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Suppressing edge-localized modes (ELMs) with help of external resonant magnetic field per-

turbations (RMPs) is an experimentally proven technique for the reduction of tokamak first wall

damage by large, type-I ELMs. Linear and nonlinear modelling of the interaction of RMPs with

tokamak plasma is presently developing on the basis of MHD and kinetic theory [1]. In this

report, we extend an iterative approach proposed in Ref. [2] and realized in the code MEPHIT

for the ideal MHD plasma response in Ref. [3] to the approach combining the ideal MHD and

kinetic plasma response. In this approach, plasma response current density computed for the

given perturbation magnetic field and computations of this field by a finite element Maxwell

solver in realistic tokamak geometry with a given response current coupled together within an

iterative procedure.

Plasma response in cylindrical geometry

In the inhomogeneous straight cylinder geometry with identical ends, the perturbation of

charge and parallel current density due to plasma response are computed from the analytical

solution of the gyrokinetic equation with an Ornstein-Uhlenbeck collision operator with an en-

ergy preserving term [1]. Up to the leading order in Larmor radius, Fourier amplitudes of these

quantities expanded over the poloidal angle ϑ and the toroidal angle ϕ = z/R0 with harmonic

index m = (m,n) are
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Here, (r,ϑ ,z) are cylindrical coordinates, R0 is the major radius, Br
m and Φm are Fourier am-

plitudes of the radial magnetic field and electrostatic potential of the perturbation, B0 and E0r

are the equilibrium magnetic and radial electric field, ωE = k⊥VE where VE is the equilibrium

E×B rotation velocity, k‖ = (m+nq)/(qR0) and k⊥ ≈m/r are parallel and perpendicular wave-

vectors, respectively, with q being the safety factor. The coefficients,
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are expressed via thermodynamic forces of species α ,
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and the dimensionless moments of the Green’s function of the kinetic equation I jk (susceptibil-

ity functions, see Refs. [1, 5]) with eα , nα , Tα , vT α , ρLα , να , rDα and Vα⊥ being charge, density,

temperature, thermal velocity, Larmor radius, collision frequency, Debye radius and perpendic-

ular fluid velocity of species α , respectively. It can be seen that the response of zero order in

Larmor radius is proportional to Fm and is solely driven by the combination

Br
m

B0
−

ik‖Φm

E0r
=

EMA
‖m

E0r
=

k‖EMA
⊥m

k⊥E0r
, (7)

which is proportional to the parallel component of the total electric field within perturbed flux

surfaces, EMA
‖m , or alternatively, the perpendicular component EMA

⊥m, which come from the mis-

alignment of perturbed equi-potential and magnetic flux surfaces [5].

Perturbations of charge and current density determine perturbations of the potential and mag-

netic field via Laplace’s equation and Ampere’s law. It should be noted that the trend of Φm

is to annihilate the mis-alignment field due to flux surface meandering (first term in Eq. (7))

in the ideal regions outside resonant layers centered around the rational flux surfaces where

the so-called “external” solution is well described by ideal MHD and where the mis-alignment

field is exponentially small. Since the parallel current density (2) does not include contributions

from cyclotron harmonics, this current is strongly localized in the resonant layers while the

ideal equilibrium currents important for the outer solution are fully missing (intentionally) and

should be handled separately.

Extension to the toroidal geometry

The cylindrical plasma model discussed above is used here to set up the combined kinetic–

ideal MHD approach within the iteration scheme of the code MEPHIT [3] providing a correct



(by an order of magnitude) value of the plasma response current which will later be replaced

with a fully 3D evaluation by the code GORILLA [4]. For that, we note that magnetic field

reconnection as well as ideal MHD shielding currents are driven solely by Fourier harmonics of

the ratio Br/Bϕ

0 where Bϕ

0 is the contra-variant toroidal component of the equilibrium magnetic

field. In ideal MHD, each of these harmonics induces a current sheet at the resonant surface

with a divergence-free current density described by a single harmonic (with the same index m)

of the ratio j‖/B0. Ignoring the harmonic coupling, we can extend Eqs. (1) to toroidal geometry

where Laplace’s equation takes the form
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Here, Gtor
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contain only flux functions in the pre-factor, and

R2|∇r|2 means averaging over the angles (ϑ ,ϕ) of the straight field line flux coordinate system

with r being some flux surface label (poloidal flux in our case). Eq. (8) is a second-order ODE in

the radial variable with mode coupling ignored because mode coupling introduced by the metric

tensor is weak for narrow resonant layers where the dependence on radius dominates. Eq. (8)

is solved by a lowest-order finite difference scheme assuming fixed magnetic field perturbation.

The result is used then for computation of the Fourier amplitude of the parallel current density

perturbation (
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which follows from extension of Eq. (2). The current density (9) is strongly localized within the

resonant layer whose width [5] is determined by the electron component in a typical collisional

regime as δm ∼ |k′‖vTe|−1
√

νe|ωE | where k′‖ means the derivative over the surface label. At the

distance δm and further away from the resonant surface, the ideal MHD current density, which is



singular at the resonant surface and scales with k−2
‖ in the presence of a pressure gradient, scales

to the kinetic response current density (9) as plasma β or smaller. Therefore, we introduce in the

vicinity δm of the resonant surface an artificial damping in magnetic differential equations (16)

and (19) of Ref. [3] when computing the ideal MHD response current by adding to the toroidal

mode number n a small imaginary part inq′(r)/q∑m δm exp
(
−(r− rm)

2/δ 2
m
)

with safety factor

q and resonance position rm. Thus, we remove the unphysical singularity of the ideal MHD

current coming from the assumption of pressure being constant on perturbed flux surfaces,

which does not hold in the resonant layer. Combination of the resulting ideal MHD currents and

kinetic current (9) computed for fixed perturbation magnetic field is used then within MEPHIT

iteration scheme to obtain self-consistent currents and the magnetic field, as seen in Fig. 1.
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Figure 1: Initial parallel plasma response current density (left) and final radial magnetic field

perturbation (right). ψ̂ is the normalized poloidal flux. Solid vertical lines indicate the resonance

position for m = (3,2) and dashed vertical lines delimit the corresponding resonant layer.
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