
W I S S E N T E C H N I K L E I D E N S C H A F T

www.igi.tugraz.at

Arrangement of
Planes
Daniel Lederer,
Institute of Theoretical Computer Science

20. Mai 2022



2

Arrangement of Planes

General problem definition

A finite set H of hyperplanes in Rd is given

We want to compute the hyperplane arrangement
A(H), a subdivision of the d-dimensional space
induced by H
We are mainly interested in arrangements in 3-space,
so arrangement of planes

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



3

Arrangement of Planes

Line arrangements in R2

A finite set L of lines in the plane is given
A(L) is a subdivision of the plane induced by L
Representation of intersections: vertices, edges,
faces
We only deal with simple arrangements

A simple arrangement of 6 lines

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



4

Arrangement of Planes

Plane arrangements in R3

A finite set P of planes in the space is given
A(P) is a subdivision of the space induced by P
Representation of intersections: vertices, edges,
faces, cells
We only deal with simple arrangements

A simple arrangement of 6 planes

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



5

Arrangement of Planes

Combinatorial complexity of simple A(P)

Let n be the number of given planes

Maximum number of vertices = n3−3n2+2n
6 = Θ(n3)

Maximum number of edges = n3−2n2+n
2 = Θ(n3)

Maximum number of faces = n3−n2+2n
2 = Θ(n3)

Maximum number of cells = n3+5n+6
6 = Θ(n3)

Simple A(P)⇒ maximum number of components

Overall complexity of Θ(n3)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



6

Arrangement of Planes

Our task

Developing an algorithm that computes A(P)

Creating a suitable representation of all arrangement
components with all its relationship information

Algorithm should be implementable and numerically
robust

Software solution using C++

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



7

Arrangement of Planes

Data structure
Implemented representation of A(P)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



8

Arrangement of Planes

Data structure

A simple A(P) with n ≥ 3 necessarily results in 4
non-empty sets:

V contains all vertices
E contains all edges
F contains all faces
C contains all cells

Each set has size Θ(n3)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



9

Arrangement of Planes

Vertex

A vertex is created by the intersection of 3 lines, where a line is the intersection

of two planes

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



10

Arrangement of Planes

Vertex

A vertex holds the following information:

Point that holds the coordinates (x , y , z)

6 adjacent edges
12 adjacent faces
8 adjacent cells

For a vertex there is only a constant number of
adjacent components (independent of n)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



11

Arrangement of Planes

Edge

An edge is a portion on an intersection line, bounded by vertices. The edge can

be bounded on both sides (line segment) or on one side (ray)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



12

Arrangement of Planes

Edge

An edge holds the following information:

Line on which the edge lies
Source and destination vertex (if it is bounded)
Ray that defines the direction
Whether it is bounded or not*
4 adjacent faces
4 adjacent cells

For an edge there is only a constant number of
adjacent components (independent of n)

*We say unbounded if it is not bounded on both sides

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



13

Arrangement of Planes

Face

A face is a convex area on a plane, bordered by vertices and edges. The face

can be bounded or not (then exactly 2 edges are unbounded)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



14

Arrangement of Planes

Face

A face holds the following information:

Plane on which the face lies
Set of bordered vertices
Set of bordered edges
Whether it is bounded or not
2 adjacent cells

For a face there is only a constant number of adjacent
components (independent of n)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



15

Arrangement of Planes

Cell

A cell is a convex region in the space, bordered by vertices, edges and faces.

The cell can be bounded or not

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



16

Arrangement of Planes

Cell

A cell holds the following information:

Set of bordered vertices
Set of bordered edges
Set of bordered faces
Whether it is bounded or not

A cell has no adjacencies to other (kind of)
components

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



17

Arrangement of Planes

Algorithm
Constructing A(P)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



18

Arrangement of Planes

Algorithm

Input: P
Output: A(P), so the filled data structure
We follow a step-by-step approach:

1. Compute vertices
2. Compute edges
3. Compute faces
4. Compute cells

Within these steps, relationships between
components are created

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



19

Arrangement of Planes

Computing vertices

We know, every plane intersects with every other
plane

A vertex is an intersection of 3 planes

Consider each unique triple of planes and calculate
the intersection point, which is the vertex

Remember: This results in exactly n3−3n2+2n
6 = Θ(n3)

vertices in A(P)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



20

Arrangement of Planes

Computing lines

Later on, we need to know which vertices lie on which
line (for creating edges)

2 planes must intersect in a line

Since there are 3 planes that intersect in one point,
there must be three lines that intersect in a vertex

Each vertex lies on 3 lines

On each line there lie n − 2 vertices

In A(P) there are a total of n(n−1)
2 = Θ(n2) lines

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



21

Arrangement of Planes

Pseudocode

Algorithm 1 Computing vertices
1: for unique triple (pa,pb,pc) in P do
2: v ← intersection(pa, pb, pc)
3: V insert v
4: for unique tuple (pr ,ps) in {pa,pb,pc} do
5: l ← intersection(pr , ps) /* if not computed yet */

6: l push v
7: L insert l
8: end for
9: end for

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



22

Arrangement of Planes

What we have computed so far

In a simple A(P) with n = 5 there are 10 vertices and 10 lines

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



23

Arrangement of Planes

Computing edges

We know L and which vertices lie on each l ∈ L
Sort all vertices on l from one side to the other side

Subdivide each l into edges using the vertices

On each l , n − 3 bounded and 2 unbounded edges
are created

Remember: This results in exactly n3−2n2+n
2 = Θ(n3)

edges in A(P)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



24

Arrangement of Planes

Pseudocode

Algorithm 2 Computing edges
1: for l in L do
2: V ← sort vertices in l
3: e← create(first v in V , ray ) /* ray points in the right outward direction */
4: connect e with v and l ; E insert e
5: for v in V do
6: if v is last vertex then
7: e← create(v , opposite ray )
8: else
9: e← create(v , next v )
10: end if
11: connect e with v (and next v ) and l ; E insert e
12: end for
13: end for

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



25

Arrangement of Planes

What we have computed so far

In a simple A(P) with n = 7 there are 35 vertices and 126 edges

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



26

Arrangement of Planes

Computing faces

Each edge has 4 adjacent faces (2 on each plane)

For each edge, where at least 1 adjacent face is still
missing, create a new face there

We have to distinguish on which plane a face is
missing

In a recursive way, gradually collect neighbouring
edges that form a face

Remember: This results in exactly n3−n2+2n
2 = Θ(n3)

faces in A(P)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



27

Arrangement of Planes

Pseudocode

Algorithm 3 Computing faces
1: for e in E do
2: while number adjacent faces of e < 4 do
3: f ← create()
4: p ← suitable plane of e
5: connect f with p
6: o ← vertices orientation of e on p
7: fillFace(f , e, o)
8: F insert f
9: end while

10: end for

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



28

Arrangement of Planes

Collecting neighbouring edges

Recursively inspect the next suitable edge for each
vertex

Suitable edge is the one to which the current edge
encloses the smallest angle on the plane

Calculate angles ∈ (0,2π) in a specific orientation

For each side, consider the vertex in the opposite
orientation ((counter)clockwise)

Consider source and destination vertex also in
opposite orientation

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



29

Arrangement of Planes

Choose vertex orientation

For the respective face on the plane, consider the vertices in the appropriate

orientation regarding the plane’s normal

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



30

Arrangement of Planes

Pseudocode

Algorithm 4 Fill face: face f , edge e, orientation o
1: connect f with e
2: vertices orientation of e on plane← flip o /* needed for the future */
3: update f boundedness
4: for vertex v of e do
5: connect f with v
6: en ← edge adjacent to v with smallest angle from e with respect to o
7: if f is not connected with en then
8: on ← vertices orientation of en on plane
9: fillFace(f , en, on)
10: end if
11: end for

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



31

Arrangement of Planes

What we have computed so far

In a simple A(P) with n = 10 there are 120 vertices, 405 edges and 460 faces

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



32

Arrangement of Planes

Computing cells

Each face has 2 adjacent cells

For each face, where at least 1 adjacent cell is still
missing, create a new cell there

In a recursive way, gradually collect neighbouring
faces that form a cell

Remember: This results in exactly n3+5n+6
6 = Θ(n3)

cells in A(P)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



33

Arrangement of Planes

Pseudocode

Algorithm 5 Computing cells
1: for f in F do
2: while number adjacent cells of f < 2 do
3: c ← create()
4: o ← edges orientation on f
5: fillCell(c, f , o)
6: C insert c
7: end while
8: end for

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



34

Arrangement of Planes

Collecting neighbouring faces

Recursively inspect the next suitable face for each
edge

Suitable face is the one to which the current face
encloses the smallest angle

Calculate dihedral angles ∈ (0,2π) in a specific
orientation

For each side, consider the edges in the opposite
orientation ((counter)clockwise)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



35

Arrangement of Planes

Choose edges orientation

Consider the edges in the appropriate orientation

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



36

Arrangement of Planes

Pseudocode

Algorithm 6 Fill cell: cell c, face f , orientation o
1: connect c with f
2: connect c with vertices of f
3: edges orientation on f ← flip o /* for next adjacent cell */
4: update c boundedness
5: for edge e of f do
6: if c is not connected with e then
7: connect c with e
8: fn ← face adjacent to e with smallest angle from f with respect to o
9: if c is not connected with fn then
10: on ← edges orientation on fn
11: fillCell(c, fn, on)
12: end if
13: end if
14: end for

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



37

Arrangement of Planes

We are done!

The presented algorithm constructs the simple A(P)

Data structure is filled

Representation of all occuring vertices, edges, faces
and cells in the arrangement

Relationship information between arrangement
components

Most operations are combinatorial only, except the
vertex position and angle calculations

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



38

Arrangement of Planes

Complexity
Runtime and space consumption

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



39

Arrangement of Planes

Runtime

Since we follow a step-by-step approach, the runtime
can be determined quite easily

Our algorithm takes advantage of the fact that there
are only O(1) adjacency components

Asymptotically, computing edges needs the most
time, since we need to presort vertices

Each face and cell consists of Ω(1) and O(n)
components

But overall, there are only Θ(n3) components

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



40

Arrangement of Planes

Runtime

Computing vertices: obviously Θ(n3)

Computing edges: On each of the Θ(n2) lines we
need to sort Θ(n) vertices⇒ Θ(n3 log n)

Computing faces: Iterating over Θ(n3) vertices and
edges⇒ Θ(n3)

Computing cells: Iterating over Θ(n3) vertices, edges
and faces⇒ Θ(n3)

⇒ Overall runtime of Θ(n3 log n)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



41

Arrangement of Planes

Space consumption

For each vertex in V, O(1) memory is required

For each edge in E , O(1) memory is required

For each face in F , we store Ω(1) and O(n) vertices
and edges

For each cell in C, we store Ω(1) and O(n) vertices,
edges and faces

Nevertheless, there are only Θ(n3) components

⇒ Overall space consumption of Θ(n3)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



42

Arrangement of Planes

Conclusion

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



43

Arrangement of Planes

Summary

Our algorithm constructs the simple A(P) of n planes
in P in Θ(n3 log n) time and Θ(n3) space

Asymptotically, we do not need more space than
A(P) itself

Algorithm and data structure are easy to implement
and fast

Strategy is numerically quite robust, since we do not
need any additional intersection checks (on which a
decision depends)

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022



44

Arrangement of Planes

Time for demo!

Daniel Lederer, Institute of Theoretical Computer Science
20. Mai 2022


