Splitting a Vertex

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science 10-13 October, 2022

-www.igi.tugraz.at

Introduction

- We are interested in straight skeletons of (non-convex) polytopes in \mathbb{R}^{3}
- Straight skeleton structure is defined by a mitered boundary offsetting process
- Shrinking a polytope in a self-parallel way until it vanishes
- Each component of the polytope traces out a certain component of the skeleton

Example

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Example

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Example

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Example

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Example

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Example

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Example

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Offsetting polyhedral surface in \mathbb{R}^{3}

- Polytope vertices of degree $\geq 4 \Rightarrow$ split into degree-3 vertices

Offsetting polyhedral surface in \mathbb{R}^{3}

- Polytope vertices of degree $\geq 4 \Rightarrow$ split into degree-3 vertices

Offsetting polyhedral surface in \mathbb{R}^{3}

- Polytope vertices of degree $\geq 4 \Rightarrow$ split into degree-3 vertices

Offsetting polyhedral surface in \mathbb{R}^{3}

- Polytope vertices of degree $\geq 4 \Rightarrow$ split into degree-3 vertices

Offsetting polyhedral surface in \mathbb{R}^{3}

- Polytope vertices of degree $\geq 4 \Rightarrow$ split into degree-3 vertices
- Initially, all (high-degree) vertex splittings will happen simultaneously (= initial events)
- Later, during shrinking process \Rightarrow only low-degree vertices, in generic case (= non-initial events)
- Handled in the same way as initial events

Offsetting polyhedral surface in \mathbb{R}^{3}

- Consider each vertex separately
- Vertex v of degree $k \Rightarrow k$ incident facets
- The k planes supporting these facets are offset by 1 unit towards the interior of the polytope
- Locally build a new valid surface from these offset planes

Vertex types

- In general, v can have a complex neighbourhood

Vertex types

- Convex case (easiest case): all incident edges of v are convex

A degree-10 convex vertex and its offset surface

Vertex types

- Pointed case: v can be cut off from the polytope by a single plane

A degree-7 pointed vertex and its offset surface

Vertex types

- Saddle point case: incident edges of v span 3-space

A degree-6 saddle vertex and its offset surface

Vertex types

- Touching case: ϵ-sphere centered at v intersects polytope boundary in disconnected set

A degree-6 touching vertex and its offset surface

Vertex types

- Touching case: ϵ-sphere centered at v intersects polytope boundary in disconnected set

A degree-4 touching vertex and its offset surface

Vertex types

- Touching case: ϵ-sphere centered at v intersects polytope boundary in disconnected set

A degree-4 touching vertex and its offset surface

Valid offset surface

- Computing an offset surface is highly non-trivial
- What is a valid offset surface?
(1) Its facets must come from the k offset planes
(2) It must fit to the shrunk polytope
(3) Each of its facets must be fully visible from v

Conditions (1) and (2) are obviously necessary. Condition (3) is needed, too, because certain facets would move to the exterior of the polytope, otherwise.

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science
10-13 October, 2022

Valid offset surface

- Not unique in general
- There are exponential many valid offset surfaces, in k
- All valid offset surfaces are contained in the so-called offset arrangement $\mathcal{A}(v)$

Recap: Offset arrangement $\mathcal{A}(v)$

- Dissection of the space by the k offset planes for v
- Representation of intersections: Vertices, edges, facets, cells (see slides from last time for more details)
- Combinatorial structure of $\mathcal{A}(v)$ is independent from the offset distance
- $\mathcal{A}(v)$ can be used to prove that a valid offset surface always has to exist:

Existence proof for a valid offset surface

- Arrangement cell is relevant \Leftrightarrow its radial projection from v fully lies within the spherical polygon S for v
- S is created by intersecting a (small) sphere, centered at v, with the polytope
- See slides from last time for more details

Existence proof for a valid offset surface

- Take all relevant unbounded cells of $\mathcal{A}(v)$
- If boundary of their union contains unbounded facets only \Rightarrow valid offset surface (everything visible from v)
- Otherwise, surface contains bounded facets (orphan facets)
- Add bounded cells that fit to such orphans until all facets become unbounded \Rightarrow valid offset surface
- This is always possible by the structure of $\mathcal{A}(v)$

Algorithmic viewpoint

- Proof above gives an algorithm for constructing valid offset surfaces:
- For a vertex v with degree >3, compute all cells of $\mathcal{A}(v)$
- Merge all relevant unbounded cells
- If resulting surface contains orphan facets, then add (relevant) bounded cells until no orphan facets remain

Software demonstration

- In the following examples, the cell adding process stops when the first valid offset surface is found:
- saddle_3.obj
- kiev_17.obj
-saddle_20.obj
- convex_spinning_tops.obj

■ convex_spinning_tops_inverse.obj

Problem: Cell Adding Process

- Order of adding cells matters
- If cell order is chosen unluckily
- We cannot get rid of orphan facets
- Non-valid offset surface
- The higher the degree of v, the more cell candidates there can be
- Higher chance for wrong cell adding order

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{2}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Problem example in \mathbb{R}^{3}

Franz Aurenhammer, Daniel Lederer, Institute of Theoretical Computer Science

Way out

- Try random order, start again when fail
- Works for all vertices of our various test polytopes
- May take longer time for very high-degree vertices
- Nice byproduct: Many valid surfaces
- We can choose the one with minimum number of convex/reflex edges
- Optimize other criteria

Implementation perspective

- Software solution using C++
- All algorithmic steps are implemented
- With the developed software, one can find a valid offset surface for a given event vertex
- Implementation was tested with many polytopes (several 100)
- Implementation is numerically robust

Software runtime: computing $\mathcal{A}(v)$

- In theory, $\Theta\left(n^{3} \log n\right)$, where n is the number of unique offset planes (\leq facet-degree of v)
- Implementation runs rather fast (on my machine (3):
- 10 Planes: < 0.05 s
- 20 Planes: < 0.5 s
- 30 Planes: ≈ 1 s
- 40 Planes: ≈ 2.4 s
- 50 Planes: ≈ 6 s
$n>10$ rare in practice

Software runtime: Single splitting

- Theoretical runtime still needs to be investigated
- Depends on k, number of merged unbounded and bounded cells
- A few examples:
- convex_vertex_7.obj: < 0.05 s
- kiev_7.obj: < 0.05 s
- saddle_10.obj: < 0.2 s

Software runtime: Initial splittings

- Algorithm is applied for each eligible vertex on the polytope
- A few examples:
- journal_verworrtakelt.obj (66 split vertices): $\approx 0.8 \mathrm{~s}$
- journal_lion.obj (85 split vertices): $\approx 1.2 \mathrm{~s}$
- journal_venus.obj (142 split vertices): $\approx 1.8 \mathrm{~s}$
- journal_bunny .obj (144 split vertices): $\approx 2.2 \mathrm{~s}$

Future work

- Glue the offset surfaces for the vertices to the polytope
- Speed up event detection later during the shrinking process
- Initially, the event detection is just checking the degree of vertices
- Find a method of generating a provably sucessful cell adding order

