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Abstract—In this work, we develop a multipath-based simulta-
neous localization and mapping (SLAM) method that can directly
be applied to received radio signals. In existing multipath-based
SLAM approaches, a channel estimator is used as a preprocessing
stage that reduces data flow and computational complexity by
extracting features related to multipath components (MPCs). We
aim to avoid any preprocessing stage that may lead to a loss
of relevant information. The presented method relies on a new
statistical model for the data generation process of the received
radio signal that can be represented by a factor graph. This factor
graph is the starting point for the development of an efficient
belief propagation (BP) method for multipath-based SLAM that
directly uses received radio signals as measurements. Simulation
results in a realistic scenario with a single-input single-output
(SISO) channel demonstrate that the proposed direct method
for radio-based SLAM outperforms state-of-the-art methods that
rely on a channel estimator.

Index Terms—Simultaneous localization and mapping, SLAM,
multipath channel, belief propagation, and factor graph.

I. INTRODUCTION

Situational awareness in the indoor environment is critical

in various applications, including autonomous navigation, pub-

lic safety, and asset tracking. Multipath-based simultaneous

localization and mapping (SLAM) is a promising approach

to estimating the positions of mobile users and features in

the propagation environment. By associating multipath com-

ponents (MPCs) in radio signals with the geometry of the

radio reflectors, multipath propagation is exploited to increase

positioning accuracy and build a partial map of the indoor

environment. Conventional multipath-based SLAM methods

[1]–[6] use a channel estimator [7]–[10] to detect and extract

MPCs by preprocess received radio signals in blocks of

samples or “snapshots”. The parameters of each extracted

MPC include delay, angle of arrival, and angle of departure.

These parameters are used as noisy measurements for a SLAM

method that is based on belief propagation (BP) [1]–[4], Rao-

Blackwellized particle filtering [5], or neural networks [6].

This two-step processing is widely used as it reduces data flow

and, thus, the computational complexity of SLAM. However,

important information may be lost in this preprocessing stage.

In particular, if parameters of multiple MPCs are very similar

the channel estimator may detect them as a single MPC due to

finite resolution capabilities limited by signal bandwidth. This

can lead to a significantly degraded SLAM performance.
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Fig. 1: Flow diagram of the proposed direct multipath-based

SLAM that use the received radio signal as measurements.

A flow diagram of conventional multipath-based SLAM that

uses the estimated MPCs provided by the channel estimator

as measurements is also shown.

In this paper, we propose a multipath-based SLAM method

for single-input single-output (SISO) systems that avoids any

preprocessing stage by directly using received radio signals

as measurements. Our approach addresses direct multipath-

based SLAM as a joint sequential Bayesian inference problem.

Fig. 1 shows the flow diagram of the proposed direct method

compared to existing methods with a channel estimator.

For direct SLAM, we introduce a new statistical model to

describe the data-generating process of received radio signals,

which is a combination of the Swerling 1 model for correlated

measurements in [11] and Bernoulli existence model in [12].

This statistical model can be represented well by a factor graph

[13], [14]. Based on the factor graph, an efficient sequential

BP message-passing method for the estimation of mobile

agent position and features in the propagation environment

is developed. For an accurate approximation of BP messages,

following our previous work in [12], [15], [16], we represent

some of the BP messages by random samples “particles” and

others by a mean and covariance matrix obtained via moment

matching. The main contributions of this work are summarized

as follows.

• We introduce a new statistical model for multipath-based

SLAM using received radio signals.

• We develop an efficient BP method for direct multipath-

based SLAM.

http://arxiv.org/abs/2312.15564v1
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Fig. 2: Scenario with one mobile agent, one physical anchor

(PA), and one virtual anchor (VA).

By comparing the proposed direct approach with a state-

of-the-art reference method for multipath-based SLAM, we

demonstrate that directly using the received radio signal as a

measurement can lead to an improved SLAM performance.

II. SYSTEM MODEL

For multipath-based SLAM, we consider a mobile agent

with an unknown time-varying position pk ∈ R
2 and J

physical anchors (PAs) with known positions p
(j)
1 ∈ R

2, j ∈
{1, . . . , J}, where k is the index of discrete time. The number

of physical anchors, J , is assumed to be known. There

are L
(j)
k − 1 virtual anchors (VAs) with unknown position

p
(j)
l ∈ R2, l = {2, . . . , L

(j)
k } associated to the j-th PA. The

number of VAs, L
(j)
k , is time-varying and unknown. VAs are

the mirror images of the PA at reflecting surfaces. Fig. 2 shows

a scenario with one PA and one VA.

The number of VAs L
(j)
k is time-varying and unknown. To

address this, at each discrete time step k, we introduce poten-

tial features (PF) [17] indexed by (j, n), j ∈ {1, . . . , J}, n ∈

{1, . . . , N
(j)
k }. The existence of each PFs is modeled by

binary random variables r
(j)
k,n ∈ {0, 1}, j ∈ {1, . . . , J}, n ∈

{1, . . . , N
(j)
k }. Here N

(j)
k is the maximum possible number

of features at time step k, i.e., N
(j)
k > L

(j)
k . The state

of a PF is denoted by y
(j)
k,n, which includes their position

p
(j)
k,n, existence r

(j)
k,n, and intensity γ

(j)
k,n. We further introduce

the notation φ
(j)
k,n = [p

(j)T
k,n γ

(j)
k,n]

T. Note that PAs are also

represented by PFs since their intensity is also time-varying,

and line of sight (LOS) paths to PAs may be unavailable.

The state of the mobile agent is denoted as xk. It includes

the agent’s position pk and possibly further motion-related

parameters. For future reference, we establish the notation

y
(j)
k =

[

y
(j)T
k,1 · · ·y

(j)T

k,N
(j)
k

]T
.

A. Measurement Model

We consider a SISO system, where at each time k, the

mobile agent transmits a radio signal, which is received by

the PAs. However, note that the proposed model can be easily

reformulated for the case where the PAs act as transmitters and

the mobile agent act as a receiver. Let H(f) be the frequency-

domain representation of the transmitted radio signal in the

baseband. The total bandwidth of the signal is denoted as B.

The radio signal received by the j-th PA can now be modeled

as [18, Ch. 2]

Z
(j)
k (f) =

L
(j)
k

∑

l=1

ρ
(j)
k,l H(f)e−j2πfτ

(j)
k,l + ǫ

(j)
k (f). (1)

Here, ρ
(j)
k,l ∈ C and τ

(j)
k,l = ‖pk − p

(j)
l ‖/c are the complex

amplitude and the delay related to the l-th propagation path

and c is the speed of light. The complex amplitude ρ
(j)
k,n

is distributed according to a circularly symmetric complex

Gaussian probability density function (PDF). Specifically, the

absolute value of ρ
(j)
k,n is Rayleigh distributed and its phase

is uniformly distributed over [0, 2π). The complex amplitudes

ρ
(j)
k,l and ρ

(j′)
k′,l′ are independent if (k, l, j) 6= (k′, l′, j′). This

amplitude model is also known as Swerling 1 [11], [19].

The first term on the right-hand side of (1) describes the

contribution of the PA from the LOS path and the contribu-

tions of VAs from the non-line of sight (NLOS) paths due

to specular reflections. The complex additive noise ǫ
(j)
k (f)

aggregates measurement noise, diffuse multipath components,

and specular paths that cannot be resolved with the available

bandwidth. The noise is assumed to be a zero-mean, uncor-

related, circularly-symmetric complex Gaussian process [20]–

[22].

Sampling the received signal Z
(j)
k (f) with frequency

spacing ∆ leads to the measurement vector z
(j)
k =

[z
(j)
k,1 · · · z

(j)
k,M ]T =

[

z
(j)
k

(−(M−1)
2 ∆

)

· · · z
(j)
k

( (M−1)
2 ∆

)]T
∈

CM with length M = B/∆+1.We can now express the signal

model in (1) in terms of PF states y
(j)
k,n = [p

(j)T
k,n γ

(j)
k,n r

(j)
k,n]

T,

i.e.,

z
(j)
k =

N
(j)
k

∑

n=1

r
(j)
k,n ρ

(j)
k,nh

(j)
k,n + ǫ

(j)
k (2)

with ǫ
(j)
k =

[

ǫ
(j)
k

(−(M−1)
2 ∆

)

· · · ǫ
(j)
k

( (M−1)
2 ∆

)]T
∈ CM .

Here, the vector h
(j)
k,n ∈ CM represents the sampled transmit

signal, i.e.,

h
(j)
k,n =

[

H
(−(M − 1)

2
∆
)

e
−j2π

(

−(M−1)
2 ∆

)

τ
(j)
k,n

· · ·H
((M − 1)

2
∆
)

e
−j2π

(

(M−1)
2 ∆

)

τ
(j)
k,n

]T

. (3)

Recall that τ
(j)
k,n = ‖pk−p

(j)
k,n‖/c. Based on assumptions made

above, the complex amplitude ρ
(j)
k,n is distributed according to

CN
(

ρ
(j)
k,n; 0, γ

(j)
k,n

)

, and the noise ǫ
(j)
k is distributed according

to CN
(

ǫ
(j)
k ;0,C(j)

ǫ

)

. The noise covariance matrix C(j)
ǫ is as-

sumed unknown and is modeled as a random variable. It can be

easily verified that the conditional PDF f
(

z
(j)
k |xk,y

(j)
k ,C(j)

ǫ

)

is also zero-mean complex Gaussian with covariance matrix

C
(j)
k = C(j)

ǫ +
∑N

(j)
k

n=1 r
(j)
k,nγ

(j)
k,nh

(j)
k,nh

(j)H
k,n .

B. State-Transition Model

The evolution of the agent state xk, PF states y
(j)
k,n and the

noise covariance C
(j)
ǫ,k are assumed to be independent across

k, j, and n and are described by the state transition PDFs

f(xk|xk−1), f(y
(j)
k,n|y

(j)
k,n−1) = f(φ

(j)
k,n, r

(j)
k,n|φ

(j)
k,n−1, r

(j)
k,n−1),

and f(C
(j)
ǫ,k|C

(j)
ǫ,k−1), respectively. Specifically, if legacy



PF n ∈ {1, . . . , N
(j)
k−1} does not exist at k − 1, i.e.,

r
(j)
k,n−1 = 0, then it does not exist at k either. The state-

transition PDF thus reads f(φ
(j)
k,n, 1|φ

(j)
k,n−1, 0) = 0 and

f(φ
(j)
k,n, 0|φ

(j)
k,n−1, 0) = fD(φ

(j)
k,n) with fD(·) being an ar-

bitrary “dummy” PDF. If PF n exists at k − 1, i.e.,

r
(j)
k,n−1 = 1, then the probability that it also exists at k,

is ps, known as the survival probability. The state-transition

PDF reads f(φ
(j)
k,n, 1|φ

(j)
k,n−1, 1) = psf(φ

(j)
k,n|φ

(j)
k,n−1) and

f(φ
(j)
k,n, 0|φ

(j)
k,n−1, 1) = (1− ps)fD(φ

(j)
k,n).

The birth of newly appearing features associated with PA j
at time k, is modeled by a Poisson point process with mean

µ
(j)
B and spatial PDF f

(j)
B (φ|xk). Based on the assumption

that the number of newly appearing features is significantly

smaller than the number of measurements, M , we introduce

M new PFs, one for each measurement z
(j)
k,m [12]. Thus,

N
(j)
k = N

(j)
k−1 +M [12]. Let Pm(xk) be the region occupied

by measurement m ∈ {1, . . . ,M} that is defined as

Pm(xk) = {p | (m− 1)Ts ≤ ‖p− pk‖/c ≤ mTs}

with Ts = 1/∆. The birth PDF of new PF n = N
(j)
k−1 +m,

is f
(j)
B,n(φ

(j)
k,n|xk) ∝ f

(j)
B (φ|xk) if p

(j)
k,n ∈ Pm(xk), and zero

otherwise.

To define the birth probability, we first note that the

number of new features in cell Pm(xk) is also Poisson dis-

tributed with mean µ
(j)
B,n = µ

(j)
B

∫∫

Pm(xk)
f
(j)
B (φ|xk)dp dγ.

By assuming that there is at most one new feature in cell

Pm(xk), we obtain p
(j)
B,n = µ

(j)
B,n/(µ

(j)
B,n + 1). The prior

PDF f(y
(j)
k,n|xk) = f(φ

(j)
k,n, r

(j)
k,n|xk) for individual new

PFs thus reads f(φ
(j)
k,n, 0|xk) = (1 − p

(j)
B,n)fD(φ

(j)
k,n) and

f(φ
(j)
k,n, 1|xk) = p

(j)
B,nf

(j)
B,n(φ

(j)
k,n|xk). As a result of the Pois-

son point process assumption for newly appearing features,

the new PF can be assumed statistically independent.

C. The Factor Graph

Based on the introduced statistical models and fur-

ther common assumptions [17], the joint posterior PDF

f(x0:k,y0:k|z1:k) can then be factorized as

f(x0:k,y0:k,Cǫ,0:k|z1:k)

∝ f(x0)

( J
∏

j=1

f(C
(j)
ǫ,0)

N
(j)
0
∏

n=1

f(y
(j)
0,n)

) k
∏

k′=1

f(xk′ |xk′−1)

×
J
∏

j=1

(

N
(j)

k′
−1

∏

n=1

f(y
(j)
k′,n|y

(j)
k′−1,n)

)(
N

(j)

k′

∏

n=N
(j)

k′
−1

+1

f(y
(j)
k′,n|xk′)

)

× f(C
(j)
ǫ,k′ |C

(j)
ǫ,k′−1)f(z

(j)
k′ |xk′ ,y

(j)
k′ ,C

(j)
ǫ,k′ ) (4)

where we introduced x0:k , [xT
0 · · ·xT

k ]
T, y0:k , [yT

0

· · ·yT
k ]

T, yk , [y
(1)T
k · · ·y

(J)T
k ]T, Cǫ,k , [C

(1)
ǫ,k · · ·C

(J)
ǫ,k ], and

Cǫ,0:k , [Cǫ,0 · · ·Cǫ,k]. Note that measurement vector z1:k
is here assumed observed and thus fixed. Based on the fac-

torization in (4), f(x0:k,y0:k,Cǫ,0:k|z1:k) can be represented

by the factor graph [14] shown in Fig. 3 for a single step
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Fig. 3: Factor graph used for the development of the proposed

direct SLAM method. A single time step k and a single PA j
are shown. The indexes k and j are omitted and the following

shorthand notations are used: N = N
(j)
k−1, N = N

(j)
k , x = xk,

yn = y
(j)
k,n, Cǫ = C

(j)
ǫ,k, fz = f(z

(j)
k |xk,y

(j)
k ,C

(j)
ǫ,k), f =

f(xk|xk−1), fǫ = f(C
(j)
ǫ,k|C

(j)
ǫ,k−1), fn = f(y

(j)
k,n|y

(j)
k−1,n)

for n ∈ {1, . . . , N
(j)
k−1}, and fn = f(y

(j)
k,n|xk) for n ∈

{N
(j)
k−1 +1, . . . , N

(j)
k }. Moreover, β = β(xk), αn = α(y

(j)
k,n),

ξ = ξ(C
(j)
ǫ,k), ι = ι(xk; z

(j)
k ), κn = κ(y

(j)
k,n; z

(j)
k ), and

ν = ν(C
(j)
ǫ,k; z

(j)
k ).

and a single PA. Note that contrary to previous work [12], the

individual measurements z
(j)
k,m, m ∈ {1, . . . ,M} are coherent

and thus not independent conditioned on xk, y
(j)
k , and C

(j)
ǫ,k. In

contrast to [12, Eq. (2)], it is thus not possible to factorize the

joint likelihood function f(z
(j)
k |xk,y

(j)
k ,C

(j)
ǫ,k) into individual

likelihood functions for measurements z
(j)
k,m, m∈ {1, . . . ,M}.

III. THE PROPOSED BELIEF PROPAGATION (BP) METHOD

This section introduces the proposed BP method for direct

SLAM. BP is an efficient technique to compute approximate

marginal posterior PDFs, also known as beliefs, in terms of

the sum-product rule by performing local operations, so-called

“messages”, passed along the edges of a factor graph. Since the

factor graph of the considered direct SLAM problem has loops,

there is no fixed message passing order [13], [14]. We apply

the following message passing schedule: (i) messages are only

passed forward in time, (ii) along the edges connecting an

agent state variable node “xk” and a new PF state variable

node “y
(j)
k,n”, messages are only sent from the former to the

latter [1].

A. BP Message Passing

Following the sum-product message passing rules, we

first compute the prediction messages β(xk), ξ(C
(j)
ǫ,k), and

α(y
(j)
k,n), for n ∈ {1, . . . , N

(j)
k−1}. These messages are obtained

based on beliefs from the previous time step and the state-

transition models introduced in Section II-B, i.e.,



β(xk) =

∫

f(xk|xk−1)f̃(xk−1) dxk−1

ξ(C
(j)
ǫ,k) =

∫

f(C
(j)
ǫ,k|C

(j)
ǫ,k−1)f̃(C

(j)
ǫ,k−1) dC

(j)
ǫ,k−1

α(y
(j)
k,n) =

∑

y
(j)
k−1,n

f(y
(j)
k,n|y

(j)
k−1,n)f̃(y

(j)
k−1,n)

where
∑

y
(j)
k−1,n

denotes “marginalizing out” y
(j)
k−1,n. This

marginalization includes the summation over r
(j)
k−1,n and

the integration over p
(j)
k−1,n and γ

(j)
k−1,n. Here, f̃(xk−1),

f̃(C
(j)
ǫ,k−1), and f̃(y

(j)
k−1,n) are the beliefs computed at the

previous time step. For the new PFs n ∈ {N
(j)
k−1 +

1, . . . , N
(j)
k }, since we only pass from “xk” to “y

(j)
k,n”, the

corresponding “birth messages” are given by α(y
(j)
k,n) =

∫

f(y
(j)
k,n|xk)β(xk) dxk.

Furthermore, based on sum-product message passing rules,

the measurement update messages ι(xk; z
(j)
k ), ν(C

(j)
ǫ,k; z

(j)
k ),

and κ(y
(j)
k,n; z

(j)
k ) that introduce the information of the current

measurement z
(j)
k , can be obtained as

ι(xk; z
(j)
k ) =

∑

y
(j)
k

∫

f(z
(j)
k |xk,y

(j)
k ,C

(j)
ǫ,k)ξ(C

(j)
ǫ,k)

×

N
(j)
k
∏

n=1

α(y
(j)
k,n) dC

(j)
ǫ,k (5)

ν(C
(j)
ǫ,k; z

(j)
k ) =

∑

y
(j)
k

∫

f(z
(j)
k |xk,y

(j)
k ,C

(j)
ǫ,k)β(xk)

×

N
(j)
k
∏

n=1

α(y
(j)
k,n) dxk. (6)

κ(y
(j)
k,n; z

(j)
k ) =

∑

y
(j)
k

\y
(j)
k,n

∫∫

f(z
(j)
k |xk,y

(j)
k ,C

(j)
ǫ,k)ξ(C

(j)
ǫ,k)

× β(xk)

N
(j)
k
∏

n′=1
n′ 6=n

α(y
(j)
k,n′) dC

(j)
ǫ,k dxk (7)

where
∑

y
(j)
k

\y
(j)
k,n

denotes “marginalizing out” all elements

of y
(j)
k except for y

(j)
k,n. Note that the messages in (5)-(7)

all involve “marginalizing out” y
(j)
k , the dimension of which

grows linearly with the number of PFs. The complexity of this

operation scales exponentially with the number of PFs. We ob-

serve that, due to the functional form of f(z
(j)
k |xk,y

(j)
k ,C

(j)
ǫ,k),

these measurement update messages are a mixture of zero-

mean complex Gaussian PDFs of z
(j)
k . To avoid the high

computational complexity, we approximate each of these mes-

sages by a single zero-mean complex Gaussian PDF of z
(j)
k

[12]. In particular, we calculated the following approximate

messages: ι̃(xk; z
(j)
k ) = CN (z

(j)
k ;0,C

(j)
ι,k), ν̃(C

(j)
ǫ,k; z

(j)
k ) =

CN (z
(j)
k ;0,C

(j)
ν,k), and κ̃(y

(j)
k,n; z

(j)
k ) = CN (z

(j)
k ;0,C

(j)
κ,k,n).

The covariance matrices C
(j)
ι,k, C

(j)
ν,k, and C

(j)
κ,k,n are computed

via moment matching, i.e., they are the covariance of the

original BP messages in (5)-(7). The computational complexity

of calculating these covariance matrices scales only linearly

with the number PFs (see [12] for details).

B. Belief Calculation, State Declaration and Estimation

With the BP messages computed as discussed in Sec. III-A,

beliefs can be obtained as

f̃(xk) ∝ β(xk)
J
∏

j=1

ι̃(xk; z
(j)
k )

f̃(y
(j)
k,n) ∝ α(y

(j)
k,n)κ̃(y

(j)
k,n; z

(j)
k )

f̃(C
(j)
ǫ,k) ∝ ξ(C

(j)
ǫ,k)ν̃(C

(j)
ǫ,k; z

(j)
k ). (8)

These beliefs are computed using particles by following the

importance sampling principle, with β(xk), α(y
(j)
k,n), and

ξ(C
(j)
ǫ,k), respectively, used as the proposal PDFs [23]. To

determine the number of PFs at each time step, a PF is

declared to exist if its existence probability f̃(r
(j)
k,n = 1), which

computed from f̃(y
(j)
k,n), is larger than a threshold Tdec.

The agent and existing PF positions are finally estimated

based on minimum mean square error (MMSE) estimation

[24], i.e.,

p̂k =

∫

pkf̃(pk) dxk

p̂
(j)
k,n =

∫

p
(j)
k,nf̃(p

(j)
k,n|r

(j)
k,n = 1) dp

(j)
k,n

where f̃(pk) and f̃(p
(j)
k,n|r

(j)
k,n = 1) can be obtained by

marginalizing from f̃(xk) and f̃(y
(j)
k,n), respectively.

The number of PFs increases with time. To limit computa-

tional complexity, we prune PFs, i.e., remove them from the

state space if their existence probability is smaller than Tpru.

IV. SIMULATION RESULTS

We consider a 2-D indoor localization scenario with J = 2
PAs. The floor plan, positions of PAs, and the agent’s trajectory

with 679 time steps are depicted in Fig. 4. The number

propagation paths and their corresponding VAs are computed

based on ray tracing [25], [26]. At each time step, the

radio signal received by each PA is generated following (2).

Only propagation paths and corresponding VAs that reflect

from a single surface are considered. We set M = 41
and ∆ = 10MHz, which corresponds to 400MHz signal

bandwidth and a maximum range of 30m. In total, 100 simu-

lations are performed. We assume that the measurement noise

ǫ
(j)
k is independent and identically distributed (i.i.d.) across

m ∈ {1, . . . ,M}, leading to C
(j)
ǫ,k = σ

(j)2
ǫ,k IM . The state transi-

tion PDFs f(xk|xk−1), f(φ
(j)
k,n|φ

(j)
k,n−1), and f(σ

(j)2
ǫ,k |σ

(j)2
ǫ,k−1)

follow a constant-velocity model xk = Fxk−1 +Wq
x,k [27,
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Fig. 4: Floor plan used for simulation. Agent and VAs posi-

tions for time step k = 1 are shown.

Ch. 4], random walk model φ
(j)
k = φ

(j)
k−1 + q

(j)
φ,k, and a

Gamma distribution G(σ
(j)2
ǫ,k ;σ

(j)2
ǫ,k−1/cǫ, cǫ), respectively. The

covariance of q
x,k and q

(j)
φ,k are set to Σq,x = 10−4I2 and

Σq,φ = diag(10−8, 10−8, 10−4), and we set cǫ = 10. We set

the declaration threshold to Tdec = 0.5, the pruning threshold

to Tpru = 10−2, the survival probability to ps = 0.999, and

the birth probability to p
(j)
B,n = 10−4.

We compare our proposed “Direct-SLAM” method with

the state-of-the-art “BP-SLAM” method [1]. The reference

method uses the MPC estimates from a snapshot-based para-

metric sparse Bayesian learning channel estimator [7]–[10] as

measurements. The reference method uses the particle-based

nonparametric BP method in [15], [16]. Fig. 5a shows the

root mean square error (RMSE) of the agent position, and

Fig. 5b shows their empirical cumulative distribution functions

(CDFs). It can be seen that Direct-SLAM significantly outper-

forms BP-SLAM. The large RMSE of the agent position, e.g.,

around k ∈ [200, 400], is related to a challenging geometry

where multiple PFs have a similar propagation delay. As a

result of this geometry, the channel estimator needed for BP-

SLAM cannot accurately extract MPCs, i.e., due to finite res-

olution capabilities limited by signal bandwidth, fewer MPCs

than actual signal components are extracted. The performance

of the proposed Direct-SLAM method, which does not rely on

a channel estimator, suffers less severely in this challenging

geometry. Fig. 6 shows the generalized optimal sub-pattern

assignment (GOSPA) error [28] of PFs with cutoff parameter

c = 2, order p = 1, indicating that Direct-SLAM also achieves

superior mapping accuracy compared to BP-SLAM.

V. CONCLUSION

We propose a belief propagation (BP)-based method

for multipath-based simultaneous localization and mapping

(SLAM) that uses received radio signals as measurements.

By avoiding the use of a channel estimator as a preprocess-
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Fig. 5: (a) RMSE of the estimated agent position versus time

step k over 100 simulation runs and (b) empirical CDFs of

the RMSEs.
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Fig. 6: GOSPA error of estimated PFs associated with (a) PA

1 and (b) PA 2 averaged over 100 simulation runs.

ing stage, the proposed approach can better exploit location

information in received radio signals and thus succeed in

geometrically challenging environments. For direct multipath-

based SLAM, we introduced a new statistical model to de-

scribe the data-generating process of received radio signals,

combining the Swerling 1 model for correlated measurements

and a Bernoulli existence model. A factor graph is constructed

based on the new statistical model. This factor graph provides

the blueprint for developing an efficient BP method for direct

multipath-based SLAM. For an accurate approximation, some

of the BP messages are represented by random samples

“particles” and others by a mean and covariance matrix

obtained via moment matching. Performance evaluation is

conducted based on synthetic data in a realistic scenario. It is

demonstrated that the proposed method outperforms a state-of-

the-art conventional method that relies on preprocessing of the

received radio signal using a snapshot-based channel estimator.

Future research avenues include BP-based processing that is

neural enhanced [29] or has an embedded particle flow [30]–

[33] as well as a representation of environmental features that

enables data fusion [34].
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