Mitered Offsets of Polyhedra

Daniel Lederer, Institute of Theoretical Computer Science 20. Mai 2022

-www.igi.tugraz.at

Problem definition

- Any (maybe non-convex) polytope in \mathbb{R}^{3} is given

- We shrink the polyhedron: shifting facets inwards, in self-parallel way, with unit speed

$=$ Offsetting a polyhedron

- Changes in geometric manner, structure or topology

Examples of offset surfaces

A vertex is split into 3 vertices and additional 2 edges are created

Examples of offset surfaces

A vertex is split into 5 vertices and additional 4 edges are created

Examples of offset surfaces

A vertex is split into 5 vertices and additional 4 edges are created

Examples of offset surfaces

Multiple vertices can be resolved at the same time

Examples of offset surfaces

The polyhedron may split up into several parts

- Developing an algorithm that computes the offset polyhedron
- Algorithm should work for almost all different polyhedron structures
- Algorithm should be implementable and numerically robust
- Software solution using C++

Let's take a closer look...

- Consider each vertex separately
- Each adjacent facet lies on a supporting plane
- Take the parallel offset of each plane and compute the intersections (= arrangement)

Small example of a 3-degree vertex. We recognize, the offset surface is topologically the same as the original one.

Let's make it more interesting...

- Consider a vertex with degree 4
- Each plane intersects with every other plane
- Not all arrangement components are relevant for the offset surface

Arrangement of 4 planes results in $v=4, e=18, f=28$ components

It doesn't get any easier...

5 planes results in $v=10, e=40, f=55$ components
6 planes results in $v=20, e=75, f=96$ components

- As vertex degree increases, the task becomes more and more challenging

Another example

Vertices may also disappear and edges are merged

Solution

Consider each vertex v with degree >3 separately:

1. Shift the planes of facets inwards, adjacent to v
2. Compute arrangement of offset planes (\Rightarrow dissection of space)
3. Find arrangement cells that contribute to the offset surface (visibility problem)
4. Merge these relevant cells

\Rightarrow Offset Surface

