

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

10 - 13 October, 2022

Introduction

- We are interested in straight skeletons of (non-convex) polytopes in R³
- Straight skeleton structure is defined by a mitered boundary offsetting process
- Shrinking a polytope in a self-parallel way until it vanishes
- Each component of the polytope traces out a certain component of the skeleton

¹ Offsetting polyhedral surface in \mathbb{R}^3

- Polytope vertices of degree \geq 4 \Rightarrow split into degree-3 vertices
- Initially, all (high-degree) vertex splittings will happen simultaneously (= initial events)
- Later, during shrinking process ⇒ only low-degree vertices, in generic case (= non-initial events)
 - Handled in the same way as initial events

- Consider each vertex separately
- Vertex *v* of degree $k \Rightarrow k$ incident facets
- The k planes supporting these facets are offset by 1 unit towards the interior of the polytope
- Locally build a new valid surface from these offset planes

In general, v can have a complex neighbourhood

⁷ Vertex types

 Convex case (easiest case): all incident edges of v are convex

A degree-10 convex vertex and its offset surface

 Pointed case: v can be cut off from the polytope by a single plane

A degree-7 pointed vertex and its offset surface

Saddle point case: incident edges of v span 3-space

A degree-6 saddle vertex and its offset surface

Touching case:
e-sphere centered at
v intersects
polytope boundary in disconnected set

A degree-6 touching vertex and its offset surface

Touching case:
e-sphere centered at
v intersects
polytope boundary in disconnected set

A degree-4 touching vertex and its offset surface

Touching case:
e-sphere centered at
v intersects
polytope boundary in disconnected set

A degree-4 touching vertex and its offset surface

Valid offset surface

- Computing an offset surface is highly non-trivial
- What is a *valid* offset surface?
 - (1) Its facets must come from the k offset planes
 - (2) It must fit to the shrunk polytope
 - (3) Each of its facets must be fully visible from v

Conditions (1) and (2) are obviously necessary. Condition (3) is needed, too, because certain facets would move to the exterior of the polytope, otherwise.

Valid offset surface

- Not unique in general
- There are exponential many valid offset surfaces, in k
- All valid offset surfaces are contained in the so-called offset arrangement A(v)

Recap: Offset arrangement $\mathcal{A}(v)$

- Dissection of the space by the k offset planes for v
- Representation of intersections: Vertices, edges, facets, cells (see slides from last time for more details)
- Combinatorial structure of A(v) is independent from the offset distance
- A(v) can be used to prove that a valid offset surface always has to exist:

Existence proof for a valid offset surface

- Arrangement cell is *relevant* ⇔ its radial projection from *v* fully lies within the *spherical polygon S* for *v*
- S is created by intersecting a (small) sphere, centered at v, with the polytope
- See slides from last time for more details

Existence proof for a valid offset surface

- Take all relevant unbounded cells of $\mathcal{A}(v)$
- If boundary of their union contains unbounded facets only ⇒ valid offset surface (everything visible from v)
- Otherwise, surface contains bounded facets (orphan facets)

 - This is always possible by the structure of $\mathcal{A}(v)$

Algorithmic viewpoint

- Proof above gives an algorithm for constructing valid offset surfaces:
 - For a vertex v with degree > 3, compute all cells of A(v)
 - Merge all relevant unbounded cells
 - If resulting surface contains orphan facets, then add (relevant) bounded cells until no orphan facets remain

Software demonstration

- In the following examples, the cell adding process stops when the first valid offset surface is found:
 - saddle_3.obj
 - kiev_17.obj
 - saddle_20.obj
 - convex_spinning_tops.obj
 - convex_spinning_tops_inverse.obj

Problem: Cell Adding Process

- Order of adding cells matters
- If cell order is chosen unluckily
 - We cannot get rid of orphan facets
 - Non-valid offset surface
- The higher the degree of *v*, the more cell candidates there can be
 - Higher chance for wrong cell adding order

Problem example in \mathbb{R}^2

² Problem example in \mathbb{R}^2

³ Problem example in \mathbb{R}^2

⁴ Problem example in \mathbb{R}^2

⁵ Problem example in \mathbb{R}^2

Problem example in \mathbb{R}^2

³⁷ Problem example in \mathbb{R}^2

² Problem example in \mathbb{R}^2

³ Problem example in \mathbb{R}^2

⁴ Problem example in \mathbb{R}^2

⁵ Problem example in \mathbb{R}^2

⁴⁷ Problem example in \mathbb{R}^2

[®] Problem example in \mathbb{R}^2

² Problem example in \mathbb{R}^2

³ Problem example in \mathbb{R}^2

⁴ Problem example in \mathbb{R}^2

⁵ Problem example in \mathbb{R}^2

⁷ Problem example in \mathbb{R}^2

[®] Problem example in \mathbb{R}^2

² Problem example in \mathbb{R}^2

⁵ Problem example in \mathbb{R}^2

³⁷ Problem example in \mathbb{R}^2

²² Problem example in \mathbb{R}^3

¹ Problem example in \mathbb{R}^3

² Problem example in \mathbb{R}^3

³ Problem example in \mathbb{R}^3

⁷⁴ Problem example in \mathbb{R}^3

⁵ Problem example in \mathbb{R}^3

[®] Problem example in \mathbb{R}^3

⁷⁷ Problem example in \mathbb{R}^3

² Problem example in \mathbb{R}^3

² Problem example in \mathbb{R}^3

²² Problem example in \mathbb{R}^3

Problem example in \mathbb{R}^3

²² Problem example in \mathbb{R}^3

²² Problem example in \mathbb{R}^3

Way out

- Try random order, start again when fail
- Works for all vertices of our various test polytopes
- May take longer time for very high-degree vertices
- Nice byproduct: Many valid surfaces
 - We can choose the one with minimum number of convex/reflex edges
 - Optimize other criteria

Implementation perspective

- Software solution using C++
- All algorithmic steps are implemented
- With the developed software, one can find a valid offset surface for a given event vertex
- Implementation was tested with many polytopes (several 100)
- Implementation is numerically robust

Software runtime: computing $\mathcal{A}(v)$

- In theory, ⊖(n³log n), where n is the number of unique offset planes (≤ facet-degree of v)
- Implementation runs rather fast (on my machine ⁽ⁱ⁾):
 - 10 Planes: < 0.05 s</p>
 - 20 Planes: < 0.5 s
 - 30 Planes: ≈ 1 s
 - 40 Planes: ≈ 2.4 s
- $\rightarrow n > 10$ rare in practice

■ 50 Planes: ≈ 6 s

Software runtime: Single splitting

- Theoretical runtime still needs to be investigated
- Depends on k, number of merged unbounded and bounded cells
- A few examples:
 - convex_vertex_7.obj: < 0.05 s</pre>
 - kiev_7.obj: < 0.05 s
 - saddle_10.obj: < 0.2 s

Software runtime: Initial splittings

- Algorithm is applied for each eligible vertex on the polytope
- A few examples:
 - journal_verworrtakelt.obj (66 split vertices): $\approx 0.8 \; s$
 - journal_lion.obj (85 split vertices): \approx 1.2 s
 - journal_venus.obj (142 split vertices): \approx 1.8 s
 - journal_bunny.obj (144 split vertices): \approx 2.2 s

Future work

- Glue the offset surfaces for the vertices to the polytope
- Speed up event detection later during the shrinking process
 - Initially, the event detection is just checking the degree of vertices
- Find a method of generating a provably successful cell adding order