E
[∣∣ℑ{x(ψ·)

∣∣2] = 1/2, ψ· ∈ Ψ.
2) They are independent: E[ℜ{x(ψ·)}ℑ{x(ψ·

′)}] = 0,
ψ·,ψ

′
· ∈ Ψ.

Since ℜ{x(ψ·)} and ℑ{x(ψ·)} are independent 2|x(ψ·)|2 is
a random field χ2 on Ψ with two degrees of freedom [49],
[50].14 Note that unless the DC vanishes, i.e. P = 0, see
(15), the Gaussian field x(ψ·) is non-stationary and so is
2|x(ψ·)|2. The probability that the χ2 field exceeds a threshold

14The real and imaginary parts of
√
2x(ψ·) have unit variance, in

accordance with the definition of a χ2 process.

is asymptotically equivalent to the probability of the field’s
excursion above the threshold when said threshold grows large
[49], [50]. Specifically, by applying Weyl’s tube formula [50,
Theorem 3.3.1] to 2|x(ψ·)|2 and making use of [50, Theorem
4.4.1] combined with [50, Section 4.5.2] we obtain

P
[
sup
ψ·

2|x(ψ·)|2 ≥ 2κ
]

∼
[∫

Ψ

1

π

√
det(Λ(ψ·)) dψ·

]
κe−κ κ→ ∞ . (44)

In this expression Λ(ψ·) ∈ R2×2 is the covariance matrix

Λ(ψ·) = E

[
∂x(ψ·)

∂ψ·

[
∂x(ψ·)

∂ψ·

]H
]

=

 E
[
∂x(ψ·)∂x(ψ·)

∗

∂τ2

]
E
[
∂x(ψ·)∂x(ψ·)

∗

∂τ∂φ

]
E
[
∂x(ψ·)∂x(ψ·)

∗

∂φ∂τ

]
E
[
∂x(ψ·)∂x(ψ·)

∗

∂φ2

]
 . (45)

As shown in [64, Appendix A] the entries in (45) read

E
[
∂x(ψ·)∂x(ψ·)

∗

∂τ2

]
= 4π2a(τ)b2(τ) (46)

E
[
∂x(ψ·)∂x(ψ·)

∗

∂φ2

]
=

4π2

M

∑
m∈M

d2m(φ)f2c (47)

E
[
∂x(ψ·)∂x(ψ·)

∗

∂τ∂φ

]
= E

[
∂x(ψ·)∂x(ψ·)

∗

∂φ∂τ

]
= 0 . (48)

The right-hand side in (43) follows then from (46)-(48).

The function of κ in the asymptotic equivalence (42)
provides a tight approximation of Pf(κ) versus κ for κ
sufficiently large. Thus, by taking the inverse of that function
and evaluating it at a target probability value, say ϵ, we obtain
a threshold, say κ⋆ = κ⋆(ϵ), that yields Pf(κ

⋆) close to ϵ. The
next lemma essentially gives this inverse function.

Lemma 1. Given ϵ ∈ (0, q/e] with e denoting Euler’s number
and q =

∫
Ψ

1
π

√
det(Λ(ψ·)) dψ· the asymptotic expression in

(44), and thereby in (42), is upper-bounded by ϵ provided κ
satisfies

κ ≥ κ⋆(ϵ) = −W−1(−ϵ/q) ≥ 1 (49)

where W−1 : [−e−1, 0) 7→ R is the second real branch of the
Lambert-W function [65].

Proof. With the definition of q the right-hand expression in
(44) reads qκe−κ. Clearly, this expression determines a non-
increasing function of κ defined on [1,∞) with range (0, q/e].
Given ϵ ∈ (0, q/e] we seek the minimum value of κ ∈ [1,∞)
such that qκe−κ ≤ ϵ holds. Obviously the sought value solves
qκe−κ = ϵ, i.e. equals κ⋆(ϵ) in (49).

We conclude from (41), (42) and (49) that Pf(κ
⋆(ϵ)) ≈ ϵ

for ϵ sufficiently small and MN sufficiently large. Thus, the
function κ⋆(ϵ) provides a means to control the probability of
detecting spurious components provided MN is sufficiently
large. We can use the following asymptotic behavior of the
function W−1(u) as u→ 0 to obtain a tight approximation of
κ⋆(ϵ) for ϵ small:

W−1(u) = log(−u)− log(− log(−u)) + o(1) , u→ 0 (50)
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Algorithm 1: Main
Input : Measurement vector y
Output: L̂, ψ̂, η̂, µ̂, and Σ̂

1 ψ̂, γ̂, µ̂, Σ̂← [ ], [ ], [ ], [ ]

2 η̂ ← [σ̂2 P̂ ϑ̂]

with σ̂2 ← ∥y∥2
NM

, P̂ ← 0, ϑ̂← 0 (AWGN only), and
initFlag← true

3 do
4 search()
5 refine()
6 µ̂, Σ̂← (37) and (38), respectively
7 while ∥µ̂∥0 changes or the maximum number of cycles is

reached
8 L̂← ∥µ̂∥015

Procedure 1: Search
1 Procedure search()
2 if ∥γ̂∥0 < L then
3 l← ∥γ̂∥0 + 1

4 ψ̂l ← arg max
ψ

|ρl|2
ζl

using (31) and (32)

5 γ̂l ← (|ρl|2−ζl)
−1

6 append ψ̂l to ψ̂ and γ̂l to γ̂
7 end

Procedure 2: Refine
1 Procedure refine()
2 do
3 η̂ ← update according to (28)
4 ψ̂ ← update according to (27)
5 κ̂⋆(ϵ)← (49)
6 γ̂ ← update according to (30), κ = κ̂⋆(ϵ)
7 initializeDC()
8 for l← 1, . . . , ∥γ̂∥0 do
9 if γ̂l =∞ then

10 remove lth component from ψ̂ and γ̂
11 end
12 end
13 while not converged

where o(·) denotes the little-o notation [65]. Making use of
this identity, the equality in (49) can be recast as

κ⋆(ϵ) = − log(ϵ/q) + log(− log(ϵ/q)) + o(ϵ) , ϵ→ 0 . (51)

The right-hand expression with the term o(ϵ) dropped provides
a tight approximation of κ⋆(ϵ) when ϵ is sufficiently small,
provided MN is sufficiently large.

A. Examples:

We illustrate the right-hand expression in (43) with two
examples. We consider a scenario with a sounding signal
exhibiting a constant spectrum over its bandwidth, i.e., As-
sumption 1 is fulfilled, and AWGN only. In this case (43)
becomes 4π

√
N2−1
12

∫ 2π

0
fc

√
1
M

∑
m∈M d2m(φ) dφ .

Proof. In this case, b(τ) = ∆
√
(N2 − 1)/12 =

B/N
√

(N2 − 1)/12 and a(τ) = 1.

15The operator ∥ · ∥0 gives the number of non-zero elements of the vector
given as argument.

Procedure 3: Initialize DC parameters
1 Procedure initializeDC()
2 if (any entry of γ̂ is ∞ or L reached) and initFlag is true

then
3 P̂ ← σ̂2/(2∆)

4 ϑ̂← [1m/c T/2 2]

5 η̂ ← [σ̂2/2 P̂ ϑ̂]
6 refine()
7 initFlag← false
8 end

If furthermore the array is uniform, square, of di-
mensions M ′ × M ′, and with equal inter-element spac-
ing w > 0, the above expression further simplifies to
8π2
√

N2−1
12

√
f2c

w2

c2
M−1
12 with M =M ′2.

Proof. The square aperture function of a rectangular uni-
form array is given as 1

M

∑
m∈M

d2m(φ) = M ′w2

c2 sin2(φ−

ψ)M
′(M ′2−1)
12 +M ′w2

c2 cos2(φ−ψ)M
′(M ′2−1)
12 = w2

c2
M−1
12 .

VI. IMPLEMENTATION

The pseudocode of the proposed algorithm is given in
Algorithm 1. It has two main stages: a search and a refine
procedure, described in Procedure 1 and Procedure 2, respec-
tively. After initialization the two procedures are executed se-
quentially in a do-while loop until a stopping criterion is met.
Specifically, Algorithm 1 implements a bottom-up strategy:
starting with an empty model, i.e. L̂ = 0, at each iteration of
the do-while-loop Procedure 1 searches and adds a candidate
SC in the current pool of so far buffered candidates SCs.
Procedure 2 estimates and/or re-estimates the parameters of
all candidate SCs in the pool, and possibly removes candidate
SCs to finally yield an updated pool of L̂ candidate SCs. The
algorithm terminates once the number L̂ of SCs in the pool and
their parameter estimates as well as the estimated parameters
of the DC are converged. It then returns these converged values
as the model estimates.

The initial iterations in the do-while-loop of Algorithm 1
are executed while considering measurement noise only, i.e.
by using Q in (15) with P set to zero whenever Q occurs in
the update equations of Procedures 1 and 2. This is carried out
until a first candidate SC in the pool is pruned in Procedure 2
or L̂ reaches a predefined maximum number L, in which case
Procedure 3 is executed to initialize the parameters of the
DC. Once the initialization is completed, the noise variance
estimate σ̂2 aggregates a contribution from the DC. The total
estimated power over the bandwidth computed from this value
is distributed evenly between noise and the DC in Procedure 3.
This explains the factor 1/2 in Lines 3 and 5. From then on
the estimates of the parameters of the DC DPS are updated,
i.e. the full covariance matrix Q in (15) is accounted for in
the update equations of Procedures 1 and 2.

VII. NUMERICAL AND EXPERIMENTAL RESULTS

To validate the proposed algorithm, we first test it in
Subsection VII-A with synthetically generated measurements
according to the model in (5) with a covariance matrixQ given
in (9) and (15). Then, in Subsection VII-B we apply the al-
gorithm to measurements collected in an indoor environment.
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Fig. 2. Comparison of the probalilities Pf(κ) and Pm(κ) with their respective relative frequencies computed from 1000 trials with SNR as a parameter. The
three scenarios corresponding each to specific assumptions on Q are described in the text.

A. Synthetic Radio Channels

In this study, the signal spectrum S(f) has a root-raised
cosine shape with roll-off factor 0.6 and bandwidth B =
1.6GHz centered at fc = 6GHz. The 3-dB bandwidth B̃
is 1GHz and yields the RRL 1/B̃ = 1 ns. Each numerical
investigation involves 1000 simulation trials. In each trial
the Gaussian DC vector v (see text below (8)) is generated
using (14) with β = 1m/c, θ = 5 ns and ξ = 1.8.
The power P is specified through the specular-to-dense-ratio
SDR = 10 log10

(
1
M ∥

∑
k∈K α̃ks(ψ̃k)∥2/(PB)

)
. In addition,

the Gaussian noise vector w is generated with component
variance σ2 specified through the signal-to-noise ratio SNR =
10 log10

(
( 1
M ∥

∑
k∈K α̃ks(ψ̃k)∥2 + PB)/σ2

)
.

1) Empirical Substantiation of the “Near-orthogonality”
Assumption: This study presents empirical evidence support-
ing Assumption 2. We consider a synthetic channel with a
single SC, i.e., (5) with K = 1. The used settings are as
follows: N = 27, i.e. ∆ = 59.26MHz, and the array has
dimension 3× 3 with 2 cm inter-element spacing, i.e. M = 9.
Our algorithm uses a fixed threshold κ∗ = 4 and L = 50.
The dispersion parameters of the SC are selected as follows:
its delay is fixed to τ̃1 = τ̃ = 10 ns and its angle φ̃1 = φ̃ is
drawn uniformly over [0, 2π) for each trial and independently
across trials. The respective powers of noise, the DC and the
SC are set such that SDR = −5 dB and SNR = 20 dB and Q
is computed using (15).

To substantiate the “near-orthogonality” property claimed
in Assumption 2 in each trial the cross-correlation coefficient

s(ψ̂j)
HQ−1s(ψ̂i)/

(
s(ψ̂i)

HQ−1s(ψ̂i)s(ψ̂j)
HQ−1s(ψ̂j)

) 1
2 is

calculated for any pair (i, j) of indices of SCs detected by
the algorithm and the mean and variance of these figures are
obtained. The latter quantities are averaged over the 1000 trials
to yield 0.0123 and 0.0401, respectively. As a note the average
number of detected SCs is 9.52. We also plotted (not reported
here due to space constraints) the estimated dispersion vectors
of the detected SCs in their domain Ψ. By visual inspection
we could qualitatively observe that vectors located outside
an elliptically shaped region centered at the dispersion vector
[τ̃ φ̃] of the active SC look uniformly distributed. The main
axes of the boundary ellipse are set equal to 5 times the root-
Cramér-Rao lower bounds (CRLBs) for the estimation of the
delay and angle. This choice ensures that estimated dispersion
vectors located outside the elliptical region are very unlikely
(0, 0001) to be a noisy estimate of [τ̃ φ̃].

2) Detection and Estimation of a Single SC: In this study,
we first validate empirically the expression in (42) as an
approximation of the probability of detecting spurious SCs
as well as an expression approximating the probability of

not detecting an active SC that we introduce now. In a
single-SC scenario, the probability of missed detection can
be approximated in the asymptotic regime NM → ∞ by
P[|x(ψ̂)|2 < κ], where ψ̂ is the estimated dispersion vector
of the detected SC. In this regime the distribution of 2|x(ψ̂)|2
can be approximated by a non-central χ2 distribution with
2 degrees of freedom and non-centrality parameter 2η =

2 |α̃|2
σ2

∑
m∈M sm(ψ̃)Q(η)sm(ψ̃) [44]. Making use of this

result, the probability of missed detection in a single-SC
scenario is approximated by [44]

Pm(κ) =

∫ κ

0

e−(x+η)I0(2
√
ηx)dx. (52)

To numerically assess the accuracy of using (41) and (52)
as approximations of the probabilities of detecting spurious
SCs and missing an active SC, respectively, we modify the
settings of the simulation scenario in Subsection VII-A1 as
follows: The array has size 5 × 2; N = 54; L = 10;
SNR = {5, 10, 20} dB; The threshold κ∗ of our algorithm is
a varying parameter. Other not explicitly mentioned settings
stay as described in Subsection VII-A1. Note that by keeping
the delay of the SC fixed the non-centrality parameter stays
constant and equal to η = {8.2, 12.2, 16.7} dB corresponding
to the three SNR values.

Fig. 2 shows a comparison of Pf(κ) in (41) (dashed lines)
and Pm(κ) in (52) (dash dotted lines) with the relative frequen-
cies of, respectively, detecting a spurious SC (solid lines) and
missing the active SC (dotted lines) computed from 1000 trials.
To compute the latter quantities we count the occurrence of
two events that we now define. First we specify a rectangular
region in Ψ centered at the dispersion vector of the active
SC and with sides equal to 5 times the square root of the
respective CRLBs [66]. The event “false detection” occurs if
the estimated dispersion vector of at least one detected SC
lies outside the region. The event “missed detection” occurs
if no SC is detected or the estimated dispersion parameters
of all detected SCs lie outside the region. The study is
conducted under two assumptions on the covariance matrix
Q in (10) used in the generative model: Q has the simplified
form (15) (Fig. 2a and Fig. 2b) and Q has the general form
(10) (Fig. 2c).16 Furthermore, under the first assumption we
distinguish between the two cases where the matrix Q is
known (Fig. 2a) and unknown (Fig. 2b) to the algorithm, and
thus is estimated in the latter case.

We see in Fig. 2a and Fig. 2b that when Q used in the
generative model matches that used in the design of the

16We remind the reader that the algorithm is designed based on the
simplified form (15).
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Fig. 3. Wideband versus narrowband detection and estimation of SCs in the AWGN channel: (a) mean number of detected SCs, (b) RMSE of the distance
estimates of detected SCs, and (c) RMSE of their angle estimates obtained with the proposed algorithm (in blue with crosses) and its narrowband version (in
red with pluses) as a function of the array size M .

algorithm, whether the algorithm knows or does not know
said matrix has little impact on its performance. Fig. 2c shows
that when there is a mismatch, it only marginally affects the
performance of the algorithm. Specifically, a comparison with
Fig. 2b shows that at large SNR values the number of spurious
SCs is slightly increased due to the mismatch.

3) Wideband versus Narrowband Detection and Estimation
of SCs in the AWGN Channel: State-of-the-art detection and
estimation schemes are traditionally designed based on the
narrow-band assumption, which neglects the second occur-
rence of g(φ,pm) in (7) [8], [9]. In this study we show
that neglecting this term in the proposed algorithm leads to
an increase of the number of detected spurious SCs as the
size of the array increases. To quantitatively assess this effect,
we modify the simulation scenario in Subsection VII-A2 as
follows: the array is linear, i.e. 1 × M , with inter-element
spacing of 2 cm; N = 27; L = 50; SNR = 20 dB; P = 0
(WGN only); ϵ = 10−2; σ2 is assumed known. In this study
and the subsequent ones we adopt the widely used convention
in the radar community to convert (propagation) delays in their
corresponding equivalent (propagation) distances. Fig. 3 de-
picts results obtained from 1000 simulation trials that illustrate
the behavior of the proposed algorithm (in blue with crosses)
and of a simplified (narrowband) version of it that neglects the
second occurrence of g(φ,pm) in (7) (in red with pluses) as
a function of the array size M . Fig. 3a, Fig. 3b and 3c report
respectively the mean number of detected SCs, the RMSE of
the distance estimates, and the RMSE of the angle estimates.
When M is increased beyond 5, the narrowband assumption is
violated and the narrowband version of the algorithm detects
additional spurious SCs with dispersion vectors located in the
vicinity of that of the active SC. By contrast, the RMSEs
achieved with the proposed algorithm decrease slightly as M
is increased.17

4) High-resolution Capability of the Proposed Algorithm:
To study the super-resolution capability of the proposed al-
gorithm, we consider a scenario with K = 2 SCs with a
controlled separation of their respective dispersion vector. The
parameter vector ψ̃1 of the first SC is drawn uniformly over
Ψ. The parameter vector of the second SC is then set to either
ψ̃2 = ψ̃1 + [∆d/c 0] or ψ̃2 = ψ̃1 + [0 ∆φ]. The spacings
∆d and ∆φ are fractions of the RRL in, respectively, distance
(c/B̃ ≈ 0.3m) and angle (56◦) [67]. The complex amplitudes
of both SCs have unit magnitude and their respective phases
are drawn uniformly and independently. Other system param-

17To mitigate the impact of spurious SCs caused by large noise deviations,
only detected SCs with distance and angle less than respectively 20 cm and
20 ◦ apart of those of the active SC are considered in the computation of the
RMSE values.

eters are set as follows: the array dimension is 3×3 with 2 cm
inter-element spacing; SDR = 6 dB; SNR = {10, 30, 50} dB;
N = 54; ϵ = 10−3; L = 10.

In Fig. 4, we compare the performance of the proposed
algorithm (circles) with a maximum-likelihood estimation
(MLE) algorithm (triangles) inspired by [9]. The modification
consists in adapting the algorithm to our application scenario,
adopting the same scheduling and the same thresholding as in
our algorithm. Apart from the used scheduling, the modified
algorithm strongly resembles that in [14] with the information
criterion adapted to our scenario. Performance versus spacings
∆d and ∆φ are depicted as, respectively, blue solid and red
dashed curves.

The first two columns of Fig. 4 present the mean number of
detected SCs ⟨L̂⟩ and the relative frequency that exactly two
SCs are detected ⟨1(L̂ = 2)⟩ versus spacing in distance and
angle, respectively. Both algorithms are able to reliably find
the correct number of SCs provided the respective dispersion
vectors of the two SCs are sufficiently apart. At high SNR
(see Fig. 4 (k) to (o)) the spacing values beyond which this
occurs is as low as 0.15m or 20 ◦ for the system setting used
in the study. Given that for this setting the RRL in distance
is 0.3m and that in angle is 56◦, this result demonstrates the
superresolution capability of the proposed algorithm. At lower
SNR (see Fig. 4 (a) to (e)) these values rise towards the RRLs.
Note that these values are not only influenced by AWGN but
also by the DC, meaning that at high SNR the resolution
capability of the algorithms is restricted by the SDR. Further
worth mentioning is that both algorithms tend to underestimate
the number (K = 2) of active SCs when the spacing is
reduced. Columns three and four of Fig. 4 depict the RMSE of,
respectively, the distance and angle estimates, provided exactly
two SCs are detected. We associate the two detected SCs with
the true SCs by means of the optimal subpattern assignment
(OSPA) metric [68]. To be able to use the metric we normalize
the estimated distances and angles with the RRL in distance
and in angle, respectively. The root of the sum of the CRLBs
(delay and angle) of the two SCs are also depicted (lines with
stars). The estimates returned by both algorithms approach
their respective root CRLB, provided the spacing of the two
SCs in Ψ is large enough. The last column in Fig. 4 presents
the mean of the absolute value of the complex amplitudes
⟨
∑
l |α̂l|⟩ (empty markers) and the RMSE of the absolute value

of the complex amplitudes (filled markers) again provided
exactly two SCs are detected. The two algorithms perform
similarly in estimating the dispersion parameters; however
our algorithm outperforms the modified MLE algorithm in
estimating the complex amplitudes when the two SCs are
closely spaced. This distinct behavior results from the specific
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Fig. 4. Detection and estimation of two closely spaced SCs in the scenario depicted in Subsubsec. VII-A4. Blue solid and red dashed lines refer to the bottom
and top horizontal-axis, respectively. The panels in each row depict results obtained for the same SNR value, namely SNR = 10, 30, 50 dB, from the upper
to the lower row. Panels in the columns depict from left to right the mean number of detected SCs, the relative frequency that exactly two SCs are detected,
the RMSE of the estimated delays, the RMSE of the estimated angles, and the mean (unfilled) and RMSE (filled) of the moduli of the estimated amplitudes.

white board

transmitter
receiver

window
plaster board west

Fig. 5. Picture of the investigated room with the Rx, the Tx and some
large-scale items labeled. A floorplan of the room is given in Fig. 7 in [64,
Appendix B].

structures of the algorithms: the modified MLE algorithm
computes a least-squares estimate of the amplitudes, while
the proposed algorithm computes a linear minimum mean-
square error (MMSE) estimate based on the hyperparameter
estimates, see (37) and (38). When the estimated dispersion
vectors of the two detected SCs are closely spaced, the least-
squares estimator computes the inverse of an ill-conditioned
matrix, while the linear MMSE estimator regularizes this
matrix.

B. Measured Radio Channels
For the experimental study we used a channel sounding

equipment that transmits an m-sequence of 7GHz bandwidth
at 6.95GHz carrier frequency. Details about the equipment can
be found in [69]. After applying standard pre-processing steps
(subtracting the cross-talk and equalizing the system response),
the resulting signal is input to a filter with a root-raised-
cosine transfer function with roll-off factor 0.6 and bandwidth
B = 1.6GHz centered at fc = 6GHz. The output signal with
reduced bandwidth B is then Fourier transformed and sampled
over [−B/2,+B/2] with frequency spacing ∆ = 6.8085MHz
to produce a length N = 235 vector collecting these samples.
A virtual 3× 3 antenna array with 2 cm inter-element spacing
is emulated by means of a single antenna mounted on a

positioning table. Since the received signals are essentially
noise-free, WGN was artificially added with power set such
that SNR = 40 dB to emulate the model in (4). The algorithm
uses the following settings: L = 50; ϵ = 10−2.

The room where the measurements were performed is
depicted in Fig. 5. Based on a layout of it, see Fig. 7 in
[64, Appendix B], a classical mirror source method [70]
computes the positions of predicted virtual sources associated
with rays from the Tx antenna to the center of gravity of the
Rx array positions that undergo up to 5 reflections on walls
or large objects (windows, boards). To each such predicted
source corresponds a predicted SC with dispersion vector
computed from the position of the source, see details in [64,
Appendix B].

The following analysis concerns measurements obtained
with Rx position p1 depicted in Fig. 7 in [64, Appendix B].
Fig. 6(a) depicts the estimated DAPS computed from the re-
ceived signal [70]. Note that this power spectrum incorporates
the smoothing function of the aperture of the measurement
equipment [62]. This will be the case for all power spectra
considered in this study. The red crosses and blue diamonds
mark the estimated dispersion vectors of the SCs detected by
the algorithm and the predicted SCs, respectively. To each
detected SC we associate (possibly no, one, or more than one)
predicted SC as follows. A predicted SC is associated to a
detected SC if their respective distances and angles are no
more apart than, respectively, 10 cm (1/3 of the RRL) and 5 ◦

(1/10 of the RRL), see [64, Appendix B.A] for the rationale
behind this choice. To most of the detected SCs, a unique
predicted SC is associated in this way. The two detected SCs
with dispersion parameters 35m and 80◦ are associated with
the same predicted SC. An association could not be made
for four detected SCs. Fig. 6(c) shows the estimated DAPS
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Fig. 6. Selected application of the proposed algorithm to assess the dispersion characteristics (in delay and angle of arrival) of the channel from UWB
SIMO measurement data: (a) estimated DAPS and dispersion vectors of detected SCs, (b) various estimated DPS, (c) residual DAPS and dispersion vectors
of un-associated SCs, (d) various estimated APS. Detailed descriptions of the measurement setting and the depicted results are given in Subsec. VII-B.

computed from the residual signal y−S(Ψ̂)µ̂. It also includes
the dispersion vectors of detected SCs (blue triangles) that
could not be associated with any detected SC. Clearly, the
strong peaks in the estimated DAPS depicted in Fig. 6(a)
have vanished. Fig. 6(b) shows the estimated DPS computed
from the original signal (solid blue with crosses) and from the
residual signal (solid red with pluses), as well as the theoretical
DPS of the DC given in (14) with η = η̂ plus the estimated
noise variance σ̂ (solid black with stars). The first two DPS
result from averaging the respective DAPS over the angle
domain. The DPS obtained from the residual and reconstructed
signals match well. This empirically justifies our choice of
model (14). Finally, Fig. 6(d) depicts the estimated APS
computed in a similar way as the DPS depicted in Fig. 6(b).
The first two estimated APS are obtained by averaging the
respective DAPS over the delay domain. It can be seen that
the estimated APS of the residual signal is nearly constant
over the angle domain.

VIII. CONCLUSIONS

In this paper, we derive and analyze a super-resolution
algorithm for detecting and estimating specular components
as well as estimating the power spectrum of the diffuse
component plus noise in an ultra-wide band single-input—
multiple-output (SIMO) multipath channel. Estimated param-
eters are among others the delay, angle-of-arrival, and complex
amplitude of the detected specular components as well as
the parameters of a parametric model of the delay power
spectrum characterizing the diffuse component. The design of
the algorithm is inspired by sparse Bayesian learning. As a
result it embodies a pruning condition that determines whether
a candidate specular component is considered active or not.
The threshold of the pruning condition is adapted to control
the probability of detecting spurious specular components.

Numerical studies in a synthetic environment show that
the simplifying assumptions underlying the derivation of the
algorithm are realistic and that the relative frequencies of
detecting spurious specular components and missing active
specular components are close to the respective probabilities
derived theoretically. These studies also demonstrate several
virtues of the algorithm: (a) its ability to still detect and
accurately estimate specular components, even when their

separation in delay and azimuth is down to half the Rayleigh
resolution limit of the equipment; (b) it is robust in the sense
that it tends to detect no more specular components than
the actual ones. An experimental study illustrates the ability
of the proposed algorithm to accurately infer the dispersive
characteristics (in delay and angle of arrival) of the UWB
SIMO channel. Owing to his high efficiency the proposed
algorithm has promising potential applications in all aspects of
wireless communications that exploit extended channel state
information, such as integrated sensing and communications
(ISAC) and radio-based localization.

APPENDIX A
COVARIANCE OF THE 2-D χ2 RANDOM FIELD 2|x(ψ·)|2

The (i, j)-entry of (45) is given in (53) with Q̃ ac-
cording to (16). The partial derivatives of the signal
S(f ; τ, φ,p(m)) = ej2πfcg(φ,pm)S(f)e−j2πfτ w.r.t. τ and
φ are, respectively, ∂sm(ψ)/∂τ = −ej2πfcg(φ,pm)ṡ(τ) and
∂sm(ψ)/∂φ = dm(φ) exp(j2πfcg(φ,pm))j2πfcs(τ) with
dm(φ) = ∂g(φ,pm))/∂φ and ṡ(τ) = ∂s(τ)/∂τ . Due to the
centro-symmetry of the spatial aperture, see Assumption 1,
for any m ∈ M, there exists an index m′ ∈ M such that
pm′ − p = −(pm − p). As a result∑

m∈M
dm(φ) = 0 . (54)

We now proceed with the computation of the specific entries
of (45).

1) Second-order Partial Derivatives of x(ψ) w.r.t. τ : One
can easily check that because of (54) the second and third
terms of (53) vanish in this case. As a result, we can write

E
[∂x(ψ)∂x(ψ)∗

∂τ2

]
= 2

( ∑
m∈M

ṡ(τ)HQ̃−1ṡ(τ)∑
m∈M

s(τ)HQ̃−1s(τ)
−

ℜ
{ ∑
m∈M

ṡ(τ)HQ̃−1s(τ)
}2

∣∣∣ ∑
m∈M

s(τ)HQ̃−1s(τ)
∣∣∣2

)

= 2

(
ṡ(τ)HQ̃−1ṡ(τ)

)2(
s(τ)HQ̃−1s(τ)

)2
×

(
1−

ℜ
{
ṡ(τ)HQ̃−1s(τ)

}2(
s(τ)HQ̃−1s(τ)

)2(
ṡ(τ)HQ̃−1ṡ(τ)

)2
)
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E
[∂x(ψ)∂x(ψ)∗

∂ψi∂ψj

]
= 2

( ∑
m∈M

(
∂sm(ψ)
∂ψj

)H
Q̃−1 ∂sm(ψ)

∂ψi∑
m∈M

sm(ψ)HQ̃−1sm(ψ)
−

∑
m∈M

(
∂sm(ψ)
∂ψi

)H
Q̃−1sm(ψ)ℜ

{ ∑
m′∈M

(
∂sm′ (ψ)
∂ψj

)H
Q̃−1sm′(ψ)

}
∣∣∣ ∑
m∈M

sm(ψ)HQ̃−1sm(ψ)
∣∣∣2

−

∑
m∈M

sm(ψ)HQ̃−1 ∂sm(ψ)
∂ψj

ℜ
{ ∑
m′∈M

(
∂sm′ (ψ)
∂ψi

)H
Q̃−1sm′(ψ)

}
∣∣∣ ∑
m∈M

sm(ψ)HQ̃−1sm(ψ)
∣∣∣2

+

ℜ
{ ∑
m∈M

(
∂sm(ψ)
∂ψi

)H
Q̃−1sm(ψ)

}
ℜ
{ ∑
m′∈M

(
∂sm′ (ψ)
∂ψi

)H
Q̃−1sm′(ψ)

}
∣∣∣ ∑
m∈M

sm(ψ)HQ̃−1sm(ψ)
∣∣∣2

)
(53)

= 8π2b(τ)e(τ) (55)

where

b(τ) =
[(
ṡ(τ)HQ̃−1ṡ(τ)

)
/
(
4π2s(τ)HQ̃−1s(τ)

)]1/2
(56)

and

e(τ) = 1−
ℜ
{
ṡ(τ)HQ̃−1s(τ)

}2(
s(τ)HQ̃−1s(τ)

)2(
ṡ(τ)HQ̃−1ṡ(τ)

)2 (57)

is a delay-dependent loss factor that depends of the structure
of the noise vector n. Note that if n is white, e(τ) = 1,
otherwise e(τ) < 1, typically.

2) Second-order Partial Derivatives of x(ψ) w.r.t. φ: In
this case, the last three terms in (53) vanish, again because of
(54). We readily obtain,

E
[∂x(ψ)∂x(ψ)∗

∂φ2

]
=

8π2f2c
M

∑
m∈M

d2m(φ) . (58)

3) Second-order Partial Derivatives of x(ψ) w.r.t. τ and φ:
In this case (54) make all terms in (53) vanish. Thus,

E
[∂x(ψ)∂x(ψ)∗

∂τ∂φ

]
= 0 . (59)

APPENDIX B
VALIDATION OF THE SMCS DETECTED BY THE

ALGORITHM

In this appendix, we provide a qualitative study that attempt
to relate the SCs detected by the proposed algorithm to
probable propagation mechanisms in the environment where
the experimental data were collected. The results of this study
supplement those presented in Subsec. VII-B.

A 2-D coordinate system including the layout of the room
where the measurements were taken is shown in Fig. 7. Also
reported are the two selected positions p1 and p2 of (the center
of gravity of) the Rx (virtual) array and the fixed position
pTx of the (single) Tx antenna. We recall that the mirror
source method [70] computes the positions of predicted virtual
sources associated with rays from the Tx antenna to the Rx
array positions that undergo up to 5 reflections on walls or
large objects (windows, boards). For the sake of conciseness
we refer to virtual sources in the sequel as sources. The
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Fig. 7. Floorplan of the investigated environment including the (fixed) Tx
position pTx, the two selected positions p1 (red filled circle) and p2 (blue
filled triangle) of (the center of gravity of) the Rx array, the locations of
estimated (virtual) sources for Rx array position p1 (red crosses) and Rx array
position p2 (blue pluses) and the positions of associated predicted sources
(black circles and triangles, respectively).

position, denoted by p̂l, of the predicted source corresponding
to the lth SC, l = 1, ...L̂ detected by the algorithm is computed
based on the estimated dispersion vector of the SC using
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the relation p̂l = p + cτ̂l[cos(φ̂l) sin(φ̂l)]
T, where p either

equals p1 or p2. These positions are depicted in Fig. 7 as red
crosses and blue pluses for the Rx array positions p1 and p2,
respectively.

The procedure described next attempts to associates detected
sources and predicted sources. Possibly no, one, or more than
one predicted SCs are associated to each detected SC as
follows. A predicted SC is associated to a detected SC if their
respective distances and angles are no more than, respectively,
10 cm (1/3 of the RRL in distance) and 5 ◦ (1/10 of the RRL
in angle) apart. These selected values are within the same order
of magnitude as, respectively, the 5 cm approximate accuracy
of the floorplan (measured with a tape measure) and the
CRLBs of the estimated distances and angles. The positions
of successfully associated predicted sources are depicted in
Fig. 7 as black circles and triangles for Rx positions p1 and
p2, respectively.

The algorithm is able to identify the LOS, most of the
predicted first-order reflections and some predicted higher-
order reflections for both Rx positions. Worth noting are the
rays with reflections up to order five via the white board and
the window highlighted in Fig. 7 and Fig. 5 and the second-
order rays with reflections via the west plaster board and the
east plaster board. The two former items are made of more
reflective materials than the two latter. Furthermore, scattering
from a metallic frame (see Fig. 5) that was not considered in
the mirror source method could explain the detected source
located at approximately [−8 6]m close to the west plaster
board. For Rx position p2 many detected sources are found in
a region around [−15 8]m, that are likely to originate from
scattering from this metallic frame.
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