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Abstract. For a simple drawing D of the complete graph Kn, two
(plane) subdrawings are compatible if their union is plane. Let TD be
the set of all plane spanning trees on D and F(TD) be the compatibility
graph that has a vertex for each element in TD and two vertices are adja-
cent if and only if the corresponding trees are compatible. We show, on
the one hand, that F(TD) is connected if D is a cylindrical, monotone,
or strongly c-monotone drawing. On the other hand, we show that the
subgraph of F(TD) induced by stars, double stars, and twin stars is also
connected. In all cases the diameter of the corresponding compatibility
graph is at most linear in n.
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1 Introduction

A drawing D of a graph G is a representation of G in the Euclidean plane
such that the vertices of G are distinct points and the edges are Jordan arcs
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Fig. 1: A simple drawing of the complete bipartite graph with a tree (drawn in
red, bold edges) that is an isolated vertex in the corresponding compatibility
graph.

connecting their incident vertices such that no edge passes through any other
vertex. A drawing is simple if any pair of edges intersect at most once - either
in a common vertex or a proper crossing in the relative interior of the edges.
All drawings considered in this paper are simple and the term simple is mostly
omitted. A drawing is plane if it does not contain any crossing.

For a fixed integer n let D be a simple drawing of the complete graph Kn and
let TD be the set of all drawings of plane spanning trees which are subdrawings
of D. Note that TD is non-empty, as it contains at least the n stars in D (where
a star contains all edges incident to a single vertex). Unless explicitly stated
otherwise, the word tree always refers to a plane spanning tree in TD, where the
drawing D is either clear from the context or the statement holds for any simple
drawing of Kn. Two (plane) subdrawings H and H ′ of a simple drawing D are
said to be compatible if the union of H and H ′ is still plane.

Let F(TD) be the (abstract) graph that has a vertex for each plane spanning
tree in TD and two vertices are adjacent if and only if the corresponding trees
are compatible. We call F(TD) the compatibility graph of TD. In this paper, we
study properties of F(TD), focusing primarily on connectivity aspects:

Question 1. Let n be an integer. Is the compatibility graph F(TD) connected
for any simple drawing D of the complete graph Kn?

Note that the notion of compatibility is closely related to the notion of edge
flips: An edge flip in a plane spanning tree is the operation of removing an edge
and replacing it with a new edge such that the resulting graph is again a plane
spanning tree. In our setting, we further require this pair of edges to be non-
crossing. In fact, one can simulate transformations via compatible trees in terms
of crossing free edge flips: for two compatible trees T1, T2, successively add edges
from T2 to T1, while removing an edge that is not in T2 from the resulting cycle.

We observe that the compatibility graph of simple drawings that are not of
the complete graph might not be connected even if the graph is dense. For exam-
ple, Figure 1 shows a simple drawing of the complete bipartite graph containing
a plane tree that crosses all edges of the graph not belonging to the tree. Hence,
this tree is an isolated vertex in the correponding compatibility graph.

Related work. The problem of transforming elements within a class of objects
(e.g. plane spanning trees or matchings) into each other via a certain operation
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Fig. 2: Left to right: cylindrical, monotone, strongly c-monotone drawing.

(e.g. edge flips or compatibility) has been studied extensively in a huge variety of
contexts. Considering edge flips, some of the earliest results have been obtained
on triangulations: Wagner [15] showed connectivity of the corresponding flip-
graph in the combinatorial setting and Lawson [12] in the straight-line setting.
For more details we refer the reader to the survey of Bose and Hurtado [8].

Considering the notion of compatibility, most of the work has been done in
the straight-line setting, e.g., in the context of perfect matchings with [5,7] or
without [1,2] vertex coloring, or for edge-disjoint compatibility [3,11]. Aichholzer
et al. [4] showed, in the straight-line setting, that the compatibility graph of plane
spanning trees is connected with diameter O(log k), where k denotes the number
of convex layers of the point set. Buchin et al. [9] provided a corresponding worst
case lower bound of Ω(log n/ log log n).

It is natural to extend this question to simple drawings, which however are
inherently difficult to handle (even the existence of certain plane substructures
is still unresolved in simple drawings; see e.g. [13]). On the positive side, Garćıa,
Pilz and Tejel [10] proved that any maximal plane subgraph is 2-connected,
which guarantees for any plane spanning tree the existence of a compatible plane
spanning tree. In this paper, we aim to shed some light on this wide open topic
of compatibility graphs of trees in simple drawings.

Contribution. We approach Question 1 from two directions, proving a posi-
tive answer for special classes of drawings (namely, cylindrical, monotone, and
strongly c-monotone drawings) and for special classes of spanning trees (namely
stars, double stars, and twin stars). We postpone the precise definitions of these
classes of drawings and graphs to the later sections, however, Figure 2 gives an
illustration of these notions.

Theorem 1. Let D be a cylindrical, monotone, or strongly c-monotone drawing
of the complete graph Kn. Then, the compatibility graph F(TD) is connected.

Theorem 2. Let D be a simple drawing of the complete graph Kn and let T ∗D
be the set of all plane spanning stars, double stars, and twin stars on D. Then,
the compatibility graph F(T ∗D) is connected.
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Section 2 is devoted to the proof of Theorem 1, while Section 3 is dedicated
to the proof of Theorem 2. All results that are marked by a (clickable) (?) have
a full proof in the appendix.

2 Special simple drawings of Kn

In this section we prove connectedness of the compatibility graph for certain
classes of drawings. Clearly, for any drawing of Kn that admits a plane spanning
tree which is not crossed by any edge of D, the compatibility graph is connected
with diameter at most 2. This is, for example, the case for 2-page book drawings,
where the vertices are placed along a line and each edge lies entirely in one of
the two open halfplanes defined by this line.

2.1 Cylindrical drawings

Following the definition of Schaefer [14], in a cylindrical drawing of a graph the
vertices are placed along two concentric circles, the inner and outer circle, and
no edge is allowed to cross these circles.

Lemma 1. (?) Let D be a cylindrical drawing of Kn. Then F(TD) is connected
with diameter at most 4.

2.2 Monotone drawings

A simple drawing in which no two vertices have the same x-coordinate and
every edge is drawn as an x-monotone curve is called monotone drawing. Let
v1, v2, . . . , vn denote the sequence of vertices in increasing x-order. W.l.o.g. as-
sume that these vertices are on the x-axis. Then, the plane spanning path
S = v1, v2, . . . , vn is called spine path. An edge that intersects the spine path is
called twiggly edge.

We define a relation on the twiggly edges of D as follows: for two twiggly
edges e, f we have e � f if they are non-intersecting and admit a vertical line
intersecting the relative interiors of both edges that intersects e at a larger y-
coordinate than f . All other pairs of twiggly edges are incomparable. For a set E
of pairwise non-intersecting twiggly edges, an edge e ∈ E is maximal if there is
no other edge f ∈ E s.t. f � e. Note that this relation is acyclic, i.e., there are
no twiggly edges e1, . . . , ek such that e1 � e2 � . . . � ek � e1. And hence, any
non-empty set of twiggly edges admits a maximal element.

Lemma 2. (?) For any monotone drawing D of Kn, the compatibility graph
F(TD) is connected with diameter O(n).

Proof (Sketch). We show that any plane spanning tree T in D can be trans-
formed to the spine path S. If T does not contain any twiggly edge, clearly it is
compatible to S. Otherwise, we proceed as follows. Corresponding to a maximal
twiggly edge e of T , we find a path P ′ connecting the vertices of e (see Figure 3).
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vi

e

P ′

vj

Fig. 3: The (maximal) twiggly edge e = vivj divides the vertices between vi and
vj into two groups – above and below. The path P ′ is formed by joining the
consecutive vertices lying above e including the vertices of e.

We can show that P ′ is compatible to T and lies strictly above e. Thus, we can
add P ′ to T , which creates at least one cycle in T . Removing appropriate edges
including e, we get a compatible tree with at least one twiggly edge less and
repeating this process, we will eventually reach the spine path S.

2.3 Strongly c-monotone drawings

A curve is called c-monotone (w.r.t. a point x) if every ray emanating from x
intersects the curve at most once. A simple drawing is c-monotone, if all vertices
are drawn along a circle and every edge is a c-monotone curve w.r.t. the center of
the circle. A c-monotone drawing is strongly c-monotone if for any pair of edges
e, e′ there is a ray (rooted at the circle center) that neither intersects e nor e′.

In a (strongly) c-monotone drawing, we label the vertices v1, v2, . . . , vn in
cyclic order and denote the center of the circle by c. In the following, we often
consider edges and their intersections with rays rooted at c; unless stated other-
wise, any ray is rooted at c and edges are intersected in their relative interiors.

An edge e connecting two consecutive vertices vi, vi+1 is called cycle edge
and if e is drawn along the “shorter” side of the circle it is called spine edge (that
is, no ray formed by the center and any vertex intersects e). All spine edges form
the spine and any path consisting entirely of spine edges is called spine path.

Lemma 3. (?) Any strongly c-monotone drawing D of Kn either has all cycle
edges as spine edges or is isomorphic to a monotone drawing.

Again, we define twiggly edges to be those that intersect a spine edge. A
crucial difference to the monotone setting is that an analogue to the relation ’�’
(adjusted with respect to the intersection with rays emanating from c) may now
be cyclic and hence, we cannot guarantee the existence of a maximal twiggly
edge anymore. We therefore need a different approach.

For a twiggly edge e = uw, let x1, . . . , xk be its crossings with the spine
(note that these are not vertices of Kn) and assume the labeling to be in such
a way that u, x1, . . . , xk, w appear in clockwise order. For i ∈ {1, . . . , k} denote
the vertex (of Kn) in clockwise order before xi by x−i and the one after by x+i .
Furthermore, set u = x−0 and w = x+k+1. Then, for i ∈ {0, . . . , k}, we call the
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u

x1

x2

x3
we

Fig. 4: Left: The red dotted edges are bumpy edges of the twiggly edge e. Right:
A set of twiggly edges and some corridors; the dotted green is an inner corridor.

edges x−i x
+
i+1 bumpy edges (see Figure 4 (left)). Note that bumpy edges do not

intersect the spine and for any twiggly edge there are at least two bumpy edges.
Clearly, we can identify any ray r with an angle θ, the angle it forms with

the vertical ray (upwards). Two edges e, f are called neighbours on an interval
[θ1, θ2], if for any ray r ∈ [θ1, θ2] the intersections of e and f with r appear
consecutively on r. A corridor is a maximally connected region bounded by two
neighbouring edges (along a maximal interval). Again, we identify corridors by
an interval [θ1, θ2] and usually we speak of corridors defined by the edges of a
plane spanning tree. The twiggly depth (with respect to a plane spanning tree T )
of a ray r is the number of twiggly edges (of T ) that r intersects.

We extend our definition of neighbours (along an interval) also to the very
inside and very outside by inserting a dummy edge at the circle center and
one at infinity. More precisely, an edge e is the neighbor of the circle center c
along an interval [θ1, θ2] if for any ray r ∈ [θ1, θ2] the intersection of r and e is
closest to c (and furthest in the case of being a neighbor of infinity). We call the
corresponding corridors inner/outer corridors. Note that the set of all corridors
partitions the plane. See Figure 4 (right) for an illustration.

We further remark that for any plane spanning tree T , any corridor C = [θ1, θ2]
(of edges of T ) begins and ends at a vertex, i.e., the rays at θ1 and θ2 hit a vertex.

Lemma 4. (?) For any plane spanning tree T of a strongly c-monotone draw-
ing D and any corridor C of T with start and end vertex s and t, there is a path P
in D from s to t staying entirely in C, that does not intersect T . Furthermore,
if C is an inner or outer corridor, P does not use any twiggly edge.

Lemma 5. For any strongly c-monotone drawing of Kn, the compatibility graph
F(TD) is connected with diameter O(n).

Proof. Let D be a strongly c-monotone drawing of Kn and let T be a plane
spanning tree. We show that T can be compatibly transformed to a spine path
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(by iteratively decreasing its twiggly depth). By Lemma 3, we may assume that
all n spine edges are present in D. Again, if there is no twiggly edge in T , then
T is compatible with the spine.

Let Etwig be the set of twiggly edges of T and construct the set C of all
corridors. Next, for any corridor C ∈ C with start and end vertex s and t, we
add the path PC as guaranteed by Lemma 4 to T .

Clearly, we do not disconnect T when removing Etwig now. Indeed, let e =
uw ∈ Etwig, then the collection of corridor paths below (and also above) e
connects u and w. So we remove Etwig and potentially some further edges until
T forms a spanning tree again (which by Lemma 4 is also plane). Furthermore,
any ray r that intersects x previous twiggly edges (i.e., Etwig) intersects x + 1
corridors, two of which are either an inner or outer corridor. By Lemma 4 and
the properties of c-monotone curves, r intersects at most x − 1 (new) twiggly
edges. Hence, the twiggly depth of any ray decreased by at least one and we
recursively continue this process until all rays have twiggly depth 0, in which
case T is compatible to a spine path. As we have twiggly depth at most n − 1
in the beginning, F(TD) has diameter O(n).

Theorem 1 now follows from Lemma 1, Lemma 2, and Lemma 5.

3 Special Plane Spanning Trees

In this section, we are not restricting our drawing anymore, i.e., D will be a
simple drawing of Kn throughout this section. Instead we focus on special classes
of spanning trees and show that the subgraph F(T ∗D) of F(TD) induced by the
set of vertices corresponding to stars, double stars, and twin stars is connected.

A plane spanning tree with a fixed path P of length k such that all other
vertices are incident to either the start or end vertex of P is called a k-star. A
0-star (i.e., P consists of a single vertex) is called star. A 1-star is called double
star and a 2-star is called twin star.

The following relation, introduced in [6], will be very useful: Given a simple
drawing of Kn with vertex set V and two vertices g 6= r ∈ V , for any two vertices
vi, vj ∈ V \{g, r}, we define vi →gr vj if and only if the edge vir crosses vjg.
In [6] it is shown that this relation is asymmetric and acylic.

We start by showing that stars can always be transformed into each other
via a sequence of crossing free edge flips.

Lemma 6. Any two stars in D have distance O(n) in F(T ∗D).

Proof. Given a star T in g (i.e., g is incident to all other vertices of T ), we can
transform it into a star H in r via a sequence of crossing free edge flips, such
that in every step, the graph is a double star with fixed path r,g, in the following
way. We label the vertices in V \{g, r} such that vi →gr vj implies i < j (see
Figure 5). We iteratively replace an edge gvi by rvi starting from i = n− 2 and
continuing in decreasing order. Clearly, all intermediate trees are double stars
(with fixed path r,g) and hence, it remains to argue that the flips are compatible,



8 O. Aichholzer et al.

g r

v2

v1 v3

v4

Fig. 5: Proof of Lemma 6: The solid edges represent a star in g, while the dotted
edges form a star in r. The vertices are labeled conforming to the relation →gr.
In order to transform the star in g to the star in r, the first step is adding the
dotted blue edge v4r and deleting the red edge v4g.

i.e., for i = n − 2, . . . , 1 the edge gvi does not cross any edge of the current T .
By construction, in any step i, T contains edges of the form (a) rvj for j > i
and (b) gvk for k < i. The edge gvi cannot cross edges in (a) by the definition
of the relation →gr and also not those in (b) due to the properties of simple
drawings. As we need at most n− 2 steps for the transformation, any two stars
have distance O(n) in F(T ∗D).

Theorem 2 then follows from Lemma 6 in combination with the following
two lemmata.

Lemma 7. (?) Any double star in D has distance O(n) to any star in F(T ∗D).

Lemma 8. (?) Any twin star in D has distance O(n) to any star in F(T ∗D).
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A Missing proofs of Section 2

We need a few more definitions and observations for the proof of Lemma 1.
We denote the vertices on the inner/outer circle of a cylindrical drawing by
inner/outer vertices and the edges connecting any two inner/outer vertices by
inner/outer edges. The remaining edges are called side edges. Furthermore, edges
that join consecutive vertices of either of the two circles are called cycle edges.

Remark 1. Cycle edges may only be crossed by side edges and either of the two
circles contains at most one such cycle edge that is crossed.

In other words, along both circles there is a Hamiltonian path of cycle edges
that is not crossed by any other edge.

Further note that any plane spanning tree in a cylindrical drawing contains
at least one side edge.

Lemma 1. (?) Let D be a cylindrical drawing of Kn. Then F(TD) is connected
with diameter at most 4.

Proof. (Disclaimer: we moved a few definitions and remarks, that are relevant
for this proof, to the preceeding paragraphs.) Let T1, T2 ∈ TD and e1 = vsvr be
a side edge of T1 as well as e2 = v′sv

′
r be a side edge of T2. Furthermore, as

guranteed by Remark 1, let S1 ∈ TD be a plane spanning tree consisting of the
two Hamiltonian paths of cycle edges and e1 (and similarly S2 ∈ TD consists of
the cycle paths and e2). Clearly, T1 and S1 are compatible as well as T2 and S2.
If S1 and S2 are compatible, we are done. Otherwise, e1 and e2 are crossing in
D. As the induced 4-tuple {vs, v′s, vr, v′r} has at most one crossing, the two side
edges vsv

′
r and v′svr cannot cross e1 and e2. Now consider one of these edges as

e′ and construct a plane spanning tree S3, using only e′ and the uncrossed cycle
paths. Clearly, S3 is compatible to S1 as well as S2 and hence, T1,S1,S3,S2,T2 is
a path of length 4 in F(TD).

Lemma 2. (?) For any monotone drawing D of Kn, the compatibility graph
F(TD) is connected with diameter O(n).

Proof. We prove the connectedness by showing that any plane spanning tree in
D can be transformed (via a sequence of compatible trees) to the spine path S.
So, let T ∈ TD be a plane spanning tree. If T does not contain any twiggly edge,
then it is compatible to S. Otherwise, let e = vivj (with i < j) be a maximal
twiggly edge of T . Note that all twiggly edges in T are non-intersecting, since T
is plane. Define

V ↑e = {vk : i < k < j, vk is above e}.

Consider the path P ′ = vi, V
↑
e , vj that starts at vi, ends at vj and inbetween

uses only vertices of V ↑e (see Figure 3). Note that the vertices in P ′ are in
increasing x-order. Clearly, no edge in P ′ can intersect the twiggly edge e, since
it would have to intersect it twice. Hence, P ′ lies (strictly) above e. Next we
show that P ′ cannot intersect T . To this end, let f ∈ T and assume, for the sake
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of contradiction, that it intersects an edge vxvy of P ′. Clearly, f can neither
be incident to vx nor vy. However, by construction of P ′, in order to reach its
incident vertices, f has to either (i) intersect vxvy twice, or (ii) intersect e, or
(iii) intersect a spine edge. (i) yields a contradiction to the properties of simple
drawings, (ii) yields a contradiction to the planarity of T , and (iii) yields a
contradiction to the maximality of the twiggly edge e.

Hence, we can add P ′ to T without introducing any crossings. Note that some
edges of P ′ may already be present in T , however, since this insertion creates
a cycle, at least one is not. In order to reach a compatible tree, we remove e
from this cycle (and potentially more edges until reaching a plane spanning tree
again). We created a compatible tree with at least one twiggly edge less and
repeating this process, we will eventually reach the spine path S. As we have at
most n− 1 twiggly edges, F(TD) has diameter O(n).

Lemma 3. (?) Any strongly c-monotone drawing D of Kn either has all cycle
edges as spine edges or is isomorphic to a monotone drawing.

Proof. Assume there is an edge e = vivi+1 of consecutive vertices which does
not form a spine edge, i.e., e intersects any ray which is not in the wedge vicvi+1.
The c-monotonicity of edges implies that any edge intersecting the wedge vicvi+1

must intersect any ray in this wedge. This, however, would be in contradiction
to the property of strongly c-monotone drawings and hence, the wedge vicvi+1

is not intersected by any edge. Clearly, this implies the drawing to be (strongly)
isomorphic to a monotone drawing: any ray r in the wedge vicvi+1 is uncrossed
by all edges and hence, we can cut the spine at the intersection with r and stretch
it to a monotone drawing.

Lemma 4. (?) For any plane spanning tree T of a strongly c-monotone draw-
ing D and any corridor C of T with start and end vertex s and t, there is a path P
in D from s to t staying entirely in C, that does not intersect T . Furthermore,
if C is an inner or outer corridor, P does not use any twiggly edge.

Proof. Start the path P at s and always connect to the next vertex (along the
circle) that is in the corridor C. Due to strong c-monotonicity, the corresponding
edge must run through C. Note that P may consist of bumpy, spine, and twiggly
edges. However, P may only contain a twiggly edge if it is forced to by both edges
bounding the corridor (e.g., the blue corridor in Figure 4 (right)).

Moreover, since we always connect consecutive vertices along the corridor,
any edge e, intersecting an edge f of P , must surround4 f . We claim that e
must also be a twiggly edge, which can be seen as follows. The twiggly edge f
together with the spine forms a collection of faces which are only bounded by f
and the spine (see Figure 6). Since e surrounds f , e cannot have a vertex within
such a face. Hence, if e intersects f , e must also intersect the spine and thus, is
a twiggly edge. Therefore, e cannot belong to T (since it is in the corridor). In
particular, P does not intersect T .

4 We say that an edge e = uw surrounds an edge f (all four vertices are distinct), if
the wedge ucw (containing e) also contains f ; see Figure 6.
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e

f

Fig. 6: The faces formed by f and the spine are red. If e intersects f it must
leave the corresponding face by intersecting the spine.

Lastly observe that the paths in an inner/outer corridor do not use any
twiggly edge, since any inner/outer corridor is bounded by a dummy edge which
does not cross the spine.

B Missing proofs of Section 3

Lemma 7. (?) Any double star in D has distance O(n) to any star in F(T ∗D).

Proof. Let T be a double star with fixed path g,r and T ′ be a star in r′. T
can be transformed to a star in r (or g) completely analogous as in the proof of
Lemma 6. The only difference is that there are additional edges attached to r,
i.e., edges of type (a) in Lemma 6, which do not interfere. Next, using Lemma 6
again, we transform this star in r to T ′. This also implies the distance between
a double star and a star in F(T ∗D) to be O(n).

Lemma 8. (?) Any twin star in D has distance O(n) to any star in F(T ∗D).

Proof. Let T be a twin star with fixed path g, s, r and T ′ be a star in r′. Note
that all edges in T are incident to g or r and hence, we can add the edge gr and
remove gs or rs in order to obtain a double star. Using Lemma 7 this double
star can be transformed to T ′. Thus, a twin star can be tranformed to a star in
O(n) steps.
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