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ABSTRACT

This study investigates the application of single and two-stage 2D-object detection algorithms like You
Only Look Once (YOLO), Real-Time DEtection TRansformer (RT-DETR) algorithm for automated
object detection to enhance road safety for autonomous driving on Austrian roads. The YOLO
algorithm is a state-of-the-art real-time object detection system known for its efficiency and accuracy.
In the context of driving, its potential to rapidly identify and track objects is crucial for advanced
driver assistance systems (ADAS) and autonomous vehicles. The research focuses on the unique
challenges posed by the road conditions and traffic scenarios in Austria. The country’s diverse
landscape, varying weather conditions, and specific traffic regulations necessitate a tailored approach
for reliable object detection. The study utilizes a selective dataset comprising images and videos
captured on Austrian roads, encompassing urban, rural, and alpine environments.

Keywords Deep Learning · Object detection · YOLO · real-time detection · transformer · ADAS

1 Introduction

In autonomous driving or driving safety systems, a rapid 2D-object detection algorithm is key for various assisting
technologies like the advanced driver assistance systems (ADAS). For this purpose, several fast 2D-object detection
libraries based on pre-trained models are available, like the single object detection algorithms like You Only Look Once
(YOLO) and the more advanced object detection algorithm Real-Time DEtection TRansformer (RT-DETR) and are
selected for the study in hand based on performance on various datasets [15, 13, 20, 27]. The YOLO family algorithms
exists in different variants and sizes. Within this qualitative comparative study the YOLO version 2 (YOLOv2) [19],
version 3 (YOLOv3) [20], version 5 (nano, small, medium, large and very large flavor) (YOLOv5-n/s/m/l/x) [12]
and version 8 (nano, small, medium, large and very large flavor) (YOLOv8-n/s/m/l/x) [13] are compared to each
other and to the transformer based RT-DETR (small and large flavor) (RT-DETR-s/l) algorithm [15] in the context of
road traffic. In a first evaluation, the performance (of the pre-trained models) on well-known datasets and computer
architectures is reported as literature review for the selected models. The aim of the literature study is to detect
potential weak points concerning driving systems, improvements of the models historically to overcome detected
weaknesses. As a result, a potential list of challenges is identified and used for further evaluation on the traffic datasets
obtained. In a first qualitative study, characteristics of the investigated models (YOLOv2, YOLOv3, YOLOv5-n/s/m/l/x,
YOLOv8-n/s/m/l/x, RT-DETR-s/l) are discussed on a freely available road traffic dataset from drive.ai1 recorded (100
frames) in the United States. In these scenes, the characteristics of the individual frames are compared and reported
defined on detected obstacles, (below threshold risky) non-detected obstacles, (risky artifacts) wrong-detected obstacles,

1Drive.ai Sample Dataset, 100 frames from drive.ai, Creative Commons Attribution 4.0 International License, accessed on
29/11/2023 and redistributed by the GitHub repository
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(risky) wrong-classified obstacles. With this first evaluation and from a cautious driver perspective, risky is defined as an
object being near the car and may cause a legal hazard (car crash, harming other people, car damage, ...) if the car drove
on in the scene. For instance, a risky artifact would be wrongly detected fire hydrant (indicating no road) in the middle
of the road by falsely classifying a traffic cone. As a second step, urban, rural, alpine road and alpine tunnel entry with
construction of Austrian traffic scenes (a snapshot and video for each scene) are evaluated. Specific characteristics of
the road features are investigated and qualitatively compared to the US dataset. The qualitative Austrian road dataset
consists of specific characteristics and known algorithm breakdowns are tried to build into the videos (like rotation of
the video).

The outcomes of this study aim to provide first valuable insights into the effectiveness of real-time deep learning vision
algorithm for automated 2D-object detection on Austrian roads. The findings are a starting point for contributing to the
development of more robust and region-specific ADAS and autonomous driving systems, ultimately promoting road
safety in Austria and serving as a foundation for similar studies in a diverse geographical context.

2 Theory on object detection

For autonomous driving control and safety, various sensor data is used to determine a possible action space for future
movements. Within this first study, the focus is lying on 2D image processing from simple cameras. During the survey
of possible algorithm tasks, image classification, 2D object detection and image segmentation (e.g. segmenting anything
[27]) are important tasks to be considered. Where object classification is usually one part of the task of object detection
or post-processing the detected object into a class. The state of the art of image classification is now shifting from
convolutional neural network (CNN) architecture to transformer [7, 15] also suitable for multimodal tasks [22]. CNN
processes pixel data and is a basic building block for the computer vision task of fast object detection algorithms and
image segmentation [13]. The CNN architecture has typically three main layers, a convolutional layer (filters the input
image as a feature map using kernels), a pooling layer (downsamples feature maps by summarizing the features in
patches) and a fully connected layer. A simple CNN structure can perform image classification (a single object in a
single image) into proposed classes (supervised training based on labeled image data for all classes). From this early
classification task, object detection was the next step by a process named region-based CNN (R-CNN) [9]. A R-CNN
uses an input image and then distributes possible bounding boxes across the image (object regions, typically named
Regions of Interest (ROI)). Each ROI mapped to a standard size and is further classified by a CNN architecture into a
proposed class. So objects in a picture can be detected. Building upon the R-CNN idea, two-stage object detection
algorithm like faster R-CNN emerged (with a nice explaination found here2). Illustratively, the two stages are explained
here and to enhance the understanding of the YOLO algorithm evolution later in this manuscript. The first stage consists
of a region proposal network (RPN) (limiting the number of possible bounding boxes in the image) and a second
stage classifying the ROI based on the RPN. During the training (e.g. ground truth labeled with CVAT [4]), the RPN
learns what are important bounding box proposals to look at in an image and the second step aims to classify and
predict the offsets of the bounding boxes. Stage 1, the image is processed through the RPN backbone (a CNN e.g.
ResNet, VGG16, ...) learning the features in the image being located at a feature point (anchor). At each anchor (1x1
convolutional network), multiple (different sized) bounding boxes are seeded. From the ground truth, anchor boxes,
mostly overlapping with projected ground truth boxes, are assigned the category object. Other boxes are assigned to
background. Binary cross-entropy loss tailors the network learns to classify the seeded anchor boxes. Predicted (object)
anchor boxes may not exactly align with the projected ground truth boxes (true object). Similarly, a 1x1 convolutional
network learns the predicted offsets from ground truth boxes (true object). Finally, at stage one, the predicted (object)
anchor boxes are corrected by the predicted offset and are the input region proposals (RP) for the second stage of the
faster R-CNN algorithm. In stage 2, the object is classified in the resized RP by a CNN architecture into a proposed
class. A second regression network aims to determine the RP offsets from ground truth boxes. The total loss is a
linear combination of the individual task losses. During inference, a crucial step is that only the anchor boxes with the
best qualification score are processed further to stage 2 for the classification into proposed classes. After stage 2, in a
post-processing step - duplicates are removed by a method called non-max suppression (removing bounding boxes with
large overlapping regions). Built upon faster R-CNN, the mask R-CNN [11] method performs can perform both an
instance segmentation (a single object from a class from the background) and a semantic segmentation (classes from
the background). The mask R-CNN is the pixel-to-pixel alignment to generate at the second stage a binary mask for
each RP (segmenting the object from the background). For instance, this is valuable for detecting roads and admissible
movements in autonomous driving.

2https://towardsdatascience.com/understanding-and-implementing-faster-r-cnn-a-step-by-step-guide-11acfff216b0
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2.1 YOLO

In this section, the basics of You Only Look Once (YOLO) model are described being a single level object detection
algorithm with the aim of real-time processing of images and video streams. The speed of Yolo makes it an interesting
candidate for algorithms to look at, the Yolo base network runs at 45 frames per second with no batch processing on a
Titan X GPU and a fast version runs at more than 150 fps [18].

YOLO divides the image into a grid S × S and predicts bounding boxes and class probabilities directly, allowing
simultaneous detection across the entire image (see original publication [18]). First, the image is divided into a grid,
consisting of grid cells. Whenever a center of an object is located in a grid cell this grid cell is responsible for detecting
this object. For each grid cell, a number of B bounding boxes (with box location (x, y), height h and width w) and
P (Obj | B)IuOtruth

pred confidence scores are predicted (prediction tuple of 5 entries {x, y, h, w, P (Obj | B)IuOtruth
pred }.

The confidence score describes the confidence (probability) P (Obj | B) of a bounding box B containing an object Obj
and reflects how accurate the bounding box is predicted by intersection over union IuOtruth

pred between the predicted box
and the ground truth. For each grid cell, the proposed classes Ci with i = 1, . . . , C are predicted based on conditional
class probabilities P (Ci | Obj). P (Ci | Obj)P (Obj | B)IuOtruth

pred encode both the probability of that class appearing
in the box and how well the predicted box fits the object [18]. In total, for each image predictions are encoded as an
S × S × (5B + C) tensor. E.g. with S = 7, B = 2 and C = 20 the following network architecture was used (see
Fig. 1). Further details on the architecture can be found in [18]. The following loss function L is used during training

L = λcoord

S×S∑
i=0

B∑
j=0

1obj
ij

[
(xi − x̂i)

2
+ (yi − ŷi)

2
]

+λcoord

S×S∑
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B∑
j=0

1obj
ij

[(√
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√
ŵi

)2

+

(√
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√
ĥi

)2
]

+

S×S∑
i=0

B∑
j=0

1obj
ij

(
Ci − Ĉi

)2

+λnoobj

S×S∑
i=0

B∑
j=0

1noobj
ij

(
Ci − Ĉi

)2

+

S×S∑
i=0

1obj
i

∑
c∈ classes

(pi(c)− p̂i(c))
2

(1)

where 1obj
i denotes if an object appears in a cell i and 1obj

ij denotes that the j-th bounding box predictor in the cell i
takes responsibility for that prediction [18]. The first two terms are localization loss of the predicted (hat) bounding
boxes compared to the true ones. The second two terms are the confidence losses that there is or there is not an object
in the cell. The last term is the bounding box object classification loss for the class prediction. During inference, the
network is evaluated once predicting bounding boxes, for the objects and object classes. In cases of large objects or
near objects multiple cells may predict the object and bounding boxes, non-maximal suppression is used to fix multiple
detections. The limitation of the YOLO base model can be summarized by the following statements [18]:

• For each grid cell, two bounding box are predicted that can only have one class. This limits the near object
recognition abilities.

• It struggles with small objects and small objects that appear in groups, like a swarm of birds.
• Generalization of objects in unusual aspect ratios or configurations is weak.
• The model relies on coarse features to predicting bounding boxes (multiple downsampling layers from the

input image, see Fig. 1).
• During training, the loss function of small bounding boxes versus large bounding boxes are treated by an

absolute measure of distance. Leading to relatively large possible errors for small bounding boxes and incorrect
localizations.

Comparisons on the performance on various datasets and against other architectures can be found in [18]. The
YOLO architecture was improved in the last few years, with version 2 (YOLOv2 [19]) batch normalization was
added to the convolutional layers and dropout was removed (adding an improvement of about mAP of about 2%),
multi-resolution classification was fine-tuned on 448x448 image resolutions ImageNet before tuning it to detection
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Figure 1: The first generation YOLO architecture [18].

(adding an improvement of about mAP of about 4%). YOLO was using arbitrary boundary boxes, with v2 bounding
boxes based on anchor box types were proposed with defined offsets to these anchor boxes to maintain the generic
capabilities (improvement of the recall). Typically, objects like a standing person or a car have a defined box ratio. In
contrast to YOLO, YOLOv2 now predicts for each bounding box the classes and not for each cell3. By k-means anchor
box dimension clusters, the data-driven selection (compared to hand selection) of anchor boxes was achieved based on
IoU . Furthermore, the offsets of the anchor boxes were constrained with distant from the cell centroid. Furthermore,
capabilities for fine-grained features and multi-scale training added to YOLOv2 performance. A detailed discussion can
be found in [19]. In YOLOv3 [20], multi-label classification was used, since some classes are not mutual exclusive
(person, pedestrian, child, ...). In doing so, the soft max operation is avoided and the classification loss is now based on
binary cross-entropy. It makes 3 predictions per location at different resolution levels. One prediction is carried out
at the last feature map layer, one that upsamples features from two layers back by two. And a third, by going back
another two and upsample it again by two. YOLOv3 gained significant capabilities of detecting small objects [20].
Additional improvments on the usability and functionality were added with version 5 [12] (integrates the anchor-free
and objectness-free split head) and version 8 [13]. Version 8 can also be used for instance segmentation, skeleton
prediction of a human pose and classification. To conclude, YOLO’s real-time capabilities and easy to handle model
architecture are crucial for rapid object detection in autonomous driving scenarios.

2.2 RT-DETR

DETRs have achieved remarkable performance in object detection tasks. Initially, the high computational cost limits their
practical usage. Especially, the post-processing with non-maximum suppression is beneficial with the computational
cost, preventing original DETRs from being a new state-of-the-art (SOTA) for real-time object detection. The RT-DETR
was developed to solve the problem of high computational cost, above-mentioned [15]. In [15], it was shown how the
IoU -threshold for admissible bounding boxes varies remaining prediction bounding boxes for YOLOv5 and YOLOv8.
Based on the number of remaining prediction bounding boxes, the non-maximum suppression takes a significant
execution time (depending on the IoU -threshold hyperparameters) and motivates the use of DETRs, with an overview
of the architecture in Fig. 2. Firstly, the big picture of RT-DETR4 is discussed. As described in [15], RT-DETR consists
of a backbone, a hybrid encoder and a transformer decoder with auxiliary prediction heads. The last three stages of the
backbone {S3, S4, S5} are fed as input into the encoder. The efficient hybrid encoder processes multiscale features by
a process decoupling intra-scale feature interaction (AIFI) and cross-scale feature-fusion module (CCFM). The details
of the hybrid encoder (removing redundant operations of existing encoders) can be found in [15]. After the encoder, the
results are processed IoU -aware query selection. This is important to have the focus on the most relevant objects in the
scene by avoiding non-relevant parts and therefore enhancing the detection accuracy. The IoU-aware query selection
constraints the model to produce high classification scores for features with high IoU scores and low classification
scores for features with low IoU scores during training [15]. Finally, the decoder predicts outputs to generate boxes
and confidence scores. This design reduces computational costs and allows for real-time object detection on accelerated
backends, outperforming other real-time object detectors (see Fig. 3.

3Some grafical explaination can be found here.
4Implementation of RT-DETR is found on github.com/lyuwenyu/RT-DETR

4

https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://github.com/lyuwenyu/RT-DETR


First qualitative observations on deep learning vision model YOLO and DETR for automated driving in AustriaA PREPRINT

Figure 2: "Overview of RT-DETR. We first leverage features of the last three stages of the backbone {S3, S4, S5} as
the input to the encoder. The efficient hybrid encoder transforms multi-scale features into a sequence of image features
through intra-scale feature interaction (AIFI) and cross-scale feature-fusion module (CCFM). The IoU -aware query
selection is employed to select a fixed number of image features to serve as initial object queries for the decoder. Finally,
the decoder with auxiliary prediction heads iteratively optimizes object queries to generate boxes and confidence
scores." [15].

Figure 3: Compared to other real-time object detectors, RT-DETR achieves state-of-the-art performance in both speed
and accuracy [15].

3 Testing - USA-CA

A first qualitative comparison for all models (YOLOv2, YOLOv3, YOLOv5, YOLOv8, RT-DETR) will be performed
with the pre-trained models and applied to a dataset provided during the Coursera specialization "Deep Learning" by
DeepLearning.ai and hosted by drive.ai. During this study, a visual interpretation of the real-time object detection
algorithms is executed for different scenes and common characteristics are described. This will be a starting point for
detecting common characteristics of the model and possible pitfalls when applying it to road traffic scenes. Special
attention will be put on close-up objects and traffic signs that are not detected by the algorithm but are of potential
interest for road safety.

3.1 Dataset

In the dataset, 120 images collected by a camera mounted to the hood, simply speaking in front, of a car. While driving,
it takes pictures of the road ahead every few seconds. The scenes analyzed exemplarily below shows images taken from
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a car-mounted camera while driving around Silicon Valley. Only the most significant representations of the dataset
provided by drive.ai are reported visually.

3.2 Results

The general impression recognition ability varies strongly across the model, making it very hard for some models to
detect small (or far away) objects. The recognition of these objects is not a direct safety issue, but can enhance the track
planning by considering potential obstacles with long enough latency (especially at high driving speeds). In the selected
example for illustration, the pre-trained YOLOv2 was unable to detect the distant cars and traffic lights (see Fig. 4.
YOLOv3 discovered the driving, one parking car and three out of four traffic lights. YOLOv5 (large) discovered the
driving, one parking car and the four traffic lights. In this scene, YOLOv8 (large) detected the two cars also found by
the pre-trained YOLOv3 and YOLOv5; the traffic lights remained undetected. RT-DETR (large) found 6 cars, the traffic
lights and the road signs, performing at best for this frame. The driving one was classified as truck, having qualitatively
little impact on the safety and planning strategy along the journey (with high potential being classified as car as it is
approaching). This first qualitative evaluation shows that for pre-trained (and not fine-tuned) YOLOv3/5/8 models cars
are likely detected objects, where additional attention must be put on traffic signs detection to be able to comply with
traffic rules.

Frame 60, YOLOv2 Frame 60, YOLOv3

Frame 60, YOLOv5 (l) Frame 60, YOLOv8 (l)

Frame 60, RT-DETR (l)

Figure 4: Deep learning vision object detection models applied to one example scene in CA.

As a next step, the flavors of the YOLOv5 and YOLOv8 model are discussed. For both YOLO versions, the (n) flavor
was unable to detect the objects. The YOLOv8 (s) detected only one traffic sign, and the YOLOv8 (m/l/x) detected the
driving car and some parking cars (see appendix). Overall, the performance of the pre-trained YOLOv8 is unsatisfactory
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for this scene. YOLOv5 (s) located three of four traffic lights and the driving car. YOLOv5 (m/l/x) found the main
characteristics. With one wrongly detected person near the road in YOLOv5 (x), posing a risk for a potential car
trajectory and significantly alters the future trajectory (potentially slowing down the car). Both RT-DETR flavors
performed well. RT-DETR (x) detected one bicycle near the road wrong. As the objects are approaching the car, the
models (YOLOv3, YOLOv5, YOLOv8, RT-DETR) detected the most important objects (car, traffic light, pedestrians,
...). YOLOv2 gradually performed worse compared to the other models. These very general statements will be verified
in a detailed follow-up study and should not be taken granted. As illustrated in the appendix (see examples in the
appendix A, B, C), during the passage of car-objects and traffic light objects YOLOv5, YOLOv8, and RT-DETR
performed reasonable on the example scenes. Some object classes being close to each other (in terms of classification),
like a car, a bus or a truck, are frequently mixed up by the model depending on the perspective. This issue might be
corrected by object tracking or multi-modality easily. The general qualitative impression was that cars and trucks are
well detected (also by the early YOLOv2 and the nano and small flavors of YOLOv5 and YOLOv8) if they occur in the
typical size (not too small) regarding the background. More difficult (compared to cars) was the correct detection of the
traffic signs especially for YOLOv2 and the nano and small flavors of YOLOv5 and YOLOv8, which is an important
issue to be considered when fine-tuning such models. Another important aspect is the indication of pedestrians on the
road and walking paths. In general, there were only two pedestrians in the data leading to a detection rate of one for all
YOLO and RT-DETR architectures (since one pedestrian is a tiny feature relatively far away at the next crossing).

4 Testing - AUT

Similar as for the USA-CA dataset, a first qualitative comparison for all models (YOLOv2, YOLOv3, YOLOv5,
YOLOv8, RT-DETR) will be performed with the pre-trained models.

4.1 Dataset

In the dataset, several images are collected by a smartphone camera from a car. The images are taken every few seconds.
The scenes (with snowy background) analyzed exemplarily below shows images taken while driving around in winter
Austria. The most illustrative representations of the dataset are reported visually.

4.2 Results

Figure 5 shows a typical scene encountered in Austria (AUT) during winter time. The main characterisitcs and difference
to typical landscape is the dominant white background and the shielding of important characteristics of objects by snow
and ice, leading to confused recognition of objects. During the object detection, a wide range of objects were seeded
into the images with no relation about to reality. Among them were trains, cars, traffic signs, traffic lights, pedestrians,
bicycles, a ship, benches, chairs, umbrellas, a kite, trucks actually being a house with snow and so on. Interestingly, the
ice in front of the camera was sometimes identified as a bird or person. The only person in the scene was recognized by
every algorithm. A general tendency was observed that pre-trained model with more parameters tend to seed more
artifacts into the images. Some of the examples can be seen in the appendix D, E, F, and G.

Despite the strong model confusion, the impression based on the road scenes from the California also applies to Austria.
The tendency that a model with more parameters is capable of detecting more relevant objects, but additionally it is
also prone to finding many false positives were recognized. On the one hand, recognizing more objects can lead to
better safety and a better planning of the route. On the other hand, the high number of false positives will significantly
influence the route planning of an algorithm and can even cause unfavorable maneuvers. Overall, the car detection
capability was good, whenever the camera was in the upright position. Whenever it tilted, the detection rate was weaker.
The detection rate was also weaker for very close objects (nearly passed car). Moreover, the only pedestrian in the
dataset was recognized by all algorithms. During the whole dataset, it was impossible for the algorithm to detect traffic
signs and road signs. In the vast majority, this was attributed to the different layout of the signs and it seemed that the
snow and ice coverage of signs significantly worsened the performance. To conclude, pre-trained deep learning vision
models have to be fine-tuned with specific data for Austria and especially under alpine circumstances.

5 Conclusion

This first qualitative study showed the capabilities of fast deep learning vision models applied to various road traffic
scenes in the US and Austria. Generally, the algorithms are relatively well in detecting cars, also in winter scenes.
Early YOLO models and YOLO models with relatively few parameters were found to perform poor if the pre-trained
weights are used. Especially in the Austrian road traffic scenes with winter landscape and snow, many erroneous
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Frame 11, YOLOv2 Frame 11, YOLOv3

Frame 11, YOLOv5 (l) Frame 11, YOLOv8 (l)

Frame 11, RT-DETR (l) Frame 50, YOLOv2

Frame 50, YOLOv3 Frame 50, YOLOv5 (l)

Frame 50, YOLOv8 (l) Frame 50, RT-DETR (l)

Figure 5: Deep learning vision object detection models applied to two example scene in AUT.

detections occurred during the qualitative test. All models were detecting objects at location where they are not present

8
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(trains, people, ships, ...). Most likely, these faulty detections were based on the unusual background of white snow for
most objects. This can lead to big troubles in automated driving and fusing this information into the model. This first
qualitative study shows that especially the alpine landscape is a potential issue for fast object detection algorithms (even
for the state-of-art RT-DETR).

6 Outlook

Possible improvement to this first qualitative comparison of pretrained models are manifold, and include the algorithm
selection (like comparison to a accurate Single Shot Detector SSD512 and a fast Single Shot Detector SSD300) and
optimization. Fine-tuning the algorithms to adapt to Austrian road characteristics and seasonality. Analyzing the
algorithm’s capability to recognize and interpret Austrian traffic signs and adhere to local traffic regulations, contributing
to safe and compliant driving behavior. Followed by rigorous testing and evaluation of the object detection system under
different scenarios encountered on Austrian roads. Metrics such precision, recall, and F1 score will be used to assess
the algorithm’s accuracy based on labeled data (e.g. labeled with CVAT [4]). Furthermore, assessing the feasibility
of real-time implementation of the object detection system into the vehicular environment (addressing computational
constraints and latency issues).

6.1 Deep learning models and multi-modality

A big step, towards a robust system is to include the multi-modal behavior of the sensor streams by sensor fusion using
multi-modal models [17]. There, images, video streams, audio, LiDAR, RADAR and re-projecting the bird’s-eye view
(BEV) of a camera into real-physical coordinates are combined to classification of hazards, road segmentation (e.g.
with improved [23, 27]), 2D-object detection, 3D-object detection , distance estimation, positioning and parking slot
recognition. Images, video streams, audio were fused to do multi-modal dept recognition from the KITTY dataset in
[22] with a transformer. Additionally, combining image, depth information, 3D point clouds, videos, audio [10], text
description [5] (of planned route as text input), and GPS data would enhance the safety (e.g. openpilot project5) and the
comfort of passengers.

6.2 Datasets

A short review of available datasets for future quantitative comparison and sensor fusion is provided here. The KITTI
vision benchmark suite dataset [8] and KITTI-360 [14] were introduced with the explicit purpose of propelling research
in autonomous driving through a pioneering collection of real-world computer vision benchmarks. As one of the earliest
datasets in the field of autonomous driving, KITTI has garnered over 8200 academic citations and continues to be
widely utilized. Noteworthy in this context are a number of other datasets, like the Audi Autonomous Driving Dataset
(A2D2) features over 41,000 frames labeled with 38 features and additional 390,000 frames unlabeled. More than 2.3
TB in total, containing 2D semantic segmentation, 3D point clouds, 3D bounding boxes, and vehicle bus data. The type
of landscape is comparable to the urban and rural one in Austria and Germany. CityScapes stands out as a substantial
dataset with a primary focus on semantic comprehension of urban street scenes in 50 German and Swiss cities [3]. This
comprehensive resource includes semantic, instance-wise, and dense pixel annotations for 30 classes categorized into
8 groups. The dataset comprises a total of 5,000 annotated images with meticulous fine annotations, supplemented
by an additional 20,000 annotated images featuring broader, coarse annotations. ApolloScape is a dynamic research
endeavor focused on propelling innovation throughout the spectrum of autonomous driving, spanning from perception
to navigation and control. Through their website, users have the opportunity to delve into an array of simulation tools,
along with access to an extensive collection of resources, including over 100,000 street view frames, an 80,000-point
lidar cloud, and 1000 kilometers of trajectories tailored for urban traffic scenarios [24]. The Agroverse project consists
of two datasets. In the Argoverse 1 dataset 3D tracking annotations for 113 scenes and over 324,000 unique vehicle
trajectories for motion forecasting are included [2]. The Agroverse 2 dataset significantly extended the scope of the
data [25]. Berkeley DeepDrive Dataset (BDD 100K), provides users with access to a vast resource comprising 100,000
annotated videos and 10 tasks specifically designed for evaluating image recognition algorithms in the context of
autonomous driving [26]. This dataset encapsulates over 1000 hours of driving experience, encompassing a staggering
100 million frames. Additionally, it incorporates valuable information pertaining to geographic locations, environmental
conditions, and weather diversity. The Comma2k19 Dataset encompasses 33 hours of commuting footage recorded
on Highway 280 in California [21]. Each 1-minute scene within this dataset was captured along a 20km stretch of
highway between San Jose and San Francisco. The data collection utilized comma EONs, equipped with a road-facing
camera, phone GPS, thermometers, and a 9-axis IMU. The Leddar PixSet was released in 2021 and publicly available
dataset tailored for autonomous driving research and development [6]. This dataset encompasses a comprehensive set

5https://github.com/commaai/openpilot
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of data from a full autonomous vehicle (AV) sensor suite, incorporating cameras, LiDARs, radar, and IMU. Notably, it
includes full-waveform data from the Leddar Pixell, a cutting-edge 3D solid-state flash LiDAR sensor. The Leddar
PixSet comprises 29,000 frames organized into 97 sequences, with the added benefit of more than 1.3 million annotated
3D boxes. The nuScenes dataset stands as one of the most extensive open-source datasets designed for advancing
autonomous driving research [1]. Captured in both Boston and Singapore, the dataset utilizes a comprehensive sensor
suite, including a 32-beam LiDAR, 6 360° cameras, and radars. With over 1.44 million camera images, the nuScenes
dataset captures a diverse array of traffic scenarios, driving maneuvers, and unexpected behaviors. Notably, the dataset
includes examples of images taken under various conditions such as clear weather, nighttime, rain, and construction
zones. The Oxford RobotCar Dataset comprises over 100 recordings capturing a consistent route through Oxford, UK,
recorded over a period spanning more than a year [16]. This dataset offers a comprehensive representation of various
environmental conditions, including diverse weather patterns, traffic scenarios, and pedestrian activities. Notably, the
dataset encompasses longer-term changes such as construction activities and roadworks. Udacity Self Driving Car
Dataset has generously open-sourced a diverse array of projects geared towards autonomous driving. These resources
include neural networks specifically trained for predicting steering angles of the car, camera mounts, and extensive
datasets consisting of dozens of hours of real driving data. The Waymo Open dataset is a freely accessible multimodal
sensor dataset tailored for autonomous driving. Derived from Waymo’s self-driving vehicles, the dataset encompasses a
diverse range of driving scenarios and environmental conditions. It comprises 1000 types of distinct segments, each
capturing 20 seconds of continuous driving. This translates to a total of 200,000 frames, captured at a rate of 10 Hz per
sensor. Based on this variety of open datasets, challenges and benchmarks, detailed studies will be performed in the
future.

Data availability

The datasets used for this qualitative study are in the current status available under request to the author.

Source code availability

The source code used for this qualitative study are in the current status available under request to the author.
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A CA - YOLOv5 flavors

Frame 60, (n) Frame 60, (s)

Frame 60, (m) Frame 60, (l)

Frame 60, (x) Frame 72, (n)

Frame 72, (s) Frame 72, (m)

Frame 72, (l) Frame 72, (x)

Figure 6: YOLOv5 flavors applied to two example scenes in CA.
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B CA - YOLOv8 flavors

Frame 60, (n) Frame 60, (s)

Frame 60, (m) Frame 60, (l)

Frame 60, (x) Frame 72, (n)

Frame 72, (s) Frame 72, (m)

Frame 72, (l) Frame 72, (m)

Figure 7: YOLOv8 flavors applied to two example scenes in CA.
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C CA - RT-DETR flavors

Frame 60, (l) Frame 60, (x)

Frame 72, (l) Frame 72, (x)

Figure 8: RT-DETR flavors applied to two example scenes in CA.
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D AUT - YOLOv5 flavors

Frame 11, (n) Frame 11, (s)

Frame 11, (m) Frame 11, (l)

Frame 11, (x) Frame 50, (n)

Frame 50, (s) Frame 50, (m)

Frame 50, (l) Frame 50, (x)

Figure 9: YOLOv5 flavors applied to two example scenes in AUT.
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E AUT - YOLOv8 flavors

Frame 11, (n) Frame 11, (s)

Frame 11, (m) Frame 11, (l)

Frame 11, (x) Frame 50, (n)

Frame 50, (s) Frame 50, (m)

Frame 50, (l) Frame 50, (x)

Figure 10: YOLOv8 flavors applied to two example scenes in AUT.
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F AUT - RT-DETR flavors

Frame 11, (l) Frame 11, (x)

Frame 50, (l) Frame 50, (x)

Frame 77, (l) Frame 77, (x)

Figure 11: RT-DETR flavors applied to three example scenes in AUT.
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G AUT - Comparison YOLOv5, YOLOv8 and RT-DETR flavors

Frame 77, YOLOv5 (s) Frame 77, YOLOv8 (s)

Frame 77, YOLOv5 (m) Frame 77, YOLOv8 (m)

Frame 77, YOLOv5 (l) Frame 77, YOLOv8 (l)

Frame 77, YOLOv5 (x) Frame 77, YOLOv8 (x)

Frame 77, RT-DETR (l) Frame 77, RT-DETR (x)

Figure 12: YOLOv5 (left), YOLOv8 (right), RT-DETR (last row) flavors applied to one example scenes in AUT.
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