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Introduction

We are interested in straight skeletons of
(non-convex) polytopes in R3

Straight skeleton structure R is defined by a mitered
boundary offsetting process

For each vertex v with deg(v) > 3, its offset surface
Σ is computed by the offset plane arrangement A(v)

Boundary of union of all relevant unbounded
arrangement cells defines Σ, but ...

Σ may not be valid

Σ may contain bounded facets⇒ complicates R
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Cell Adding Process (CAP)

Let F be the set of bounded facets in Σ
while F is not empty:

Choose f ∈ F
Let c be the bounded cell upon f
Σ← Σ ∪ c
Update F

Add bounded arrangement cells to Σ until all facets
become unbounded

This is always possible by the structure of A(v)

After CAP, Σ is valid and contains only unbounded
facets
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CAP Example
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CAP Algorithm Analysis

Let F be the set of bounded facets in Σ
while F is not empty:

Choose f ∈ F
Let c be the bounded cell upon f
Σ← Σ ∪ c
Update F

F can easily be found

Iteration over all facets in Σ
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CAP Algorithm Analysis

Let F be the set of bounded facets in Σ
while F is not empty:

Choose f ∈ F
Let c be the bounded cell upon f
Σ← Σ ∪ c
Update F

There may be many facets in F
Which f ∈ F should we choose?

Does it even matter which f we choose? Yes!
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CAP Algorithm Analysis: Choose f ∈ F

For a bounded facet f there is a unique cell c upon f

Σ ∪ c may create new bounded facets f ′, f ′′, ... on Σ
⇒ F is extended by f ′, f ′′, ...

Order of the facets we choose in CAP is crucial for
the updated or final Σ

If the order is chosen in an unfavorable way, it is no
longer possible to get rid of all bounded facets! Why?

c may be unbounded for some f

If c is unbounded⇒ we must not Σ ∪ c
⇒ f may remain forever on Σ and in F
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CAP Algorithm Analysis

Let F be the set of bounded facets in Σ
while F is not empty:

Choose f ∈ F
Let c be the bounded cell upon f

Σ← Σ ∪ c
Update F

There is always a unique cell c upon f

c can easily be determined from the structure of A(v)

If f ∈ F is chosen properly⇒ c is always bounded
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CAP Algorithm Analysis

Let F be the set of bounded facets in Σ
while F is not empty:

Choose f ∈ F
Let c be the bounded cell upon f
Σ← Σ ∪ c
Update F

Merging c to Σ is always doable

Updated Σ is always unique
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CAP Algorithm Analysis

Let F be the set of bounded facets in Σ
while F is not empty:

Choose f ∈ F
Let c be the bounded cell upon f
Σ← Σ ∪ c
Update F

Σ was only updated locally around c

F can thus be updated efficiently
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Problem Definition

Given is a (not necessarily valid) surface Σ that
contains bounded facets

We are looking for a set of cells C such that
Σ′ = Σ ∪ C contains unbounded facets only⇒ Σ′ is
valid

C certainly exists due to the structure of A(v)

C does not have to be unique⇒ Σ′ may not be unique

We are already satisfied with one instance of C
For a given Σ, how to find C?
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Current Solution Approach

We extend C step by step according to the rules:

(1) If f ∈ F is not visible from v ⇒ f cannot belong to
Σ′ ⇒ add c to C, for c upon f , to make f disappear

(2) Add any c to C for which no new bounded facets
are created (c fits perfectly to the surface)

(3) Add any c to C that have at least 2 facets in
common with the surface and all of them are
connected

(4) If none of the above 3 criteria apply⇒ select any
f ∈ F and add the corresponding bounded c to C
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Solution Discussion

If rule (1) is applicable⇒ c surely belongs to the
solution set C
Otherwise, (2), (3) or (4) is applicable (descending
priority)

There is room for improvement in the remaining three
rules

Current approach does not lead to the goal for all
problem instances

It is likely that a better heuristic algorithm exists
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Different Solution Approach

Given is a combinatorial optimization problem

Finding C is probably NP-hard (open question)

Different problem instances (data) but same problem
structure

Idea: Apply Machine Learning to learn patterns in
the data to exploit problem structure

Machine learning based methods are able to find
new, previously unknown heuristics

Automatically learn good heuristic algorithms for
finding C
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Machine Learning

Machine Learning (ML) is a sub-discipline of Artificial
Intelligence in which a machine learns intelligent
behaviour

”A computer program is said to learn from experience
E with respect to some task T and some
performance measure P, if its performance on T , as
measured by P, improves with experience E .” [1]

T : Driving on highways using vision sensors

P: Average distance traveled before an error

E : Images sequence & steering commands by humans [1]

[1] Mitchell, T. (1997). Machine Learning. McGraw Hill. p. 2. ISBN 978-0-07-042807-2.
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Machine Learning Paradigms

Unsupervised Learning:
Learning properties and patterns in
unlabeled data

Supervised Learning:
Learning a mapping of data (input)
to labels (output)

Reinforcement Learning:
Learning the optimal policy of an
agent interacting with an
environment

The three basic paradigms

of ML
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Reinforcement Learning (RL)

An agent interacts with an environment

During this time, the agent makes decisions in the
form of actions

Environment changes its internal state and emits a
reward (weak feedback)

Goal is to maximize the accumulated reward during
the agent’s lifetime

⇒ Agent’s behaviour is reinforced (therefore
”reinforcement learning”)

⇒ Optimal policy is learned
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Agent-Environment Interaction

In a discrete timestep t the environment is in state St

Agent chooses and performs an action At

Environment changes its state to St+1 and emits a
reward Rt+1 (next timestep)

Based on that, the agent chooses the next action
At+1, etc... ⇒ S0,A0,R1,S1,A1,R2,S2,A2, ...

Daniel Lederer, Institute of Theoretical Computer Science
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Our Agent & Environment

Agent is ”an invisible character”

Agent decides on a specific f ∈ F ⇒ associated c is
merged onto Σ

Environment is ”anything outside of the agent”

Environment includes

surfaces

plane arrangements

merging dynamics

everything else

Daniel Lederer, Institute of Theoretical Computer Science



26

Computational Geometry meets Machine Learning

Episode

When our agent interacts with our environment, an
episode is generated

Episode starts in an initial state (at t = 0) and ends in
a terminal state (at t = T )

Sequence: S0,A0,R1,S1,A1, ...,AT−1,RT ,ST

Initial state S0 is represented by Σ

Terminal state ST is represented by
Σ′ = Σ ∪ {c1, ..., cT}
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POMDP

Partially Observable Markov Decision Process

6-tuple (S,A,Ω,T ,O,R)

S: State space

A: Action space

Ω: Observation space

T : S ×A× S → [0,1]: Transition function

O : S ×A× Ω→ [0,1]: Observation function

R : S ×A× S → R: Reward function
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State

A state describes the current situation in the
environment

A state of our environment is represented by Σ

Σ is described by its vertices, edges and facets and
their connectivity information

Note that state space S comprises all possible
surfaces than can occur in the environment (S is
infinite)
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State Example

Σ
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Observation

For each state s ∈ S there is an observation o ∈ Ω

Typically, o does not provide all information of s,
o only contains hints about how s looks like

We already know s, so why are we interested in o?

s provides too much information

Scaling/Translation/Rotation of Σ is irrelevant in
our problem

Exact position of each vertex on Σ is redundant
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Observation

What part of Σ might be important for encoding the
problem structure?

Connectivity information between facets

Relation between facets in the space

Sharing planes of facets

Formulating o as a graph G

Think of G as a reduced special dual representation
of Σ

Let N be the nodes and E the edges of G
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Graph Nodes

Each facet f ∈ Σ corresponds to a node n ∈ N

If f is bounded and its associated c is bounded⇒
type nt = 1

If f is bounded but c is unbounded⇒ nt = 2

If f is unbounded⇒ nt = 3

Each plane on Σ corresponds to a node n ∈ N with
nt = 4
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Graph Nodes Example

State
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Graph Nodes Example

State together with N
(green for nt = 1, blue for nt = 3, black for nt = 4)
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Graph Nodes Example

N
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Graph Edges

Each edge e′ ∈ Σ corresponds to an edge e ∈ E ,
connecting the nodes of neighbouring facets

Each facet f ∈ Σ corresponds to an edge e ∈ E ,
connecting the facet’s node with its supporting plane’s
node

Each e ∈ E has weight ew , corresponding to the
interior angle between the two facets on Σ

If e is adjacent to a plane node⇒ ew = 0, since
in the imagination the facet encloses no angle
with its plane
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Graph Edges Example

State
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Graph Edges Example

State together with N and E
(without weights)
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Graph Edges Example

N and E
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Action

Based on the current observation, the agent chooses
an action

An action expresses what the agent can do in the
current observation of the environment

An action of our agent is represented by selecting a
node n ∈ N of type nt = 1

n is associated with a (bounded) facet f ∈ Σ

f is associated with a (bounded) cell c ∈ A(v)

The action causes merging of c onto Σ⇒ state and
observation transition

Daniel Lederer, Institute of Theoretical Computer Science



41

Computational Geometry meets Machine Learning

Action Example

G
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Action Example

Selecting a node of type nt = 1
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Action Example

Next G
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Reward

Based on the current state and selected action, the
environment emits a reward

The reward tells the agent how good its action was

It is often represented by a scalar r

The higher r , the better the action was

What does our reward look like?

Can we give a reward after each action?

Daniel Lederer, Institute of Theoretical Computer Science
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Reward

There might be cells c1, c2, ... ∈ A(v) that certainly
belong to our solution set C
But instead of giving these actions a higher reward
and learn from this, we can directly insert c1, c2, ...
into C ⇒ Expert Policy (discussed later)

Actions that directly lead to the success/failure state,
should get a high/low reward

For all intermediate actions, we cannot state in
general which ones should be prefered
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Reward

Let s ∈ S be the current state

Let a ∈ A be the selected action

Let s′ ∈ S be the next state when performing a in s

Then,

r(s,a) = 0 if s′ is no terminal state

r(s,a) = +1 if s′ is a success terminal state

r(s,a) = −1 if s′ is a failure terminal state

Reward signal is very sparse

Daniel Lederer, Institute of Theoretical Computer Science
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Policy

The policy π describes the behaviour of the agent

π represents the strategy of the agent

Using π, the agent selects an action a ∈ A for the
given observation o ∈ Ω

Formally, π can be represented as π(o) = a

What is our policy?

⇒ A good policy is what we want to learn!
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Expert Policy

If f ∈ F is not visible from v ⇒ f cannot belong to Σ′

⇒ add c to C, for c upon f , to make f disappear

If such f exists, select corresponding node n ∈ N as
action (expert policy)

The action suggested by the expert policy is always
optimal

We already have the expert policy, so we do not need
to learn it

But the expert policy cannot always suggest an action
⇒ we need another policy
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ε-greedy Policy

We need to explore the environment well enough to
learn about the problem structure and a good policy

We have to find a suitable balance between
exploration and exploitation (= applying what has
already been learned)

Introduce a small value ε between 0 and 1

With a probability of ε take a random action, otherwise
take the greedy action (ε-greedy policy)

We have defined policies, but how do we learn a
good one?

Daniel Lederer, Institute of Theoretical Computer Science
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Q-Learning

Q-Learning is an algorithm that learns a Q-value for
each o,a pair

This value is used to determine the quality of a in o

Q-function Q(o,a) is trained

⇒ Optimal Q-function Q∗(o,a)

⇒ Optimal policy π∗(o) = argmaxaQ∗(o,a)

⇒ Best a for given o

Update Rule: Q(Ot ,At)← Q(Ot ,At) + α ·
[Rt+1 + γ maxA Q(Ot+1,A)−Q(Ot ,At)]

Daniel Lederer, Institute of Theoretical Computer Science
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Q-Learning

At the beginning of training, Q-function returns
arbitrary values for all o,a pairs

After sufficient exploration of the environment and
application of the update rule⇒ Q(o,a) becomes
more meaningful

Problem: S, A, Ω are infinite, so we cannot store and
update all o,a pairs

Solution: Generalization over several observations
and actions⇒ Q-Function approximation

Daniel Lederer, Institute of Theoretical Computer Science
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Deep Q-Learning

Creating a function approximation
Q̂(o,a; Θ) ≈ Q(o,a)

Q̂(o,a; Θ) can be computed with a Deep Neural
Network with model parameters Θ⇒ Deep
Q-Network (DQN)

DQN approximates the Q-value for each o,a pair

Approximations are sufficient as long as the relative
quality assessments are preserved
(argmaxaQ̂(o,a; Θ))

Daniel Lederer, Institute of Theoretical Computer Science
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DQN

A classical DQN model
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Training DQN

Training of DQN by optimizing its parameters
Θ = {θ1, ..., θk}
Optimization of Θ by minimizing quadratic loss
L(Θ) = E[(y − Q̂(Ot ,At ; Θ))2] with

y = Rt+1 + γ maxA Q̂(Ot+1,A; Θ)

L(Θ) can be (locally) minimized using the Stochastic
Gradient Descent (SGD) algorithm

Problem: SGD needs iid data, but our data are
sequentially dependent⇒ unstable training

Solution: Experience Replay
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Experience Replay

In each timestep t collect an experience
Et = (Ot ,At ,Rt+1,Ot+1)

Et is stored in a replay memoryM

During training, sample a random mini-batch b iid∼M
and optimize Θ for b using SGD

Experiences are reused in many updates⇒ higher
data efficiency

Data in b are uncorrelated⇒ more stable network
training

Daniel Lederer, Institute of Theoretical Computer Science



56

Computational Geometry meets Machine Learning

Applying DQN

When using DQN, we need to consider more issues

(1) DQN only accepts inputs of the same size

Input of our DQN is o, or its graph G

Different G have different sizes

(2) DQN only produces outputs of the same size

Output of our DQN is
Q̂(o,ai ,Θ),∀ai ∈ {a1, ...,am}
Different G have different number of actions m

Daniel Lederer, Institute of Theoretical Computer Science
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Applying DQN: Issue (2)

This matter can be solved quite easily

Modify DQN

Input: o and a single ai

Output: Q̂(o,ai ,Θ)

Compute Q-value for each ai separately

DQN can now be applied to different numbers of
actions

Drawback: Instead of a single forward pass, we now
need m forward passes⇒ takes more time

Daniel Lederer, Institute of Theoretical Computer Science
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Updated DQN

The updated DQN model
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Applying DQN: Issue (1)

This matter is not so easy to solve

Order of the nodes and edges in G should not matter

Connectivity information between nodes and all
features should be preserved

Idea: Learn a fixed-sized representation of o and a,
independent of the size of G

Then, input of DQN is also of fixed size

Solution: Graph Neural Network

Daniel Lederer, Institute of Theoretical Computer Science
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Graph Neural Network

A Graph Neural Network (GNN) processes
graph-structured data

GNN simulates an exchange of features between the
nodes in the graph (message passing)

For each node, and finally for the graph itself, a
low-dimensional vector representation is learned (=
Node/Graph embedding)

Embeddings include important graph characteristics,
e.g. node types, edge weights, neighbourhoods, etc.

GNN can be seen as a Graph Embedding Network

Daniel Lederer, Institute of Theoretical Computer Science
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GNN: Initial Node Embedding

For each n ∈ N we learn a p-dimensional node
embedding µn

Initialize µn as follows:

µ
(0)
n = relu(θ1tn), where

tn is the one-hot encoded type of n

θ1 ∈ Rp×4 are trainable parameters

relu(x) = max(0, x) is the rectified linear unit

Initially, global node type information is collected
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GNN: Message Passing

Each n computes a message and transmits it to its
neighbours

Each n aggregates the messages of its neighbours

Each µn is updated synchronously up to T iterations:

µ
(t)
n ← Fθ2(µ

(t−1)
n , {µ(t−1)

u }u∈N (n), {ew}e∈E(n)), where

N (n) are the neighbouring nodes of n

E(n) are the adjacent edges of n

{·} is some aggregation function (e.g. summation)

F is a neural network with θ2 combining them

Daniel Lederer, Institute of Theoretical Computer Science
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GNN: Message Passing

Messages are propagated recursively according to
the topology of G

Only when µ(t)
n has been computed for all n, the next

iteration t + 1 starts

The larger T is, the further the messages are
propagated through G

µ
(T )
n includes information of its T -hop neighbourhood

Typically a small T is sufficient for a good node
representation

Daniel Lederer, Institute of Theoretical Computer Science
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Parameterizing Q̂(o, a; Θ)

Let µG =
∑

n∈N µ
(T )
n be the graph embedding of G

Combining the GNN with our DQN, we can
parametrize Q̂(o,a; Θ) with Θ = {θ1, θ2, θ3}:

Q̂(o,a; Θ) = Hθ3(µG, µ
(T )
n ), where

µG ∈ Rp is a representation of o

µ
(T )
n ∈ Rp is a representation of a

H is a neural network with θ3 combining them

All parameters in Θ are trainable

Daniel Lederer, Institute of Theoretical Computer Science
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Final Model

Our final deep reinforcement learning model has a
GNN and DQN component

GNN takes a graph and produces node embeddings
of fixed size

Aggregating all node embeddings to a graph
embedding of fixed size that represents o

DQN takes the graph embedding and one node
embedding each, which represents a

DQN produces Q̂(o,a; Θ)

Daniel Lederer, Institute of Theoretical Computer Science
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Final Model

The final GNN-DQN model

Daniel Lederer, Institute of Theoretical Computer Science



67

Computational Geometry meets Machine Learning

Training

All parameters in the GNN and DQN can be learned
end-to-end using reinforcement learning

Training is done by SGD using experience replay

In order for our model to understand the underlying
problem structure, we need a lot of training data

Initial task was to compute offset surfaces of
polyhedra in R3

Therefore, take various real world data on which our
model should be trained
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Training Data

Some polyhedra
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Training Sample

We need many polyhedra in R3

Each higher-degree vertex with its local
neighbourhood is a training sample d

For each d inital Σ is computed and CAP is applied

CAP generates all experiences used in training

A training sample
Daniel Lederer, Institute of Theoretical Computer Science
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Time for demo!
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Summary

Σ is required for constructing a straight skeleton of a
polyhedron in R3

Σ may contain bounded facets

CAP algorithm does not always find a suitable Σ

Subroutine based on reinforcement learning should
learn a good policy for CAP

Dual representation of Σ as G for learning model

Q-learning with GNN and DQN

Training requires a lot of data

Daniel Lederer, Institute of Theoretical Computer Science
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Outlook

Clear setup of the training dataset

Which and how many polyhedron vertices and of
what degree?

Implementation of the Deep Q-Learning Model with
the Graph Embedding Network

Hyperparameter tuning (ε, γ, p, T , epochs, network
architectures, etc.)

Testing and evaluation

How well does the learning model perform on
previously unseen data?
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