

Mitered Offsets of Polyhedra

Daniel Lederer, Institute of Theoretical Computer Science

20. Mai 2022

Problem definition

• Any (maybe non-convex) polytope in \mathbb{R}^3 is given

 We shrink the polyhedron: shifting facets inwards, in self-parallel way, with unit speed

= Offsetting a polyhedron

Changes in geometric manner, structure or topology

A vertex is split into 3 vertices and additional 2 edges are created

A vertex is split into 5 vertices and additional 4 edges are created

A vertex is split into 5 vertices and additional 4 edges are created

Multiple vertices can be resolved at the same time

Daniel Lederer, Institute of Theoretical Computer Science 20. Mai 2022

The polyhedron may split up into several parts

Our task

- Developing an algorithm that computes the offset polyhedron
- Algorithm should work for almost all different polyhedron structures
- Algorithm should be implementable and numerically robust
- Software solution using C++

Let's take a closer look...

- Consider each vertex separately
- Each adjacent facet lies on a supporting plane
- Take the parallel offset of each plane and compute the intersections (= arrangement)

Small example of a 3-degree vertex. We recognize, the offset surface is

topologically the same as the original one.

Let's make it more interesting...

- Consider a vertex with degree 4
- Each plane intersects with every other plane
- Not all arrangement components are relevant for the offset surface

Arrangement of 4 planes results in v = 4, e = 18, f = 28 components

lt doesn't get any easier...

5 planes results in v = 10, e = 40, f = 55 components 6 planes results in v = 20, e = 75, f = 96 components

 As vertex degree increases, the task becomes more and more challenging Mitered Offsets of Polyhedra

Another example

Vertices may also disappear and edges are merged

Daniel Lederer, Institute of Theoretical Computer Science 20. Mai 2022

Solution

Consider each vertex v with degree > 3 separately:

- 1. Shift the planes of facets inwards, adjacent to v
- 2. Compute arrangement of offset planes (\Rightarrow dissection of space)
- 3. Find arrangement cells that contribute to the offset surface (visibility problem)
- 4. Merge these relevant cells

⇒ Offset Surface