
Programmable System Call Security with eBPF
Jinghao Jia1, YiFei Zhu2, Dan Williams3, Andrea Arcangeli4, Claudio Canella5, Hubertus Franke6,

Tobin Feldman-Fitzthum6, Dimitrios Skarlatos7, Daniel Gruss8, Tianyin Xu1
1University of Illinois at Urbana-Champaign, Urbana, IL, USA

2Google, Inc., Sunnyvale, CA, USA
3Virginia Tech, Blacksburg, VA, USA
4Red Hat, Inc., New York, NY, USA

5Amazon Web Services, Graz, Austria
6IBM Research, Yorktown Heights, NY, USA

7Carnegie Mellon University, Pittsburgh, PA, USA
8Graz University of Technology, Graz, Austria

Abstract
System call filtering is a widely used security mechanism for
protecting a shared OS kernel against untrusted user appli-
cations. However, existing system call filtering techniques
either are too expensive due to the context switch overhead
imposed by userspace agents, or lack sufficient programma-
bility to express advanced policies. Seccomp, Linux’s system
call filtering module, is widely used by modern container
technologies, mobile apps, and system management services.
Despite the adoption of the classic BPF language (cBPF), se-
curity policies in Seccomp are mostly limited to static allow
lists, primarily because cBPF does not support stateful poli-
cies. Consequently, many essential security features cannot
be expressed precisely and/or require kernel modifications.
In this paper, we present a programmable system call fil-

tering mechanism, which enables more advanced security
policies to be expressed by leveraging the extended BPF lan-
guage (eBPF). More specifically, we create a new Seccomp
eBPF program type, exposing, modifying or creating new
eBPF helper functions to safely manage filter state, access
kernel and user state, and utilize synchronization primitives.
Importantly, our system integrates with existing kernel privi-
lege and capability mechanisms, enabling unprivileged users
to install advanced filters safely. Our evaluation shows that
our eBPF-based filtering can enhance existing policies (e.g.,
reducing the attack surface of early execution phase by up
to 55.4% for temporal specialization), mitigate real-world
vulnerabilities, and accelerate filters.

1 Introduction
Modern computer systems run a large variety of untrusted
applications on a trusted operating system (OS) kernel. These
applications interact with the OS kernel through the system
call interface. Hence, system call security is a cornerstone for
protecting a shared kernel against untrusted user processes.
System call filtering is a widely used system call security
mechanism. The basic idea is to restrict the system calls
a given process can invoke based on predefined security
policies, thereby reducing the attack surface. The filtering

is done at the entry point of every system call to decide
whether to allow or deny each system call.

Early system call filtering techniques such as Janus [94]
and Ostia [50] employ trusted userspace agents to implement
system call security policies. However, userspace agents in-
cur significant context switch overheads to system call fil-
tering, because every system call needs to switch to user
space for policy checking and then switch back. Furthermore,
the implementations are prone to many common traps and
pitfalls, such as time-of-check-to-time-of-use (TOCTTOU)
based race conditions of argument values [22, 49, 84].

Modern system call filter techniques such as Linux’s Sec-
comp (SECure COMPuting) run entirely inside the OS kernel,
without the overhead of additional context switches. This
brings significant performance advantages over userspace
agents and some resistance to TOCTTOU-based argument
races. Today, Seccomp is widely used to provide “the most im-
portant security isolation boundary [18].” For example, every
Android app is isolated using Seccomp [83]; systemd uses
Seccomp for user process sandboxing [29]; Google’s Sand-
boxed API project [14] uses Seccomp for sandboxing C/C++
libraries; Lightweight virtualization technologies such as
Docker [15], Google gVisor [7], Amazon Firecraker [6, 18],
LXC/LXD [9], Rkt [88], and Kubernetes [73] all use Seccomp.

However, a major limitation of Seccomp is the lack of suffi-
cient programmability to express advanced security policies.
From an initial mode (known as strict mode) that blocked all
system calls except read(), write(), _exit(), and sigreturn(),
Seccomp now (since Linux v3.5) allows custom security poli-
cies to be written in the classic BPF language (cBPF) [30] in
the filter mode. Filter mode enables application-specific se-
curity policies and results in the wide adoptions of Seccomp
by different applications.

Unfortunately, the programmability of cBPF is overly lim-
ited—security policies in Seccomp are mostly limited to static
allow lists. This is primarily because cBPF provides nomecha-
nism to store states and hence cBPF filters have to be stateless.
Furthermore, cBPF provides no interface to invoke any other
kernel utilities or other BPF programs. As a result, many de-
sirable and/or essential system call filtering features cannot

1

ar
X

iv
:2

30
2.

10
36

6v
1

 [
cs

.O
S]

 2
0

Fe
b

20
23

be directly implemented based on Seccomp-cBPF, instead
requiring significant kernel modifications (a major deploy-
ment obstacle). Section 3 discusses these features in details.
Recognizing the need for more expressive policies, Seccomp
recently added a new feature known as Notifier [23], to sup-
port the old idea of userspace agents, which unfortunately
shares their limitations (performance overhead, TOCTTOU
issues, etc.).
In this paper, we present a programmable system call fil-

tering mechanism by leveraging the extended BPF language
(eBPF). Our goal is to enable advanced system call security
policies to better protect the shared OS kernel, without im-
pairing the system call performance or reducing OS security.
Our choice of eBPF is a result of practicality consider-

ations: 1) eBPF offers basic building blocks for the target
programmability, including maps for statefulness and helper
functions for interfacing with the kernel; 2) like cBPF, eBPF
is verified to be safe by the kernel; and 3) we can largely
reuse existing implementation code in Linux.

Note that naïvely opening the eBPF interface in Seccomp,
as early Linux patches [36, 65, 102], is not a solution, because:
1) basic support is missing (e.g., synchronization primitives
for serialization); 2) existing utilities (e.g., task storage) may
not fit the Seccomp model because they target privileged
contexts only; and 3) existing features are not safe for Sec-
comp use cases, e.g., the current user memory access feature
cannot address TOCTTOU issues.

To this end, we create a new Seccomp-eBPF program type
which is highly programmable for users to express advanced
system call security policies in eBPF filter programs. Specifi-
cally, we expose, modify, and create new eBPF helper func-
tions to safely manage filter state, access kernel and user
state, as well as utilize synchronization primitives. Impor-
tantly, our system integrates with existing kernel privilege
and capability mechanisms, enabling unprivileged users to
install advanced filters safely and preventing privilege esca-
lation. The security of Seccomp-eBPF is equivalent to the
two existing kernel components: Seccomp and eBPF.
We implement the new Seccomp-eBPF program type on

top of Seccomp in the Linux kernel. We maintain the existing
Seccomp interface with tamper protection. We implement
many features required by real-world use cases, such as
checkpoint/restore in userspace (CRIU), sleepable filter, and
deployment configuration to make Seccomp-eBPF a privi-
leged feature.We alsomodified an existing container runtime
(crun) to support Seccomp-eBPF-based system call filtering.

We use Seccomp-eBPF to implement various new security
use cases, including system call count/rate limiting, flow-
integrity protection (SFIP), and serialization. We show how
these features can prevent real-world vulnerabilities that
cannot be safely prevented by cBPF filters. We also use eBPF
filters to enhance temporal specialization, which achieves up
to 55.4% reduction of the system call interface of the early ex-
ecution phases, compared to existing cBPF implementations.

Lastly, we use eBPF filters to implement validation caching
which can improve application performance by up to 10%.

The paper makes the following main contributions:

• We discuss several essential use cases of system call
filtering, which reveal limitations of the state-of-the-
art filtering mechanism exemplified by Seccomp.

• Wepresent the design and implementation of Seccomp-
eBPF that enhances programmability of system call
security and integrates well with the kernel, without
affecting performance or security.

• We implement and evaluate the advanced system call
security features using Seccomp-eBPF filters for real-
world applications against real-world vulnerabilities.

The code of our implementation of Seccomp-BPF on Linux
can be found at,

https://github.com/xlab-uiuc/seccomp-ebpf-upstream

2 Background
In this section, we briefly discuss the necessary background
for understanding the limitation of Seccomp as the state-of-
the-practice system call filtering mechanism.

2.1 Seccomp-cBPF
Seccomp currently relies on the classic BPF (cBPF) language
for users to express system call filters as programs [39, 71].
cBPF has a very simple register-based instruction set, mak-
ing the filter programs easy to verify. Due to the limited
programmability, cBPF filters in Seccomp mostly implement
an allow list—the filter only allows a system call if the system
call ID is specified. Occasionally, a cBPF filter will further
check arguments of primitive data types and prevent a sys-
tem call if the argument check fails. Pointer-typed arguments,
however, cannot be dereferenced.
cBPF filters are stateless—the output of a Seccomp-cBPF

filter execution depends only on the specified system call ID
and argument values (in the allow list), because cBPF does
not provide any utility of state management.
A cBPF filter is size-limited by 4096 instructions; there-

fore, complex security policies have to be implemented by a
chain of multiple filters. All installed filters in the chain are
executed for every system call, and the action with the high-
est precedence is returned. The chaining behavior, however,
comes with a performance overhead mainly due to security
mitigations (e.g., Spectre) against indirect jumps [74].
Under the cover, Seccomp chooses to transform cBPF fil-

ters into eBPF code internally to take the advantage of exten-
sively optimized eBPF toolchains, which produce code that
runs up to 4X faster on x86-64 over using cBPF directly [91].
Note: this does not mean system call filters can be imple-
mented in eBPF—the language exposed is still cBPF and eBPF
features (e.g., maps and helpers) are not available.

2

https://github.com/xlab-uiuc/seccomp-ebpf-upstream

2.2 Seccomp Notifier
The limited expressiveness of cBPF makes it hard to im-
plement complex security policies. Therefore, Seccomp re-
cently incorporated support for a userspace agent (called
Notifier [23]) to complement cBPF filters. Similar to early
system call interposition frameworks [49, 50, 58, 94], it de-
fers the decision to a trusted user agent. Specifically, when
Seccomp captures a system call, it blocks the calling task and
redirects the system call context (e.g., calling PID, system
call ID, and argument values) to the agent.

A major disadvantage of Seccomp Notifier is its significant
performance overhead due to the additional context switches
introduced by switching to the user space back and forth.
Furthermore, to examine the contents of system call argu-
ments that are user-space pointers, Seccomp Notifier must
use ptrace to access the memory of the monitored process.
In addition to its performance implications, such inspection
is subject to time-of-check-to-time-of-use (TOCTTOU) race
conditions where a thread in the monitored program may
change memory contents (and thus argument values) after
the check has been completed by Seccomp Notifier. Finally,
the need to run a userspace agent in a trusted domain makes
it challenging to be used in some deployment environments,
e.g., for daemonless container runtimes [12]. For all of these
reasons, Seccomp Notifier is inadequate for complex system
call filtering policies.

3 Essential System Call Filtering Features
We highlight four features, none of which can be imple-
mented using Seccomp-cBPF, that will lead to a more effec-
tive, efficient, and robust system call filtering framework:
statefulness, expressiveness, synchronization, and safe user
memory access. We motivate the need for each feature with
concrete examples.

3.1 Statefulness
System call filtering with the existing Seccomp-cBPF frame-
work is fundamentally stateless: an invocation of the system
call filter cannot carry state to subsequent invocations. As
a result, policies are overly loose. Here we describe three
practical, tight policies that require state passing: system
call count limiting, system call sequences checking, and en-
hanced temporal specialization.
System call count limiting. Many attacks rely on invok-
ing specific system calls repeatedly to cause starvation (e.g.,
fork bomb) or overflows (§7.2.1). An effective defense is to
limit the times a system call can be executed based on the
demand of the application.

As a concrete example, a special case of system call count
limiting is to restrict the use of a specific system call to a
single invocation, which is a common goal for container
runtimes. The goal is to prevent the launched containers
from issuing exec() to replace the process image. Container

runtimes take three common steps to launch a container:
1) installing Seccomp filters, 2) dropping privileges, and 3)
launching containers using an exec system call. The three
steps are exemplified by the following code from runc [13],
a container runtime used by Docker and Kubernetes:

1 // Without NoNewPrivileges , seccomp is a

2 // privileged operation , so we need to do

3 // this before dropping capabilities

4 if l.cfg.Config.Seccomp != nil &&

5 !l.cfg.NoNewPrivileges {

6 seccomp.InitSeccomp (...)

7 }

8 // Drops the capabilities , sets the correct

9 // user and working dir , before executing the

10 // command inside the namespace

11 finalizeNamespace (...)

12 ...

13 pdeath.Restore ()

14 ...

15 if unix.Getppid () != l.parentPid { ... }

16 ...

17 unix.Write(fd, []byte ("0"))

18 ...

19 system.Exec(name , l.cfg.Args [0:], os.Env())

The snippet shows that the Seccomp filter needs to be
installed before calling exec (L19). The desired policy is to
only allow exec once at L19, but not later. However, it is hard
to implement the policy using stateless filters. Note that
the filter installation (L6) cannot be moved to a later point,
because it requires the CAP_SYS_ADMIN capability, which is
dropped within finalizeNamespace (L11).
As a result, with cBPF filters, the dangerous exec system

call is commonly allowed for the entire duration of the con-
tainer execution, even though it is not needed by the con-
tainerized applications [4, 8].
In fact, exec is not an exception. The container runtime

has to allow many other security-sensitive system calls in
the same way, such as prctl, capset, and write as shown in
the code snippet. As with exec, these system calls cannot be
blocked in a stateless filter, either.
If the system call filtering framework supported stateful

policies, the filter could keep track of the number of invo-
cations of a (potentially dangerous) system call and block
further invocations.
Checking system call sequences and state machines.
Recent work [24] shows that an application’s system call
behavior can be modeled by a “system call state machine”,
which can be used for security enforcement named SFIP
(Syscall Flow Integrity Protection); the state machine can
be automatically generated using static analysis [24]. More-
over, prior work on IDS (Intrusion Detection Systems) has
showed that an attack can be modeled by a sequence of sys-
tem calls [27, 44, 45, 57, 77, 78]. Support for stateful filters
that maintain sequences and state machines would enable a

3

system call filtering framework to implement both SFIP and
IDS enforcement.

Precise temporal specialization. Prior work [54, 63, 75]
shows the benefits of fine-grained security policies for differ-
ent execution phases of the target application which often
need distinct sets of system calls.

Ghavamnia et al. [54] propose to apply cBPF Seccomp fil-
ters at different execution phases to achieve temporal system
call specialization. However, this technique is fundamentally
limited under the current Seccomp-cBPF security model. In
Seccomp, a filter, once installed, cannot be uninstalled dur-
ing the process lifetime. Filters installed in later phases are
chained with the filters installed earlier; all the installed
filters are executed for every system call and the most re-
strictive policy is applied. Hence, with cBPF Seccomp filters,
a system call needed in Phase 𝑁 has to be allowed in all
earlier phases (Phases 1...𝑁 −1), even though the system call
is not needed in any of the 𝑁 − 1 phases. Figure 4 illustrates
this point with a two-phase temporal specialization (𝑁 = 2),
where P1 (Initialization) has to include system calls from P2
(Serving) with Seccomp-cBPF.

The limitation is rooted in the fact that cBPF filters cannot
record states (i.e., the current execution phase). By recording
the current phase in a state variable and applying the corre-
sponding policy, a stateful system call filtering framework
would enable precise temporal specialization and achieve
tighter security policies for each phase.

3.2 Expressiveness
As with any user-supplied code or policy running in the
kernel, system call filtering frameworks typically must trade
off expressiveness and safety. The safety goals of cBPF have
led it to a design prioritizing safety, with an overly restricted
instruction set and runtime.

Performance optimizations. Given the cBPF instruction
set, a cBPF filter is typically in the form of an allow list, im-
plemented by a series of conditional jumps [39, 71]. Complex
policies result in long lists of jumps and multiple filters (due
to the size limit of a cBPF filter, see §2). Consequently, system
call checking becomes expensive due to the need of iterating
over long jump lists [60, 65, 66, 71, 90] and the overhead of
indirect jumps caused by mitigations to speculative vulnera-
bilities (e.g., Retpoline) [74]. To reduce the overhead, multiple
optimizations were proposed, such as dedicated Seccomp
caches [90], skip-list search [35], and filter merging [74].
A more expressive system call filtering framework can

optimize the filter performance. First, advanced data struc-
tures with constant lookup time (e.g., a hash map) can be
used to eliminate long jump lists. Such an implementation is
essentially equivalent to the dedicated Seccomp cache [90].
Moreover, cBPF filters are limited by 4096 instructions;

allowing more instructions could eliminate the overhead of
indirect jumps caused by chaining multiple filters, raised

by Retpoline or other mitigations to speculative vulnerabili-
ties. In a stateful system call filtering environment, one can
further use map entries to sequence filters for more com-
plex policies with low overhead. As we will see in §5, such
enhancements to expressiveness can be achieved without
sacrificing safety.

Rate limiting. Besides the performance aspects, the lim-
ited expressiveness of cBPF, due to the simple instruction
sets and the program size constraints, also makes it hard to
support advanced policies. One such example is rate limit-
ing which only allows specified system calls to be issued
under expected rates. Rate limiting relies on a timer. How-
ever, there is no timer utility in cBPF; in fact, cBPF cannot
invoke any kernel functions or utilities. Furthermore, cBPF
cannot record the last time in any state variable. A system
call filtering framework with better expressiveness could be
a solution; in particular, by exposing advanced and complex
operations to the filters in a safe way. Such a framework
could expose the current time information to the filter to
facilitate the desired system call rate limiting.

3.3 Synchronization
System call filtering frameworks essentially provide a plat-
form for mandating access into the kernel and can be used to
implement application- or system-wide policies to prevent
misuse of the kernel. Specifically, there has been increasing
reports on kernel vulnerabilities that manifest via race con-
ditions and are exploitable by two concurrently executing
system calls [59, 68, 97, 98, 100]. Mitigating such attacks re-
quires kernel developers to identify the race condition in
the kernel, patch the vulnerable code, potentially backport
the revisions to older kernel versions, and release a patched
version. The above process is time-consuming; waiting for
the kernel patches could open a long window of vulnerabil-
ity. A system call filtering framework which can serialize
specific system calls that are known to be exploitable by
system call racing can immediately and effectively nullify
race conditions without waiting for patches, backports, and
releases.

3.4 Safe User Memory Access
Since a large number of system calls take pointers to user
memory as arguments, deep argument inspection (DPI) is
long desired [40, 42]. Seccomp-cBPF cannot support DPI
because it only checks non-pointer argument values, i.e., if an
argument is a pointer, it cannot be dereferenced by Seccomp-
cBPF, which means that accepting or rejecting the system
call cannot depend on values in structures that are passed
to system calls via pointers. In fact, it means that Seccomp-
cBPF cannot even address any string values (e.g., a file path
in open()). To enable DPI, a system call filtering framework
needs to provide a safe way to access user memory referred
to by the pointer arguments. The main challenge (which is

4

also the reason that Seccomp does not dereference pointers)
is to avoid the time-of-check-to-time-of-use (TOCTTOU)
issue [22, 49, 84], where user space can change the value of
what is being pointed to between the time the filter checks
it and the time the value gets used.

4 Threat Model and Design Goals
4.1 Threat Model
We strictly adhere to the current threat model of Seccomp.
The goal is to restrict how untrusted userspace applications
interact with the shared OS kernel through system calls to
protect the kernel from userspace exploits (e.g., shellcode or
ROP payload). The kernel is trusted.
Seccomp requires the calling context to either be privi-

leged (having CAP_SYS_ADMIN in its user namespace), or set
NO_NEW_PRIVS [38] which ensures that an unprivileged pro-
cess cannot apply a malicious filter and then invoke a set-
user-ID or other privileged program using exec.
Once a filter is installed onto a process, it cannot be re-

moved before the process termination. A filter cannot be
tampered—a filter program and its states will be invisible to
unprivileged processes once it is installed.

4.2 Design Goals
Given this threat model, we set the following goals:

• Expressiveness and kernel support.We aim to sup-
port all the essential system call filtering features dis-
cussed in §3. This not only requires amore programmable
and expressive language, but also additional kernel
support.

• Maintain Seccomp usage model and interfaces.
In order to provide a practical, familiar and useful
system call filtering framework, we must adhere to
the same usage and threat model of Seccomp (§4.1).
Further, to lower the barrier of adoption, we aim to
maintain its interface.

• Noprivilege escalation for unprivilegedusers.As
Seccomp supports the unprivileged use case (§4.1), our
design must ensure no privilege escalation.

5 Design
5.1 Overview
We develop a programmable system call filtering mechanism
on top of Seccomp, by leveraging the extended BPF language
(eBPF), to enable advanced security policies (see §3). eBPF is
a fundamental redesign of the BPF infrastructure within the
Linux kernel [5]. It not only has a rich instruction set and
flexible control flows (e.g., bounded loops and BPF-to-BPF
calls), but also offers new features, such as helper functions to
interface with kernel utilities and maps as efficient storage
primitives to maintain states.
The choice of eBPF is a result of practicality consider-

ations: 1) eBPF offers basic building blocks for the target

bpf_safe_task_storage_get
bpf_safe_task_storage_del

eBPF
filter

State mgmt.

Serialization

User access

Kernel access

bpf_map_lookup_elem
bpf_map_update_elem
bpf_map_delete_elem

bpf_wait_syscall

bpf_safe_read_user
bpf_safe_read_user_str

bpf_ktime_get_ns

bpf_tail_calleBPF feature

Expose regular maps
(array, hash, …)

Modify task storage APIs
to avoid kernel info leaks

Create new helper

Create new user memory
access safe to TOCTTOU

Expose existing helper

Expose existing helper

Seccomp-eBPF helpers Implementation

Figure 1. Features, helper interfaces, and their implementa-
tion of the Seccomp eBPF program type.

programmability, including maps for statefulness and helper
functions for interfacing with the kernel; 2) eBPF is verified
to be safe by the kernel; and 3) since Seccomp already con-
verts cBPF code into eBPF internally (§2.1), we can largely
reuse existing Seccomp implementation and workflow.

However, directly opening the eBPF interface in Seccomp
is not a solution: 1) basic supports are missing (e.g., synchro-
nization primitives for serialization); 2) existing utilities (e.g.,
task storage) may not fit the Seccomp model because they
target privileged context only; and 3) existing features are
not safe for Seccomp use cases, e.g., the current user memory
access feature cannot address TOCTTOU issues.

We expose, modify, and create new eBPF helper functions
to safely manage filter state, access kernel and user state,
and utilize synchronization primitives. Figure 1 illustrates
these helper functions. Importantly, our system integrates
with existing kernel privilege and capability mechanisms,
enabling unprivileged users to safely install advanced filters.
Essentially, we create a new Seccomp-eBPF program type
which is highly programmable to express advanced system
call security policies in eBPF filter programs.
In terms of security, we reduce the security of Seccomp-

eBPF to the security of Seccomp and eBPF.

5.2 Seccomp-eBPF Program Type
An eBPF program type defineswhat helper functions (helpers)
a program of the type is allowed to invoke and the corre-
sponding capabilities required for invoking them. In other
words, a program type defines its interface to the kernel and
the capability system to use the interface. For a given filter
program, the eBPF verifier checks the helper invocation in-
structions in the filter program and the capabilities of the
calling context at the load time, as shown in Figure 2.

Specifically, the eBPF verifier checks both eBPF language
specifications and Seccomp-eBPF program type. We extend
the eBPF verifier to check the new Seccomp-eBPF program
type, BPF_PROG_TYPE_SECCOMP. Seccomp-eBPF restricts (1) the
use of helper functions, (2) the access to Seccomp data struc-
tures. The eBPF verifier already provides hooks where we

5

eBPF verifier

eBPF JIT
Compilermaps

Seccomp
hook point

eBPF JIT
runner/ eBPF

interpreter

Seccomp
verifier ops

bpf_prog_load()

seccomp(SECCOMP_FILTER_FLAG_EXTENDED)

Native code

System call event

Allow | Deny

eBPF program types

Load
Install

R
un

libbpf

bpf()

bpf()

bpf_seccomp_close_fd()

User process Kernel

User code

Figure 2. Workflow of a Seccomp-eBPF filter

directly add our verification code. For (1), we declare the
helper functions that eBPF filters are permitted to use (§5.3).
For (2), we verify that filters only access data within the
boundary of Seccomp data structures with correct offset
and size. We strictly follow the verification against eBPF
language specifications.
Figure 2 depicts the workflow of loading, installing, and

running a Seccomp-eBPF filter. The filter is first loaded into
the kernel, where it is verified and optionally JIT-compiled,
and then installed in Seccomp. After that, the installed eBPF
filter will be invoked upon every subsequent system call.

5.3 Helper Functions
Figure 1 shows the helper functions of the Seccomp-eBPF
program type (BPF_PROG_TYPE_SECCOMP). Overall, there are
ten helpers in five categories: (1) state management based on
helpers to access (lookup/update/delete) maps, (2) serializa-
tion which needs synchronization helpers, (3) user access for
safely accessing user memory, (4) kernel access for invoking
kernel utilities such as time, and (5) eBPF program features
such as tail calls that allow more complex programs.
Five of them already exists in Linux and can be directly

exposed to the Seccomp-eBPF program type. The others are
not available. In this section, we discuss the new helpers that
are created from scratch or by modifying existing ones.

5.3.1 Task Storage. Maps are the basic enabler to stateful-
ness (§3.1). eBPF currently supports different types of maps,
including array maps and hash maps.
One important map type is task storage, which provides

primitives for policies that need to maintain separate states
for different tasks executing the same eBPF filter (loaded by
the same FD). eBPF already implements task storage map,
which uses Linux tasks as keys to access the stored values.
This guarantees that storage from different tasks does not
collide. The task storage can be used through two helpers:
(1) bpf_task_storage_get and (2) bpf_task_storage_delete.

However, both the two helpers require additional capabil-
ities, CAP_BPF and CAP_PERFMON, and thus cannot be used in
unprivileged contexts, which hinders Seccomp’s use cases
(an unprivileged user process can install a Seccomp filter as
long as it sets NO_NEW_PRIVS, see §4.1). Our goal is to redesign
the helpers for task storage maps to make them essential
utilities of Seccomp-eBPF filters.
Why do the helpers for task storage maps need addi-

tional privileges, while the other map helpers do not (e.g.,
bpf_map_lookup_elem in Figure 1)? The reason is that the
API design of the existing helpers for task storage maps
makes them insecure to unprivileged Seccomp-eBPF filters:
the existing helpers used to access the task storage require
a task_struct pointer as input argument to find the corre-
sponding map storage. While a privileged eBPF filter can call
bpf_get_current_task_btf to retrieve the needed task_struct
pointer, such operation is insecure in an unprivileged con-
text because a task_struct contains a pointer to its parent
task_struct. A malicious filter can dereference the parent
pointer recursively to reach the init task (PID 0) from the
current process, leaking sensitive kernel information.

To avoid this issue and provide unprivileged filters with se-
cure task storage, we create a new set of task-storage helpers.
Our new helpers do not require a task_struct as input. In-
stead, the helpers automatically find the current task’s group
leader. For a process, this is its own task_struct; for a thread,
this is the group leader—the task that spawned it.

5.3.2 Safe User Memory Access. Safely accessing user
memory is an important feature for checking pointer-typed
argument values, as discussed in §3.4. We support such a
feature and expose it through specialized helpers. Note that
eBPF provides two helpers for accessing memory of user
processes. However, these helpers cannot be used for deep ar-
gument inspection because they cannot address TOCTTOU-
based argument racing [49, 97].

We follow the prior work on deep argument inspection [25,
40]. The key principle is to disallow user space to mod-
ify the argument values during and after the values are
checked. This can be achieved by (1) copying the target
user memory into a protected memory region that is only
accessible by the kernel, (2) making the target user memory
write-protected or inaccessible to user space, or (3) using
protection-key functionalities in the kernel to prevent races
from user space [32, 47, 61]. We implement the first two
solutions, as they can be done on all commodity hardware,
and expose them with user-memory access helpers.
Capability. The existing user-memory access helpers from
eBPF require CAP_BPF and CAP_PERFMON. We reduce the secu-
rity of Seccomp-eBPF to Seccomp Notifier [23] which allows
the userspace agent to read and copy user memory if the
agent is allowed to ptrace the process. i.e., the security of Sec-
comp Notifier is equal to ptrace. Therefore, we also reduce
the capabilities of user-memory access helpers to ptrace.

6

Linux determines if one process (tracer) can ptrace an-
other process (tracee) based on the following checks: 1) they
are in the same thread group, 2) they are under the same
user and group, or if the tracer has CAP_SYS_PTRACE, 3) the
tracee cannot be traced without CAP_SYS_PTRACE if it has set
itself to be non-dumpable, and 4) other LSM hooks.
How does ptrace apply to Seccomp? In Seccomp, the fil-

ter is regarded as the tracer, with the process that installs
the filter being the tracee. Since unprivileged Seccomp re-
quires the NO_NEW_PRIVS attribute to be set on the calling
task, the UID/GID and capability set can not change after
the filter installation. Hence, the in-kernel ptrace checks are
largely covered by the NO_NEW_PRIVS attribute. Furthermore,
the dumpable attribute is respected.
On Linux, the capability of ptrace also depends on a

system-wide configuration, ptrace_scope [16]. To ensure
that user-memory access helpers follow ptrace security, we
define a new LSM hook that enforces the helpers to adhere
to the policy set by ptrace_scope.
Protecting non-dumpable process. On Linux, a process
(e.g., OpenSSH) handling sensitive information can set the
“dumpable” attribute (via PR_SET_DUMPABLE) to prevent being
coredumped or ptraced by another unprivileged process.
Hence, an unprivileged Seccomp-eBPF filter should not be
able to access memory of non-dumpable processes. To pro-
tect such processes, we apply a privilege requirement similar
to ptrace. The helpers are modified to allow a filter to access
non-dumpable memory only if the loader process has ptrace
privileges (CAP_SYS_PTRACE).
Handling page faults. The original user-memory access
helpers in Linux do not handle page faults when reading
memory from userspace. The helpers use non-blocking func-
tions (e.g., copy_from_user_nofault), which emit errors upon
page faults. This is based on the dated assumption that a
BPF program never sleeps, i.e., it cannot be blocked in the
middle of execution [33]. This is inconvenient for Seccomp-
eBPF filters—invoking a user-memory helper would fail if
the memory access triggers a page fault. We support sleep-
able Seccomp-eBPF filters (§6). Therefore, our user-memory
access helpers can handle page faults.

5.3.3 Serializing System Calls. The basic idea to serial-
ize two racing system calls is to record the event of involved
system calls. When a system call is invoked concurrently
with another system call under execution which is known to
have race vulnerabilities with it, the kernel stops the former
system call until the latter finishes.
In this use case, the kernel records whether a particular

system call (in terms of system call ID) is currently being
executed and stores the information. For each system call, we
add an integer atomic variable in the kernel to store whether
there exists processes that are currently executing the system
call. This atomic variable has an initial value of 0 and will
be incremented by our new helper function. When a system

call exits, its atomic variable is decremented, but the value
will have a minimum of 0.

Helper API. We expose a new helper function,
void bpf_wait_syscall(int curr_nr, int target_nr)

for system call serialization. The helper function holds the
execution of the current task until the execution of the target
system call finishes. To achieve this, it increments the atomic
variable of the current system call and perform busy waiting
via a schedule loop until the atomic variable of the other sys-
tem call is decremented to 0, which means no processes are
executing the other system call. The helper is unprivileged,
because it only affects the processes that attach the filter.

Enforcement. The eBPF filter that implements serialization
uses a map to store system calls that have race vulnerabili-
ties as key-value pairs. The map can be updated by a trusted
userspace process after filter installation, when new race vul-
nerabilities need to be patched (§3.3). The filter implements
a logic that, for each incoming system call, it checks whether
the system call has a potential race condition based on the
map. If so, the filter will invoke the bpf_wait_syscall helper
to serialize the current system call.
To enforce system-wide serialization policies, we install

the filter onto the init process. In Seccomp, a process inherits
the filter of its parent process. Since init is the ancestor of
all subsequent processes, the installed filter is inherited by all
processes on the system, hence implementing a global policy.
Since the kernel requires the root privilege when retrieving
map file descriptor, only trusted, privileged processes can
update the map.

5.4 Usage
The user loads a Seccomp-eBPF filter into the kernel via the
bpf() system call and installs it using the seccomp() system
call. Different from cBPF filters which are implemented using
BPF instructions, the kernel expects eBPF filters to be loaded
as bytecode. This allows eBPF filters to be written in high-
level languages, such as C and Rust, and compiled using
LLVM/Clang. In fact, eBPF has more mature and actively
developing tool chains than cBPF (cBPF “is frozen [93].”).

We add a new flag, SECCOMP_FILTER_FLAG_EXTENDED, to the
seccomp() system call; if it is set, the filter is interpreted in
eBPF; otherwise, it is in cBPF. Note that, different from cBPF
filters, before installing an eBPF filter, one needs to load it
using bpf(). Figure 3 shows the code snippets of loading and
installing a Seccomp-eBPF filter, compared with installing a
Seccomp-cBPF filter.

Note that cBPF does not have a separate load step (despite
its name, the bpf() system call is specific to eBPF). A cBPF
filter is installed in one step through the seccomp() system
call, where the verification is done at the installation time.
We choose to minimize changes to the existing seccomp()

and bpf() interfaces, mainly for reducing adoption obstacles.
7

1 struct sock_fprog prog = ...;

2 prctl(PR_SET_NO_NEW_PRIVS , 1, 0, 0, 0);

3 // Load and install the filter program in Seccomp

4 seccomp(SECCOMP_SET_MODE_FILTER , 0, &prog);

(a) cBPF: load and install in one step

1 // Load the eBPF filter in bytecode

2 bpf_prog_load(filter_path ,

3 BPF_PROG_TYPE_SECCOMP , &obj , &fd);

4 prctl(PR_SET_NO_NEW_PRIVS , 1, 0, 0, 0);

5 bpf_seccomp_close_fd(obj);

6 // Install eBPF filter in Seccomp

7 seccomp(SECCOMP_SET_MODE_FILTER ,

8 SECCOMP_FILTER_FLAG_EXTENDED , &fd);

(b) eBPF: load and install in two steps; verification invoked on load

Figure 3. Code snippet for installing Seccomp filters in (a)
cBPF and (b) eBPF. bpf_prog_load is the libbpf function that
wraps the bpf() system call; bpf_seccomp_close_fd closes all
file descriptors (FDs) except the eBPF program FD (which is
needed as a parameter for seccomp() and gets closed inside).

However, the separation requires additional efforts to protect
filters and maps against tampering (§5.5).

5.5 Tamper Protection
As a Seccomp-eBPF filter is verified and installed in two steps
(§5.4), we develop the following two tamper protections.

Protecting filter program and maps. For eBPF filters,
seccomp() automatically closes the file descriptor (FD) of
the eBPF program before returning to the user space. The
user space is responsible for closing all FDs of maps be-
fore issuing the seccomp system call. This is to prevent leaks
of the FDs, as anyone with access to the maps can poten-
tially manipulate filter’s behavior. Our new function in libbpf,
bpf_seccomp_close_fd, closes all these FDs except the eBPF
program FD, which is closed by seccomp itself. The maps
themselves are ref-counted by the eBPF filter program after
eBPF verification; therefore, closing the map FDs does not
remove the maps [92].

Namespace tracking. Currently, none of the helper func-
tions we expose to Seccomp-eBPF filters requires additional
privileges. If there is a need to expose helpers that require
CAP_BPF and/or CAP_PERFMON (like many existing helpers), we
need to enforce that an eBPF filter is loaded and installed
in the same user namespace. Otherwise, an unprivileged at-
tacker in the current user namespace can create a new user
namespace (which has all capabilities by default [11]) to by-
pass the capability checks in the verifier, and then sends the
filter FD back to its restricted parent namespace). We develop
the enforcement by recording a reference to the load-time
user namespace with the filter. When installing a filter, the

kernel checks whether the current user namespace matches
the recorded load-time user namespace.

6 Implementation
For practical uses in a variety of deployment environments
(such as container environments), we addressed a number
of implementation challenges.
Sleepable Seccomp filters. Sleepable filters are needed for
Seccomp-eBPF (cBPF programs do not need to sleep), e.g., for
page fault handling when accessing user memory (§5.3.2). To
support sleepable filters, we create new BPF section names
(seccomp and seccomp-sleepable). The BPF section is an ELF
section that is used by libbpf to determine the sleepable
attribute of the BPF program and set the flag when calling
bpf(). This allows us to maintain the same bpf() interface
without additional flags or other tooling support.
Checkpoint/restore in userspace (CRIU). CRIU iswidely
used by container engines to checkpoint the state of a run-
ning container to disk and restore it later. It facilitates fea-
tures such as livemigrations or snapshots. Seccomp currently
supports CRIU only for cBPF filters. To support eBPF filters,
we add two new utilities for (1) returning a file descriptor
(FD) associated with an eBPF filter and (2) checkpointing
map states by returning the FD of the 𝑛-th map.
Note that CRIU is only possible for privileged applica-

tions, such as container engines, as it requires CAP_SYS_ADMIN.
Hence, an attacker taking control of an unprivileged applica-
tion cannot retrieve the FD associated with a filter and mod-
ify them. Additionally, this mirrors the behavior of Seccomp-
cBPF, where CRIU is considered secure.
Container runtime integration. Seccomp is an essential
building block for modern container frameworks [48, 60].
It has been mentioned that Seccomp-eBPF filters are de-
sired [70]. Integrating Seccomp-eBPF with existing container
frameworks is straightforward, as our implementation main-
tains the same Seccomp interface.
To demonstrate this, we have integrated Seccomp-eBPF

filter support in crun [89], a fast OCI-compliant container
runtime and the default container runtime of Podman [12].
The code can be found at [89]. Attaching an eBPF filter to a
Podman container can be done with the following command:

1 podman --runtime /usr/local/bin/crun run

2 --annotation run.oci.seccomp_ebpf_file

3 =ebpf_filter.o

Contrary to cBPF filters, which are generated from JSON-
based profiles in existing container runtimes, eBPF filters are
directly loaded into the kernel during the container initial-
ization. Adding such support to other container runtimes,
such as runc and CRI-O, can be done in a similar way.
Seccomp-eBPF filters as a privileged feature. For de-
ployments that do not enable unprivileged eBPF, we provide
a sysctl configuration to make Seccomp-eBPF a privileged

8

feature. With it set, Seccomp-eBPF can only be used by pro-
cesses with the CAP_SYS_ADMIN capability. Even with the con-
figuration set, Seccomp-eBPF is still very useful for container
runtimes and other management contexts (e.g., init) that run
under the root privilege. For example, most of the container
frameworks are not rootless.

7 Evaluation
We evaluate the usefulness and performance of Seccomp-
eBPF. For usefulness, we use Seccomp-eBPF filters to enhance
temporal system call specialization over existing cBPF filter
implementations (§7.1). Moreover, we use eBPF filters to im-
plement advanced security features that cannot be supported
by cBPF filters. We evaluate them with real-world vulnera-
bilities listed in Table 2. We then evaluate the performance
of eBPF filters with both micro and macro benchmarks. We
also use eBPF filters to accelerate stateless checks (§7.3).

All experiments were run on an Intel i7-9700k with 8 cores,
3.60 GHz, and 32GB RAM. The machine runs Ubuntu 20.04
with Linux kernel v5.15.0-rc3, patched with our implementa-
tion of Seccomp-eBPF.

7.1 Precise Temporal Specialization
We explained how eBPF filters could enhance the security of
temporal system call specialization (§3). This section quan-
tifies the security benefits of implementing temporal spe-
cialization in eBPF filters and comparing them with existing
cBPF filter implementations [54]. We evaluate temporal spe-
cialization for two distinct phases—P1 (initialization) and P2
(Serving), as illustrated in Figure 4.
cBPF filter. With cBPF filters, we install two filters: the
first filter, installed at process startup, allows 𝑆𝑖𝑛𝑖𝑡 + 𝑆𝑠𝑒𝑟𝑣 ;
the second filter only allows 𝑆𝑠𝑒𝑟𝑣 and is installed at the pro-
gram location that marks the start of the serving phase (the
location is provided by the application developer). Hence,
cBPF filters cannot precisely implement temporal special-
ization, i.e., only allowing 𝑆𝑖𝑛𝑖𝑡 for the initialization phase.
As discussed in §3, this problem becomes worse with more
phases—a system call that is needed in the last phase has to
be allowed in all the earlier phases.
eBPF filters. We implement temporal specialization in a
single eBPF filter, installed at application startup, in which
a global variable is used to record the phase. The eBPF fil-
ter strictly applies different policies based on the phase—it
allows only 𝑆𝑖𝑛𝑖𝑡 for the initialization phase and only 𝑆𝑠𝑒𝑟𝑣
for the serving phase. Hence, it addresses the limitations of
cBPF filters. The following snippet sketches this filter:

1 unsigned int phase;

2 SEC("seccomp")

3 int bpf_prog_ts(struct seccomp_data *ctx) {

4 if (! phase && ctx ->nr == -1) {

5 phase = 1; // phase change

6 return SECCOMP_RET_ALLOW;

𝑆!"!#
𝑆$%&'

𝑆!"!#

𝑆$%&' 𝑆$%&'

Process
execution

Syscalls
executed

P1
(I

ni
tia

liz
at

io
n)

P2

(S
er

vi
ng

)

𝑆!"!#

𝑆$%&'

cBPF filter
impl.

eBPF filter
impl.

install install

install switch
𝑆!"##

𝑆!"##

Figure 4. Two-phase temporal specialization implemented
with cBPF and eBPF filters. 𝑆𝑖𝑛𝑖𝑡 and 𝑆𝑠𝑒𝑟𝑣 refer to the set of
system calls required by the initialization and serving phase,
respectively; 𝑆𝑐𝑜𝑚𝑚 = 𝑆𝑖𝑛𝑖𝑡 ∩ 𝑆𝑠𝑒𝑟𝑣

Application |𝑆𝑖𝑛𝑖𝑡 | |𝑆𝑠𝑒𝑟𝑣 | |𝑆𝑐𝑜𝑚𝑚 | Total Init. Reduction

HTTPD 71 83 47 107 33.6%
NGINX 52 93 36 109 52.3%
Lighttpd 46 78 25 99 53.5%
Memcached 45 83 27 101 55.4%
Redis 42 84 33 93 54.8%
Bind 75 113 53 135 44.4%

Table 1. The numbers of unique system calls in different
phases of the evaluated applications

7 }

8 if (!phase) { // only allow S_init

9 switch (ctx ->nr) {

10 case SYS_alarm:

11 return SECCOMP_RET_ALLOW;

12 ...

13 default: break;

14 }

15 } else { // only allow S_serv

16 switch (ctx ->nr) {

17 case SYS_accept:

18 return SECCOMP_RET_ALLOW;

19 ...

20 default: break;

21 }

22 }

23 return SECCOMP_RET_ERRNO | EPERM;

24 }

Different from cBPF filters, where the second filter needs
to be installed at the phase-changing location, we insert a
dummy system call that marks the phase change.

Attack surface reduction. We use the six server applica-
tions in the temporal specialization work [54]. We use 𝑆𝑖𝑛𝑖𝑡
and 𝑆𝑠𝑒𝑟𝑣 of each application, provided by the research ar-
tifact [54], from which we derive 𝑆𝑐𝑜𝑚𝑚 . Table 1 shows the
attack surface reduction of the initialization phase achieved
by eBPF filters over the cBPF filters. The eBPF filters reduce

9

Vulnerabilities Pattern Involved System Call(s) eBPF Filter as Defenses

CVE-2016-0728 Repeated system calls keyctl Counter limiting
CVE-2019-11487 Repeated system calls io_submit Counter limiting
CVE-2017-5123 Repeated system calls waitid Counter limiting
BusyBox Bug #9071 System call sequences (socket → exec) or (socket→ mprotect) Flow-integrity protection
CVE-2018-18281 Raced system calls mremap, ftruncate Serialization
CVE-2016-5195 Raced system calls (write, madvice) or (ptrace, madvice) Serialization
CVE-2017-7533 Raced system calls fsnotify, rename Serialization

Table 2. Evaluated vulnerabilities and their patterns that can be effectively defended by Seccomp-eBPF filters.

the attack surface of the initialization phase by 33.6%–55.4%
across the evaluated applications.

7.2 New Security Features
We present new security features enabled by Seccomp-eBPF
filters and show that they can effectively mitigate real-world
vulnerabilities (Table 2).

7.2.1 Count and rate limiting. We implement eBPF fil-
ters for count limiting which only allows a system call to
be invoked a limited number of times (§3). The filter keeps
the count of the target system call using a global variable
and increments the count when the system call is invoked.
Once the count reaches a predefined value 𝑁 , all subsequent
invocations of the specific system call are denied.

The following code shows an eBPF filter that only allows
an application to call the keyctl system call with the ar-
gument KEYCTL_JOIN_SESSION_KEYRING up to a max allowed
count—most applications (e.g., e4crypt) only need to call
keyctl once or twice.

1 unsigned int count;

2 SEC("seccomp")

3 int bpf_prog_cnt(struct seccomp_data *ctx) {

4 if (ctx ->nr == SYS_keyctl &&

5 ctx ->args [0] ==

KEYCTL_JOIN_SESSION_KEYRING) {

6 if (count >= MAX_ALLOWED_CNT)

7 return SECCOMP_RET_ERRNO | EPERM;

8 count += 1;

9 }

10 return SECCOMP_RET_ALLOW;

11 }

The eBPF filter can mitigate vulnerabilities like CVE-2016-
0728 which is exploited by repeatedly calling keyctl with
KEYCTL_JOIN_SESSION_KEYRING to create invalid keyring ob-
jects. This would trigger buggy error handling code that
omits to decrement the refcount and thus cause the refcount
to overflow. We also evaluate count limiting with CVE-2019-
11487 and CVE-2017-5123 shown in Table 2.

Also, we implement rate limiting for frequency of specific
system calls, using timer helpers (Figure 1).

7.2.2 Flow integrity protection. We use Seccomp-eBPF
filters to implement the kernel enforcement of system call

flow-integrity protection (SFIP) [24] which otherwise re-
quires kernel revisions and a new system call. SFIP checks
both system call sequences and origins (code address that
issues a system call). For the sequence check, we store the
system call state machine in a two-level eBPF map, by en-
coding the state machine as a 𝑁 × 𝑁 matrix where 𝑁 is the
number of system calls an application uses. We maintain the
previous system call ID 𝑠 ′ in a global variable. Given a sys-
tem call 𝑠 , we check whether 𝑠 ′ → 𝑠 is valid. For the origin
check, we store the system call origin mapping in another
two-level map where the first-level map indexes the system
call ID and the second-level stores the valid code addresses.
For a system call 𝑠 , we check whether 𝑠’s origin is included
in the second-level map after indexing the first-level map
with 𝑠’s ID (Seccomp already provides the calling address of
a system call in its data structure).
We evaluate Seccomp-eBPF filter-based SFIP using the

same buffer overflow vulnerability in BusyBox [2] in the
evaluation of the original SFIP work [24]. The exploits re-
quire a system call sequence of either socket → execve to
execute shellcode, or socket → mprotect to mark the mem-
ory protection of the shellcode as executable. Neither of the
transitions is allowed by the eBPF filter based on the in-map
system call state machines. Furthermore, the code addresses
are checked as per the origin map.

7.2.3 Serialization. We implement the eBPF based serial-
izer (see §5.3.3) to mitigate the race-based vulnerabilities in
Table 2. We write applications that issue the system calls of
the race vulnerabilities concurrently. Take CVE-2018-18281
as an example, the filter serializes mremap and ftruncate

when the applications issue both.

7.3 Performance
We compare the performance of eBPF filters with cBPF filters
and Notifier that implement the same security policy. For
fair comparison, we use policies that can be implemented by
cBPF filters. We expect the performance of eBPF filters and
cBPF filters to be similar, since Seccomp internally converts
cBPF filters into eBPF code. On the other hand, eBPF filters
and cBPF filters go through different toolchains and thus are
optimized differently.

10

https://nvd.nist.gov/vuln/detail/CVE-2016-0728
https://nvd.nist.gov/vuln/detail/CVE-2019-11487
https://nvd.nist.gov/vuln/detail/CVE-2017-5123
https://bugs.busybox.net/show_bug.cgi?id=9071
https://nvd.nist.gov/vuln/detail/CVE-2018-18281
https://nvd.nist.gov/vuln/detail/CVE-2016-5195
https://nvd.nist.gov/vuln/detail/CVE-2017-7533

getppid (cycles) filter (cycles)

No filter 244.18 0
cBPF filter (default) 493.06 214.19
cBPF filter (optimized) 329.47 68.68
eBPF filter 331.73 60.18
Constant-action bitmap [31] 297.60 0
Seccomp notifier 15045.05 59.29

Table 3. Execution time of system calls with different types
of filters and filter execution time.

Application Description Benchmark

HTTPD Web server ab [1] (40 clients)
NGINX Web server ab [1] (40 clients)
Lighttpd Web server ab [1] (40 clients)
Memcached In-memory cache memtier [10] (10 threads)
Redis Key-value store memtier [10] (10 threads)
Bind DNS server dnseval [3]

Table 4. Applications and benchmarks used in evaluation

7.3.1 Microbenchmark. Table 3 shows our microbench-
mark results of different Seccomp filters, including the exe-
cution time (cycles) of the getppid system call and the filter
programs. We use a policy that denies 245 system calls and
allows the rest (getppid is allowed). To obtain reliable results,
we fix the CPU frequency and disable Turbo boost.

We generate the two cBPF filters using libseccomp (v2.5.2),
with the default option andwith binary-tree optimization [66].
The latter generates a filter that sorts the system call ID
in a binary tree. We implement the eBPF filter in C and
use Clang (-O2) to compile the C code into eBPF bytecode.
Clang optimizes switch-case statements into a binary tree so
that reaching each case only takes 𝑂 (𝑙𝑜𝑔(𝑁)) time, where
𝑁 is the number of system calls. We also experiment with
Seccomp constant-action bitmap [31], an optimization that
skips the filter execution if the system call ID is known to
be allowed. For Seccomp Notifier, we implement a userspace
agent in C with the same logic as the eBPF filter.
Our results show that the eBPF filter outperforms the

unoptimized cBPF filter. It has roughly the same performance
as the cBPF filter optimized by libseccomp. Both Clang and
libseccomp optimize the filter code using binary search to
avoid walking over a long jump list. Constant-action bitmap
achieves the highest performance, but it cannot help policies
on argument values. With Seccomp Notifier, getppid runs
45.4 times slower than with the eBPF filter.

7.3.2 Application Performance. We measure the appli-
cation performance with different types of Seccomp filters.
We use temporal specialization as the security policy. The
implementations of the cBPF filters and eBPF filters are ex-
plained in §7.1. Seccomp Notifier can also support precise
temporal specialization like eBPF filters. We implement a
version that defers all decisions on system calls to a user
agent. The handler keeps a phase-changing flag, which is

0.00
0.50
1.00
1.50
2.00
2.50
3.00

No
rm

. a
vg

 la
te

nc
y

Baseline eBPF cBPF User notifier Hybrid

HTTPD NGINX Lighttpd Memcached Redis Bind
0.00

0.25

0.50

0.75

1.00

No
rm

. t
hr

ou
gh

pu
t

Figure 5. Avg. latency and throughput of the applications
with different filters that implement temporal specialization
(normalized to the baseline that disables Seccomp).

set when the application enters the serving phase. We also
evaluate an optimization that combines cBPF filter and the
agent, denoted as hybrid. The hybrid version installs a cBPF
filter at the process startup, allowing 𝑆𝑖𝑛𝑖𝑡 . For every system
call outside of 𝑆𝑖𝑛𝑖𝑡 , the filter defers the decision to the user
space. An additional filter is installed at the beginning of the
serving phase to block 𝑆𝑖𝑛𝑖𝑡 − 𝑆𝑐𝑜𝑚𝑚 . The handler then only
allows 𝑆𝑠𝑒𝑟𝑣 − 𝑆𝑐𝑜𝑚𝑚 after the phase change.
Applications and benchmarks. Weuse the same six server
applications as in §7.1. We use official benchmark tools for
each application (Table 4). All experiments are run 10 times
and the average numbers are reported. Figure 5 shows the
average latency and throughput of each application with
cBPF, eBPF, Notifier, and Hybrid. We normalized all results
to the baseline, a version that does not use Seccomp. The
results show two consistent characteristics. First, Seccomp-
eBPF has similar performance impacts as Seccomp-cBPF,
while providing higher security for the initialization phase.
Second, userspace agents incur significant performance over-
head. Applications with pure user notifiers have additional
48%–188% average latency and 32%–65% lower throughput.
Even for Hybrid, there is an additional 5%–108% average
latency and 5%–52% lower throughput. NGINX suffers from
the highest degradation, with latency increasing by a factor
of 1.88 and throughput decreasing by 65%. Only Hybrid for
Redis has a performance comparable to BPF filters, because
in the serving phase of Redis, most system calls are from
𝑆𝑐𝑜𝑚𝑚 , which are filtered by cBPF filters.

7.3.3 Accelerating stateless security checks. Lastly, we
use eBPF filters to implement the Draco Seccomp cache [90]
and repeat the Draco evaluation using the applications and
benchmarks in Table 4. The key idea of Draco is to cache the
ID and the corresponding argument values of a system call
that has recently been validated by stateless security checks.
If an incoming system call hits the cache, Draco saves the
computation of running the stateless checks. Draco is effec-
tive when the stateless checks are expensive and the system

11

calls of an application have high locality. The eBPF filter
implements Draco using an array map which maps a sys-
tem call to its corresponding check filter through an eBPF
tail-call. The check filter uses a hash map to store recently
validated argument values in a 48-byte blob.

We use the profile which only allows a system call if its ID
and argument values are recorded by strace in a dry run. Our
results show that eBPF-based Draco increases the throughput
of three web servers by 10% on average. We do not observe
significant improvement for the other applications.

8 Discussion
System call filtering with LSM. Linux Security Modules
(LSMs) provide enforcement for system-wide security poli-
cies. Therefore, it is commonly discussed together with Sec-
comp, often as an alternative to implement system call filter-
ing, especially with LSM-eBPF [41]. In fact, Seccomp(-eBPF)
and LSM(-eBPF) are fundamentally different.

Seccomp restricts the system call entry point, while LSMs
provide access control on kernel objects deeply on the path
of system call handling. Hence, LSMs cannot prevent vul-
nerabilities before reaching LSM hooks. Moreover, Seccomp
can provide fine-grained per-process system call filtering,
while LSMs are system-wide. Lastly, LSM requires privileged
use cases (only sysadmins can apply LSM policies); Seccomp-
eBPF supports unprivileged use cases where an unprivileged
process can install a Seccomp-eBPF filter.
Seccomp and LSM have different principles. Seccomp re-

quires no new kernel code; hence, it stays future-proof for
new sysem calls; LSMs would need new code when new
system calls are added. So, code in a Seccomp-eBPF filter
takes a “microkernel” style. LSM uses a “monolithic kernel”
style to implement custom checks for different system calls.
Automatic Seccomp-eBPF filter generation. Many tools
have been developed to automatically generate application-
specific Seccomp-cBPF filters. The basic idea is to profile
the system calls of the target application with static code
analysis [26, 53, 54, 82], binary analysis [26, 35], or dynamic
tracking [87, 95]. The identified system calls are included in
a static allow list.

How to automatically generate Seccomp-eBPF filters is an
open question. Recent work like SFIP [24] shows promises of
generating system call state machines. We believe that eBPF
filters for count/rate limiting and temporal specialization can
also be automatically generated. Moreover, many ideas from
system call based intrusion detection using data modeling
and machine learning can potentially be applied to generate
advanced eBPF filters [27, 44, 45, 57, 77–79].
Risks of unprivileged eBPF. With bugs in Linux eBPF
verifier and JIT compiler [81], Seccomp-eBPFmay potentially
allow unprivileged attackers to craft malicious eBPF filters
to exploit vulnerabilities. Seccomp-cBPF shares the same
risk; however, since it is simpler it likely has fewer bugs.

We believe that in the long term unprivileged eBPF will be
safe, as evidenced by recent work on formally-verified eBPF
verifiers and compilers [51, 52, 81, 96, 99], and more broadly,
safe and correct kernel code [21, 43, 76, 80].

Note that Seccomp-eBPF can be configured as a privileged
feature at deployment (§6), if unprivileged eBPF is a concern.
The privileged configuration can be used by many container
runtimes and management services (e.g., init).

9 Related Work
System call filtering. Prior work has studied system call
filtering (aka interposition) techniques for protecting the
shared OS kernel against untrusted applications [17, 19, 34,
37, 46, 50, 56, 58, 67, 72, 77, 85, 86, 94]. Early techniques
rely on userspace agents (e.g., based on ptrace) that check
user-specified policies to decide which system calls to al-
low or deny, in the same vein as Seccomp Notifier (see §2.2).
However, the context switch overhead could be unafford-
able to applications that require high performance. Seccomp
provides a solution that allows user-specified policies to
be implemented in cBPF and executed as kernel extensions.
Comparedwith userspace agents, Seccomp filters have signif-
icant performance advantages, which is one main reason that
makes it a widely-used building block for modern sandbox
and container technologies. Our work builds on the success
of Seccomp and rethinks the programmability of system call
security in the Seccomp context.

Discussions on eBPF Seccompfilters in the Linux com-
munity. There were a few other proposals on supporting
eBPF filters for Seccomp, with patches [36, 65]. However, our
discussions with the community both on the kernel mailing
list [102] and at the Linux Plumbers Conference [69] tell that
it is still very controversial.
One common concern is lacking concrete use cases, as

exemplified by themaintainer’s response—“What’s the reason
for adding eBPF support? Seccomp shouldn’t need it... I’d rather
stick with cBPF until we have an overwhelmingly good reason
to use eBPF...” [28]. One reason is that early patches [36, 65]
do not support maps and thus still have no statefulness. We
hope that our work addresses this concern. Our design is
driven by an analysis of desired system call filtering features,
which reveals the limitations of Seccomp (§3). We also show
that existing eBPF utilities are insufficient; therefore, simply
opening the eBPF interface cannot solve the problem.
There are other concerns on eBPF security, including (1)

exposure of kernel data and functions to untrusted user space
via maps and helpers, and (2) potential vulnerabilities in the
eBPF subsystem. In our design, the security of Seccomp-eBPF
can be systematically reduced to that of Seccomp and eBPF.
We discuss the risk of unprivileged eBPF in §8. We believe
that vulnerabilities in the eBPF subsystem implementation is
a temporal (but challenging) problem that will be addressed

12

in the longer term. Our implementation also provides a con-
figuration option to turn Seccomp-eBPF into a root-only
feature (§6) which is useful for container environments.
Other eBPF use cases. Recently, eBPF has been actively
used to build innovative tools and systems, ranging from net-
working [64] to tracing [62] to storage [55, 101] to virtualiza-
tion [20]. Different frommost of the eBPF use cases, Seccomp
needs to support unprivileged use cases (§4.1). Therefore,
security is a first-class design principle of Seccomp-eBPF.

10 Concluding Remarks
Our work makes one step towards empowering advanced
system call security policies by enhancing the programma-
bility of system call security mechanisms, namely Seccomp
in Linux. We present our design and implementation of the
Seccomp-eBPF program type and show that it can enable
many useful features, without impairing system call perfor-
mance or reducing system security. Our work is imperfect,
but we hope that it could lay the foundation and motivate
strong programmability for system call security.

Acknowledgement
This work was supported in part by the IBM-Illinois Discov-
ery Accelerator Institute and by NSF grant CNS-1956007. We
thank Giuseppe Scrivano for helping with the eBPF Seccomp
filter support in crun. We thank Kele Huang, Yicheng Lu,
Austin Kuo, and Josep Torrellas for early participation of the
work. We thank Michael Le, Mimi Zohar, and Hani Jamjoom
for the discussions of the work. We also thank developers
from the Linux community for discussing the work with us
on the Linux kernel mailing list and at LPC 2023.

References
[1] ab - Apache HTTP server benchmarking tool. https://httpd.apache.

org/docs/2.4/programs/ab.html.
[2] Bug 9071 - busybox - (local) cmdline stack buffer overwrite. https:

//bugs.busybox.net/show_bug.cgi?id=9071.
[3] DNS Measurement, Troubleshooting and Security Auditing Toolset.

https://dnsdiag.org/.
[4] Docker’s default Seccomp profile. https://github.com/moby/moby/

blob/master/profiles/seccomp/default.json.
[5] eBPF – Introduction, Tutorials & Community Resources. https://ebpf.

io/.
[6] Firecracker Design. https://github.com/firecracker-microvm/

firecracker/blob/master/docs/design.md.
[7] gVisor: Container Runtime Sandbox. https://github.com/google/

gvisor/blob/master/runsc/boot/filter/config.go.
[8] Kubernetes’s default crun profile. https://github.com/kubernetes-

sigs/security-profiles-operator/blob/master/examples/baseprofile-
crun.yaml.

[9] LXD. https://help.ubuntu.com/lts/serverguide/lxd.html#lxd-
seccomp.

[10] memtier_benchmark: A High-Throughput Benchmarking Tool for
Redis & Memcached. https://github.com/RedisLabs/memtier_
benchmark.

[11] Namespaces in operation, part 1: namespaces overview [lwn.net].
https://lwn.net/Articles/531114/.

[12] Podman: A tool for managing OCI containers and pods. https://
podman.io/.

[13] runc standard_init_linux.go. https://github.com/opencontainers/
runc/blob/master/libcontainer/standard_init_linux.go#L161-L230.

[14] Sandboxed API. https://github.com/google/sandboxed-api.
[15] Seccomp security profiles for Docker. https://docs.docker.com/

engine/security/seccomp/.
[16] Yama ptrace_scope - the linux kernel archives. https://www.kernel.

org/doc/Documentation/security/Yama.txt.
[17] Anurag Acharya and Mandar Raje. MAPbox: Using Parameterized

Behavior Classes to Confine Untrusted Applications. In Proceedings
of the 9th USENIX Security Symposium (USENIX Security ’00), Denver,
Colorado, USA, August 2000.

[18] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight Virtualization for Serverless Applications. In
Proceedings of the 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’20), February 2020.

[19] Albert Alexandrov, Paul Kmiec, and Klaus Schauser. Consh: Confined
Execution Environment for Internet Computations. Technical report,
The University of California, Santa Barbara, 1999.

[20] Nadav Amit and Michael Wei. The Design and Implementation of
Hyperupcalls. In Proceedings of the 2018 USENIX Annual Technical
Conference (USENIX ATC’18), July 2018.

[21] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev,
Aurojit Panda, Zvonimir Rakamarić, and Leonid Ryzhyk. System
Programming in Rust: Beyond Safety. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems (HotOS’17), May 2017.

[22] Atri Bhattacharyya, Uros Tesic, andMathias Payer. Midas: Systematic
Kernel TOCTTOU Protection. In Proceedings of the 31st USENIX
Security Symposium (USENIX Security’22), August 2022.

[23] Christian Brauner. The Seccomp Notifier – New Frontiers in Unpriv-
ileged Container Development. https://brauner.github.io/2020/07/23/
seccomp-notify.html, July 2020.

[24] Claudio Canella, Sebastian Dorn, Daniel Gruss, and Michael Schwarz.
SFIP: Coarse-Grained Syscall-Flow-Integrity Protection in Modern
Systems. arXiv:2202.13716, February 2022.

[25] Claudio Canella, Andreas Kogler, Lukas Giner, Daniel Gruss, and
Michael Schwarz. Domain Page-Table Isolation. In arXiv:2111.10876,
November 2021.

[26] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.
Automating Seccomp Filter Generation for Linux Applications. In
Proceedings of the 2021 ACM Cloud Computing Security Workshop
(CCSW’21), November 2021.

[27] Christina Warrender and Stephanie Forrest and Barak Pearlmutter.
Detecting Intrusions Using System Calls: Alternative Data Models.
In Proceedings of the 1999 IEEE Symposium on Security and Privacy,
May 1999.

[28] Kees Cook. Re: [PATCH net-next 0/3] eBPF Seccomp fil-
ters. https://lore.kernel.org/netdev/CAGXu5jLiYh0rSRuJ_-
2xLB03Wod5G07njpoESR4SnmsmiUnsEw@mail.gmail.com/,
February 2018.

[29] Jonathan Corbet. Systemd gets seccomp filter support . https://lwn.
net/Articles/507067/.

[30] Jonathan Corbet. BPF: the universal in-kernel virtual machine. https:
//lwn.net/Articles/599755/, May 2014.

[31] Jonathan Corbet. Constant-action bitmaps for seccomp(). https:
//lwn.net/Articles/834785/, October 2020.

[32] Jonathan Corbet. Memory protection keys for the kernel. https:
//lwn.net/Articles/756233/, July 2020.

[33] Jonathan Corbet. Sleepable BPF programs. https://lwn.net/Articles/
825415/, July 2020.

[34] Asit Dan, Ajay Mohindra, Rajiv Ramaswami, and Dinkar Sitara.
ChakraVyuha (CV): A Sandbox Operating System Environment for

13

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://bugs.busybox.net/show_bug.cgi?id=9071
https://bugs.busybox.net/show_bug.cgi?id=9071
https://dnsdiag.org/
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://ebpf.io/
https://ebpf.io/
https://github.com/firecracker-microvm/firecracker/blob/master/docs/design.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/design.md
https://github.com/google/gvisor/blob/master/runsc/boot/filter/config.go
https://github.com/google/gvisor/blob/master/runsc/boot/filter/config.go
https://github.com/kubernetes-sigs/security-profiles-operator/blob/master/examples/baseprofile-crun.yaml
https://github.com/kubernetes-sigs/security-profiles-operator/blob/master/examples/baseprofile-crun.yaml
https://github.com/kubernetes-sigs/security-profiles-operator/blob/master/examples/baseprofile-crun.yaml
https://help.ubuntu.com/lts/serverguide/lxd.html#lxd-seccomp
https://help.ubuntu.com/lts/serverguide/lxd.html#lxd-seccomp
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://lwn.net/Articles/531114/
https://podman.io/
https://podman.io/
https://github.com/opencontainers/runc/blob/master/libcontainer/standard_init_linux.go#L161-L230
https://github.com/opencontainers/runc/blob/master/libcontainer/standard_init_linux.go#L161-L230
https://github.com/google/sandboxed-api
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://www.kernel.org/doc/Documentation/security/Yama.txt
https://www.kernel.org/doc/Documentation/security/Yama.txt
https://brauner.github.io/2020/07/23/seccomp-notify.html
https://brauner.github.io/2020/07/23/seccomp-notify.html
https://lore.kernel.org/netdev/CAGXu5jLiYh0rSRuJ_-2xLB03Wod5G07njpoESR4SnmsmiUnsEw@mail.gmail.com/
https://lore.kernel.org/netdev/CAGXu5jLiYh0rSRuJ_-2xLB03Wod5G07njpoESR4SnmsmiUnsEw@mail.gmail.com/
https://lwn.net/Articles/507067/
https://lwn.net/Articles/507067/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/834785/
https://lwn.net/Articles/834785/
https://lwn.net/Articles/756233/
https://lwn.net/Articles/756233/
https://lwn.net/Articles/825415/
https://lwn.net/Articles/825415/

Controlled Execution of Alien Code. Technical Report RC 20742
(2/20/97), IBM Research Division, T.J. Watson Research Center, Feb-
ruary 1997.

[35] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca,
and Vasileios P. Kemerlis. sysfilter: Automated System Call Filtering
for Commodity Software. In Proceedings of the 23rd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID’20),
October 2020.

[36] Sargun Dhillon. eBPF Seccomp filters. https://lwn.net/Articles/
747229/, February 2018.

[37] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch. Lever-
aging Legacy Code to Deploy Desktop Applications on the Web. In
Proceedings of the 8th USENIX Symposium onOperating Systems Design
and Implementation (OSDI’08), December 2008.

[38] Jake Edge. System call filtering and no_new_privs. https://lwn.net/
Articles/475678/, January 2012.

[39] Jake Edge. A seccomp overview. https://lwn.net/Articles/656307/,
September 2015.

[40] Jake Edge. Deep argument inspection for seccomp. https://lwn.net/
Articles/799557/, September 2019.

[41] Jake Edge. Kernel runtime security instrumentation. https://lwn.net/
Articles/798157/, September 2019.

[42] Jake Edge. Seccomp and deep argument inspection. https://lwn.net/
Articles/822256/, June 2020.

[43] Nelson Elhage. Supporting Linux kernel development in Rust. https:
//lwn.net/Articles/829858/, August 2020.

[44] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke Lee,
and Weibo Gong. Anomaly Detection Using Call Stack Information.
In Proceedings of the 2003 IEEE Symposium on Security and Privacy,
May 2003.

[45] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A Senseof Self for Unix Processes. In Proceedings of the
1996 IEEE Symposium on Security and Privacy, May 1996.

[46] Timothy Fraser, Lee Badger, and Mark Feldman. Hardening COTS
Software with Generic Software Wrappers. In Proceedings of the 1999
IEEE Symposium on Security and Privacy, May 1999.

[47] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and
Ahmad-Reza Sadeghi. IMIX: In-Process Memory Isolation EXten-
sion. In Proceedings of the 27th USENIX Security Symposium (USENIX
Security ’18), August 2018.

[48] Jessie Frazelle. Security for the Modern Age. Communications of the
ACM, 62(1):43–45, January 2019.

[49] Tal Garfinkel. Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools. In Proceedings of the 2004 Network
and Distributed System Security Symposium (NDSS’04), February 2003.

[50] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A Delegat-
ing Architecture for Secure System Call Interposition. In Proceed-
ings of the 2004 Network and Distributed System Security Symposium
(NDSS’04), February 2004.

[51] Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang, and Emina Tor-
lak. Synthesizing JIT Compilers for In-Kernel DSLs. In Proceedings
of the 32nd International Conference on Computer-Aided Verification
(CAV’20), July 2020.

[52] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.
Simple and Precise Static Analysis of Untrusted Linux Kernel Ex-
tensions. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2019), June
2019.

[53] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. Confine: Automated System Call Policy Generation
for Container Attack Surface Reduction. In Proceedings of the 23rd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses
(RAID’20), October 2020.

[54] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. Temporal System Call Specialization for Attack Sur-
face Reduction. In Proceedings of the 29th USENIX Security Symposium
(USENIX Security’20), August 2020.

[55] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles
Muller. BMC: Accelerating Memcached using Safe In-kernel Caching
and Pre-stack Processing. In Proceedings of the 18th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’21),
April 2021.

[56] Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, and
Thomas E. Anderson. SLIC: An Extensibility System for Commod-
ity Operating Systems. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference (USENIX ATC’98), June 1998.

[57] Anup K. Ghosh and Aaron Schwartzbard. A Study in Using Neural
Networks for Anomaly and Misuse Detection. In Proceedings of the
8th USENIX Security Symposium (USENIX Security ’99), August 1999.

[58] Ian Goldberg, DavidWagner, Randi Thomas, and Eric A. Brewer. A Se-
cure Environment for Untrusted Helper Applications (Confining the
Wily Hacker). In Proceedings of the 6th USENIX Security Symposium
(USENIX Security ’96), July 1996.

[59] Sishuai Gong, Deniz Altınbüken, Pedro Fonseca, and Petros Maniatis.
Snowboard: Finding Kernel Concurrency Bugs through Systematic
Inter-thread Communication Analysis. In Proceedings of the 28th
ACM Symposium on Operating Systems Principles (SOSP’21), October
2019.

[60] Aaron Grattafiori. Understanding and Hardening Linux Containers.
Technical report, NCC Group, June 2016.

[61] Spyridoula Gravani, Mohammad Hedayati, John Criswell, and
Michael L. Scott. Fast Intra-kernel Isolation and Security with IskiOS.
In Proceedings of the 24th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID’21), October 2021.

[62] Brendan Gregg. Linux Extended BPF (eBPF) Tracing Tools. https:
//www.brendangregg.com/ebpf.html.

[63] Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang, and
Dongyan Xu. FACE-CHANGE: Application-Driven Dynamic Kernel
View Switching in a Virtual Machine. In Proceedings of the 44th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’14), June 2014.

[64] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. The
EXpress Data Path: Fast Programmable Packet Processing in the
Operating System Kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies
(CoNEXT ’18), December 2018.

[65] Tom Hromatka. [RFC PATCH] all: RFC - add support for
ebpf. https://groups.google.com/g/libseccomp/c/pX6QkVF0F74/m/
ZUJlwI5qAwAJ, February 2018.

[66] Tom Hromatka. Using a cBPF Binary Tree in Libseccomp to Improve
Performance. In Linux Plumbers Conference (LPC’18), November 2018.

[67] K. Jain and R. Sekar. User-Level Infrastructure for System Call In-
terposition: A Platform for Intrusion Detection and Confinement.
In Proceedings of the 2000 Network and Distributed System Security
Symposium (NDSS’00), February 2000.

[68] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung
Lee, and Insik Shin. Razzer: Finding Kernel Race Bugs through
Fuzzing. In Proceedings of the 2019 IEEE Symposium on Security and
Privacy, May 2019.

[69] Jinghao Jia, YiFei Zhu, Andrea Arcangeli, Hubertus Franke, To-
bin Feldman-Fitzthum, Claudio Canella, Dimitrios Skarlatos, Daniel
Gruss, Dan Williams, and Tianyin Xu. Revisiting eBPF Seccomp
Filters. In Linux Plumbers Conference (LPC’22), September 2022.

[70] Sean Kerner. The future of Docker containers. https://lwn.net/
Articles/788282/, May 2019.

14

https://lwn.net/Articles/747229/
https://lwn.net/Articles/747229/
https://lwn.net/Articles/475678/
https://lwn.net/Articles/475678/
https://lwn.net/Articles/656307/
https://lwn.net/Articles/799557/
https://lwn.net/Articles/799557/
https://lwn.net/Articles/798157/
https://lwn.net/Articles/798157/
https://lwn.net/Articles/822256/
https://lwn.net/Articles/822256/
https://lwn.net/Articles/829858/
https://lwn.net/Articles/829858/
https://www.brendangregg.com/ebpf.html
https://www.brendangregg.com/ebpf.html
https://groups.google.com/g/libseccomp/c/pX6QkVF0F74/m/ZUJlwI5qAwAJ
https://groups.google.com/g/libseccomp/c/pX6QkVF0F74/m/ZUJlwI5qAwAJ
https://lwn.net/Articles/788282/
https://lwn.net/Articles/788282/

[71] Michael Kerrisk. Using seccomp to Limit the Kernel At-
tack Surface. In Linux Plumbers Conference (LPC’15), August
2015. https://man7.org/conf/lpc2015/limiting_kernel_attack_surface_
with_seccomp-LPC_2015-Kerrisk.pdf.

[72] Taesoo Kim and Nickolai Zeldovich. Practical and Effective Sandbox-
ing for Non-root Users. In Proceedings of the 2013 USENIX Conference
on Annual Technical Conference (USENIX ATC’13), June 2013.

[73] Kubernetes Documentation. Configure a Security Context for a
Pod or Container. https://kubernetes.io/docs/tasks/configure-pod-
container/security-context/, July 2019.

[74] Hsuan-Chi Kuo, Kai-Hsun Chen, Yicheng Lu, Dan Williams, Sibin
Mohan, and Tianyin Xu. Verified Programs Can Party: Optimizing
Kernel Extensions via Post-Verification Merging. In Proceedings of
the 17th European Conference on Computer Systems (EuroSys’22), April
2022.

[75] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu
Wang, and Qi Li. SPEAKER: Split-Phase Execution of Application
Containers. In Proceedings of the 14th Conference on Detection of
Intrusions and Malware and Vulnerability Assessment (DIMVA’17), July
2017.

[76] Jialin Li, Samantha Miller, Danyang Zhuo, Ang Chen, Jon Howell,
and Thomas Anderson. An Incremental Path towards a Safer OS
Kernel. In Proceedings of the 18th Workshop on Hot Topics in Operating
Systems (HotOS’21), June 2021.

[77] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray, and
J. H. Hartman. Protecting Against Unexpected System Calls. In
Proceedings of the 14th USENIX Security Symposium (USENIX Security
’05), July 2005.

[78] Federico Maggi, Matteo Matteucci, and Stefano Zanero. Detecting In-
trusions through System Call Sequence and Argument Analysis. IEEE
Transactions on Dependable and Secure Computing (TDSC), 7(4):381–
395, October 2010.

[79] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher
Kruegel. Anomalous System Call Detection. ACM Transactions on
Information and System Security (TISSEC), 9(1):61–93, February 2006.

[80] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. Scaling Symbolic Evaluation for Automated
Verification of Systems Code with Serval. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP’19), October
2019.

[81] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. Specifi-
cation and verification in the field: Applying formal methods to BPF
just-in-time compilers in the Linux kernel. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI’20), November 2021.

[82] Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. Au-
tomated Policy Synthesis for System Call Sandboxing. Proc. ACM
Program. Lang., 4(OOPSLA), November 2020.

[83] Paul Lawrence. Seccomp filter in Android O. https://android-
developers.googleblog.com/2017/07/seccomp-filter-in-android-
o.html, July 2017.

[84] Mathias Payer and Thomas R. Gross. Protecting Applications Against
TOCTTOU Races by User-Space Caching of File Metadata. In Proceed-
ings of the 8th Annual International Conference on Virtual Execution
Environments (VEE’12), March 2012.

[85] David S. Peterson, Matt Bishop, and Raju Pandey. A Flexible Contain-
ment Mechanism for Executing Untrusted Code. In Proceedings of
the 11th USENIX Security Symposium (USENIX Security ’02), August
2002.

[86] Niels Provos. Improving Host Security with System Call Policies. In
Proceedings of the 12th USENIX Security Symposium (USENIX Security
’03), August 2003.

[87] Valentin Rothberg. Generate SECCOMP Profiles for Containers Using
Podman and eBPF. https://podman.io/blogs/2019/10/15/generate-

seccomp-profiles.html, October 2019.
[88] Rtk docs. Seccomp Isolators Guide. https://coreos.com/rkt/docs/

latest/seccomp-guide.html.
[89] Giuseppe Scrivano. seccomp: add support for eBPF

seccomp. https://github.com/giuseppe/crun/commit/
3906b4fbcb671f8f188deef08c94ceae86a80120.

[90] Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu, and
Josep Torrellas. Draco: Architectural and Operating System Sup-
port for System Call Security. In Proceedings of the 53rd IEEE/ACM
International Symposium on Microarchitecture (MICRO-53), October
2020.

[91] Alexei Starovoitov. rework/optimize internal BPF
interpreter’s instruction set. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8, March 2014.

[92] Alexei Starovoitov. Lifetime of BPF objects. https:
//facebookmicrosites.github.io/bpf/blog/2018/08/31/object-
lifetime.html, August 2018.

[93] Alexei Starovoitov. Re: seccomp feature development.
https://lwn.net/ml/linux-kernel/CAADnVQKRCCHRQrNy=
V7ue38skb8nKCczScpph2WFv7U_jsS3KQ@mail.gmail.com/, May
2020.

[94] David A. Wagner. Janus: an Approach for Confinement of Untrusted
Applications. Technical Report UCB/CSD-99-1056, EECS Department,
University of California, Berkeley, 2016.

[95] Zhiyuan Wan, David Lo, Xin Xia, Liang Cai, and Shanping Li. Mining
Sandboxes for Linux Containers. In Proceedings of 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation
(ICST’17), Tokyo, Japan, March 2017.

[96] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and
Zachary Tatlock. Jitk: A trustworthy in-kernel interpreter infras-
tructure. In Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14), October 2014.

[97] Robert N. M. Watson. Exploiting Concurrency Vulnerabilities in
System Call Wrappers. In Proceedings of the 1st USENIX Workshop on
Offensive Technologies (WOOT’07), August 2007.

[98] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim.
KRACE: Data Race Fuzzing for Kernel File Systems. In Proceedings of
the 41st IEEE Symposium on Security and Privacy, May 2020.

[99] Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana,
and Anirudh Sivaraman. Synthesizing Safe and Efficient Kernel
Extensions for Packet Processing. In Proceedings of the 2021 ACM
SIGCOMM Conference (SIGCOMM’21), August 2021.

[100] Shixiong Zhao, Rui Gu, Haoran Qiu, Tsz On Li, Yuexuan Wang, Hem-
ing Cui, and Junfeng Yang. OWL: Understanding and Detecting
Concurrency Attacks. In Proceedings of the 48th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN’18),
June 2018.

[101] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, and Asaf Cidon. XRP: In-Kernel storage functions with
eBPF. In Proceedings of 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’22), July 2022.

[102] YiFei Zhu. eBPF seccomp filters. https://lwn.net/Articles/855970/.

15

https://man7.org/conf/lpc2015/limiting_kernel_attack_surface_with_seccomp-LPC_2015-Kerrisk.pdf
https://man7.org/conf/lpc2015/limiting_kernel_attack_surface_with_seccomp-LPC_2015-Kerrisk.pdf
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://podman.io/blogs/2019/10/15/generate-seccomp-profiles.html
https://podman.io/blogs/2019/10/15/generate-seccomp-profiles.html
https://coreos.com/rkt/docs/latest/seccomp-guide.html
https://coreos.com/rkt/docs/latest/seccomp-guide.html
https://github.com/giuseppe/crun/commit/3906b4fbcb671f8f188deef08c94ceae86a80120
https://github.com/giuseppe/crun/commit/3906b4fbcb671f8f188deef08c94ceae86a80120
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html
https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html
https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html
https://lwn.net/ml/linux-kernel/CAADnVQKRCCHRQrNy=V7ue38skb8nKCczScpph2WFv7U_jsS3KQ@mail.gmail.com/
https://lwn.net/ml/linux-kernel/CAADnVQKRCCHRQrNy=V7ue38skb8nKCczScpph2WFv7U_jsS3KQ@mail.gmail.com/
https://lwn.net/Articles/855970/

	Abstract
	1 Introduction
	2 Background
	2.1 Seccomp-cBPF
	2.2 Seccomp Notifier

	3 Essential System Call Filtering Features
	3.1 Statefulness
	3.2 Expressiveness
	3.3 Synchronization
	3.4 Safe User Memory Access

	4 Threat Model and Design Goals
	4.1 Threat Model
	4.2 Design Goals

	5 Design
	5.1 Overview
	5.2 Seccomp-eBPF Program Type
	5.3 Helper Functions
	5.4 Usage
	5.5 Tamper Protection

	6 Implementation
	7 Evaluation
	7.1 Precise Temporal Specialization
	7.2 New Security Features
	7.3 Performance

	8 Discussion
	9 Related Work
	10 Concluding Remarks
	References

