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Abstract. We consider bichromatic point sets with n red and n blue
points and study straight-line bichromatic perfect matchings on them.
We show that every such point set in convex position admits a matching

with at least 3n2

8
− n

2
+ c crossings, for some − 1

2
≤ c ≤ 1

8
. This bound

is tight since for any k > 3n2

8
− n

2
+ 1

8
there exist bichromatic point sets

that do not admit any perfect matching with k crossings.
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1 Introduction

Let P = R∪B, |R| = |B| = n be a point set in general position, that is, no three
points of P are collinear. We refer to R and B as the set of red and blue points,
respectively. A straight-line matching M on P where every point in R is uniquely
matched to a point in B is called a straight-line bichromatic perfect matching
(all matchings considered in this work are straight-line, so we will mostly omit
this term). In this work, we study the existence of bichromatic perfect matchings
on P with a fixed number k of crossings, where 0 ≤ k ≤

(
n
2

)
. It is folklore that

any P of even size admits a crossing-free perfect matching. Perfect matchings
with k crossings in the uncolored setting have been considered in [2]. There it

is shown that for every k ≤ n2

16 − O(n
√
n), every point set of size 2n admits a

perfect matching with exactly k crossings and that there exist point sets where

every perfect matching has at most 5n2

18 crossings. As a direct consequence, there
exist bichromatic point sets which do not admit bichromatic perfect matchings

with k crossings for k > 5n2

18 . For 2n (uncolored) points in convex position it was
shown in [2] that they admit perfect matchings with k crossings for every k in
the range from 0 to

(
n
2

)
.
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For bichromatic point sets, this situation changes quite significantly. Consider
a set P of 2n points in convex position (convex point set, for short) with an
alternating coloring, that is, every second point along the convex hull is red (and
the other points are blue). Moreover, let the number n of red (and blue) points
be even. Then the number of crossings in a bichromatic perfect matching M

on P is at most n(n−2)
2 =

(
n
2

)
− n

2 . The idea is as follows: Label the points of P
as p0, p1, . . . , p2n−1 along the boundary of the convex hull. Then pi cannot be
matched to pi+n since both points have the same color. Hence, for any edge e
in M , the number of crossings of e is at most n − 2. As every crossing involves

two edges, the number of crossings of M is at most n(n−2)
2 =

(
n
2

)
− n

2 . This
bound is tight, since it is possible to construct a bichromatic perfect matching
on P with exactly

(
n
2

)
− n

2 crossings as follows. For 0 ≤ i ≤ n − 1, match the
point pi to the point pi+n+1, when i is even. Otherwise, match pi to pi+n−1.
Based on the above observations we state the following question.

Question 1. For which values of k does every bichromatic convex point set
P = R ∪ B, |R| = |B| = n, admit a straight-line bichromatic perfect matching
with exactly k crossings?

The above example implies that if k >
(
n
2

)
− n

2 , there exist bichromatic point
sets with n red and n blue points that do not have any bichromatic perfect
matching with k crossings. Thus, the answer to Question 1 can be true only for
k ≤

(
n
2

)
− n

2 . As a main result of this paper, we prove the following theorem.

Theorem 1. For every n and for every k > 3n2

8 − n
2 + 1

8 , there exists a bichro-
matic convex point set with n red and n blue points that does not have a straight-
line bichromatic perfect matching with k crossings.

To show this, we study bichromatic convex point sets and matchings on them
with the maximum number of crossings. In Section 2, we first determine the max-
imum number of crossings for certain bichromatic convex point sets, depending
on their cardinality modulo 4. Then we prove that this number gives a tight
lower bound on the maximum number of crossings in any bichromatic convex
point set. We further show some positive results for Question 1 in Section 3.

Related work. A survey by Kano and Urrutia [6] gives an overview of vari-
ous problems on bichromatic point sets, including matching problems. Crossing-
free bichromatic perfect matchings have been studied from various perspectives
such as their structure [5,8], linear transformation distance [1], and matchings
compatible to each other [3,4]. Sharir and Welzl [9] proved that the number of
crossing-free bichromatic perfect matchings on 2n points is at most O(7.61n).
However, on bichromatic perfect matchings with crossings much less is known.
Pach et al. [7] showed that every straight-line drawing of Kn,n contains a cross-
ing family of size at least n1−o(1), where a crossing family is a set of pairwise
crossing edges. This implies that for any P = R∪B, |R| = |B| = n, there exists
a bichromatic perfect matching with at least n2−o(1) crossings.
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2 Bichromatic Convex Point Sets

Let Cn,n be the collection of all bichromatic convex point sets P = R ∪ B with
|R| = |B| = n. For a point set P ∈ Cn,n, we label the points in P in clockwise
direction along the convex hull as p0, p1, . . . , p2n−1 and refer to this as the clock-
wise ordering. We will consider all indices modulo 2n. The number of crossings
in a bichromatic perfect matching MP on P is denoted by cr(MP ). If MP has
the maximum number of crossings among all such matchings on P , then MP is
called a max-crossing matching on P . Among all max-crossing matchings for all
P ∈ Cn,n, we are interested in matchings with the minimum number of crossings.
We call such a matching a min-max-crossing matching of Cn,n. From now on, we
mostly refer to bichromatic perfect matchings just as matchings.

A block of P ∈ Cn,n is a maximal set of consecutive points of P of the same
color. (If R1 = {pa, pa+1, . . . , pa+s} is a red block then pa−1 and pa+s+1 are
blue.) Collecting the blocks of P in clockwise order yields a cyclically ordered
partition (R1, B1, R2, B2, . . . , Rs, Bs) of P . The coloring of P is called 2s–block if
it induces s red and s blue blocks. In particular a 2n–block coloring is alternating.
A 2s–block coloring where all blocks have the same cardinality is balanced ; see
e.g. Fig. 4(a). A balanced 2s–block coloring only exists if s divides n. To overcome
this restriction, we also consider 2s–block colorings in which block sizes differ
by at most 1 as balanced 2s–block colorings. Note that for s = 2 and any given
value of n, there is a unique balanced 2s–block coloring (up to symmetry).

Theorem 2. Let P ∈ Cn,n and M∨
P be a max-crossing matching on P . Then

cr(M∨
P ) ≥


3n2

8 − n
2 if n ≡ 0 mod 4

3n2

8 − n
2 + 1

8 if n ≡ 1 mod 4
3n2

8 − n
2 − 1

2 if n ≡ 2 mod 4
3n2

8 − n
2 + 1

8 if n ≡ 3 mod 4

Moreover, equality holds if P has a balanced 4–block coloring. In this case, M∨
P

is a min-max-crossing matching of Cn,n.

Theorem 1 is implied by Theorem 2: consider any point set with balanced
4–block coloring. The bound for the crossings in a max-crossing matching of this
point set implies Theorem 1. Theorem 2 will follow directly from Lemma 2 and
Lemma 3, which are stated and shown in the next sections.

2.1 Max-Crossing Matching of a Balanced 4–Block Coloring

In this section, we determine the number of crossings in any max-crossing match-
ing of a point set with balanced 4–block coloring. A crossing family of a point
set P is a set of edges spanned by points from P that pairwise cross.

Lemma 1. Let P ∈ Cn,n have a 4–block coloring with blocks R1, B1, R2, B2 and
let M∨

P be a max-crossing matching on P . Then for each block X ∈ {R1, R2,
B1, B2}, the edges emanating from X form a crossing family.
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Proof. Consider a block X of P and assume w.l.o.g. that X = {p1, p2, . . . , px}.
If in a matching M on P , there are two non-crossing edges with endpoints in X,
then there also exist two such non-crossing edges with adjacent endpoints in X,
i.e., M contains edges (pi, pk) and (pi+1, pj) for some 1 ≤ i < x ≤ j < k ≤ 2n.
Let M ′ be obtained from M by replacing the two edges by the two crossing edges
(pi, pj) and (pi+1, pk) and note that cr(M ′) = cr(M) + 1. ⊓⊔

Consider a max-crossing matching M∨
P on P . Lemma 1 implies that there is

some a ≥ 0 such that in M∨
P , the first a points of R1 are matched to points in B1

while the last |R1| − a points of R1 are matched to points in B2. Analogously,
the first |B1|−a points of B1 are matched to points in R2. Since |R2| = n−|R1|
and the |B1| − a points of R2 are matched to B1, the first n − |R1| − |B1| + a
points of R2 are matched to points in B2; see Fig. 1. Hence, to get a max-crossing
matching on P , it is sufficient to determine the optimal value of a.

R1

R2

B1
B2

{ {

{

a |R1| − a

|B1| − a

n− |R1| − |B1| + a

{
Fig. 1: Structure of a max-crossing matching on a set P with 4–block coloring.

By determining the optimum value of a, we next construct a max-crossing
matching on any set P with balanced 4–block coloring and compute its exact
crossing number.

Lemma 2. Let P ∈ Cn,n have a balanced 4–block coloring and let M∨
P be a

max-crossing matching on P . Then

cr(M∨
P ) =


3n2

8 − n
2 if n ≡ 0 mod 4

3n2

8 − n
2 + 1

8 if n ≡ 1 mod 4
3n2

8 − n
2 − 1

2 if n ≡ 2 mod 4
3n2

8 − n
2 + 1

8 if n ≡ 3 mod 4

Proof. Let P ∈ Cn,n have a balanced 4–block coloring with blocks R1, B1, R2,B2,
labeled such that |R1|, |B1| ≤ n

2 . Let r1 = |R1| = ⌊n
2 ⌋ and b1 = |B1| = ⌊n

2 ⌋.
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Let MP be a matching on P such that the first x points of the set R1 are
matched to the last x points of B1, as a crossing family, for some x ∈ N0. The
number of pairs of non-crossing edges in MP is obtained by (r1 − x)(b1 − x) +
x(n − r1 − b1 + x) = r1b1 − 2xb1 − 2xr1 + nx + 2x2. To determine the value
x ∈ N0 that gives the maximum number of crossings, we first calculate the value
x∗ ∈ R for which f(x) = (n−2r1−2b1)x+2x2+ r1b1 attains its minimum. This
is achieved by x∗ = 1

2 (r1+ b1− n
2 ). Note that x∗ might not be in N0. Since f is a

quadratic function, its minimum over all x ∈ N0 is reached for x = ⌊x∗⌉, where
⌊x∗⌉ denotes the closest integer of x∗ ∈ R. Then the max-crossing matching M∨

P

on P has cr(M∨
P ) =

(
n
2

)
− (n − 2r1 − 2b1)x − 2x2 − r1b1 many crossings, where

x =
⌊
r1+b1

2 − n
4

⌉
=

⌊
⌊n
2 ⌋ −

n
4

⌉
.

Note that the blocks in P may differ in size by 1 and that also the rounding for
obtaining x depends on the value of n mod 4. To account for this, we evaluate
each case separately.

Case 1: Let n ≡ 0 mod 4. Then there exists an integer m such that n = 4m.
Then r1 = b1 = 2m and x =

⌊
4m
2 − 4m

4

⌉
= m. Hence the number of crossings

of M∨
P is cr(M∨

P ) =
(
4m
2

)
− (4m − 4(2m))m − 2m2 − (2m)2 = 6m2 − 2m.

Replacing m by n
4 gives cr(M∨

P ) =
3n2

8 − n
2 .

Case 2: Let n ≡ 1 mod 4. Then there exists an integerm such that n = 4m+1.
Then r1 = b1 = 2m and x =

⌊
4m
2 − 4m+1

4

⌉
= m. Hence the number of

crossings of M∨
P is cr(M∨

P ) =
(
4m+1

2

)
− (4m+1− 4(2m))m− 2m2 − (2m)2 =

6m2 +m. Replacing m by n−1
4 gives cr(M∨

P ) =
3n2

8 − n
2 + 1

8 .
Case 3: Let n ≡ 2 mod 4. Then there exists an integerm such that n = 4m+2.

Then r1 = b1 = 2m + 1 and x =
⌊
4m+2

2 − 4m+2
4

⌉
= m. Hence the number

of crossings of M∨
P is cr(M∨

P ) =
(
4m+2

2

)
− (4m + 2 − 4(2m + 1))m − 2m2 −

(2m+ 1)2 = 6m2 + 4m. Replacing m by n−2
4 gives cr(M∨

P ) =
3n2

8 − n
2 − 1

2 .
Case 4: Let n ≡ 3 mod 4. Then there exists an integerm such that n = 4m+3.

Then r1 = b1 = 2m + 1 and x =
⌊
4m+2

2 − 4m+3
4

⌉
= m. Hence the number

of crossings of M∨
P is cr(M∨

P ) =
(
4m+3

2

)
− (4m + 3 − 4(2m + 1))m − 2m2 −

(2m+1)2 = 6m2+7m+2. Replacing m by n−2
4 gives cr(M∨

P ) =
3n2

8 − n
2 +

1
8 .

Altogether this completes the proof of the lemma. ⊓⊔

2.2 Min-Max-Crossing Matching for All Colorings

In the following, we show that the maximum number of crossings of a bichromatic
matching on P ∈ Cn,n is minimized by sets with balanced 4–block coloring. Let
P ∈ Cn,n. For any point v ∈ P , the point w ∈ P is called the antipodal pair of v,
if the line through v and w partitions P into two equal sized halves (antipodals
exist because the number of points is even). If antipodal pairs v and w are of the
same color, then they are monochromatic antipodal pairs (in short m-antipodal
pairs) and if they have different colors then they are bichromatic antipodal pairs
(in short b-antipodal pairs).
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Lemma 3. Let P,Q ∈ Cn,n, where Q has a balanced 4–block coloring and let
M∨

P ,M
∨
Q be max-crossing matchings on P and Q, respectively. Then cr(M∨

P ) ≥
cr(M∨

Q). That is, M
∨
Q is a min-max-crossing matching of the set Cn,n.

To prove Lemma 3, we make use of a variant of the classic ham sandwich
theorem [10]. A full proof can be found in Appendix A.

Proof (sketch). We define a matching MP on P in three steps and then compare
its crossings with those of M∨

Q, where we will distinguish two cases.

Step 1: Let S be the point set obtained by removing all the b-antipodal pairs
from P . If S is empty then all the points in P are b-antipodal pairs. Thus
P admits a crossing family of size n (which is a perfect matching) that has
more crossings than M∨

Q. Hence we may assume that S is non-empty.
Step 2: Partition the set S into four groups as follows. First, we arbitrarily

partition S into two consecutive sets SL and SR of equal size and note that
each part contains half of the blue and half of the red points. Using the ham
sandwich theorem, partition SL into SL,1 and SL,2 such that each of them has
an equal number of red and blue points. Due to the symmetry of SL and SR,
this partition can be duplicated on SR,1. Depending on the ham sandwich
cut, SL,1, SL,2, SR,1, and SR,2 form four or six bundles of consecutive points
along the convex hull. If we have only four bundles, we are done with the
partition. So assume that we have six bundles. Then one partition in the part
SR, say SR,2, is split into SR,2a and SR,2b by SR,1 along the convex hull; see
Fig. 2 (left). A similar splitting occurs for SL. As the points in SR,2b and
SL,2a, and SR,2a and SL,2b are m-antipodal pairs, the composition of points
in SR,2 is same as in SL,2a ∪ SR,2a and the composition of points in SL,2 is
same as SL,2b∪SR,2b. That is, if we have four or six bundles, they can always
be (re)assembled into four cyclically connected groups SRT , SRB , SLB , SLT

of S such that each of these groups has the same number of red and blue
points; see again Fig. 2. Moreover, each group is antipodal to another group:
SRT is antipodal to SLB and SLT is antipodal to SRB . We call these pairs
of groups matching-pair groups.

Step 3: Add all the removed b-antipodal pairs back to S to get P . The partition
of S induces a partition PRT , PRB , PLB , PLT in P . Note that the number of
red (blue) points of PRT and the number of blue (red) points of PLB are
equal. The same holds for PRB and PLT . Define the matching MP on P as
follows. For any matching-pair group (X,Y ) ∈ {(PRT , PLB), (PRB , PLT )},
the points inX are matched to points in Y such that any two of the matching
edges emanating from the points of the same color on X cross each other.

Assuming that S is non-empty, there are two possible structures for S, de-
pending on whether |SL|/2 is even or odd. We consider them as two separate
cases; see Fig. 3. Case 1: All groups in the partition of S have the same number
m of red and blue points. Case 2: Each group in one matching-pair group has m
red (and blue) points and each group in the other matching-pair has m+ 1 red
(and blue) points.
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SR,2

SR,1

SL,2

SL,1

SRT

SRB

SRT

SRB

SLB

SLT

SLB

SLT

SL,1 SR,1

SL,2

SR,2

SL,2a

SL,2b

SR,2a

SR,2b

=
=

Fig. 2: A bichromatic point set S with 16 points (left) and 20 points (right).
In both cases, dotted lines represent the partition of SL obtained by the ham
sandwich theorem, and its mirror on SR.

SRT

SRBSLB

SLT SRT

SRBSLB

SLT

m red
m blue

m red
m blue

m red
m blue

m red
m blue

m red
m blue

m + 1 red
m + 1 bluem red

m blue

m + 1 red
m + 1 blue

Fig. 3: Possible distribution of red and blue points between the groups of S.

For Case 1, the number of crossings in MP is given by cr(MP ) ≥
(
m+x1

2

)
+(

m+x2

2

)
+
(
m+y1

2

)
+
(
m+y2

2

)
+ (2m+ x1 + x2)(2m+ y1 + y2) + x1x2 + y1y2, where

x1, x2 are the number of b-antipodal points in PRT of the colors red and blue,
respectively and y1, y2 are the number of b-antipodal points in PLT of the col-
ors red and blue. These b-antipodal pairs always cross in MP and contribute
x1x2 + y1y2 crossings in MP . Then for a balanced 4–block coloring Q ∈ Cn,n
we have, cr(M∨

Q) = 3n2

8 − n
2 + c, where n = 4m + x1 + x2 + y1 + y2 and c ∈

{ 1
8 ,−

1
2 , 0} by Lemma 2. Comparing the number of crossings inMP and M∨

Q gives

cr(MP )− cr(M∨
Q) ≥

(x1y1+x2y1+x1y2+x2y2)
4 +

(x2
1+x2

2)
8 +

(y2
1+y2

2)
8 + (x1x2+y1y2)

4 − c.

As c ≤ 1
8 and since S is a proper subset of P , x1 + x2 + y1 + y2 ≥ 1. Thus

cr(MP ) ≥ cr(M∨
Q).

The reasoning for Case 2 is similar to the one for Case 1 sketched above. ⊓⊔
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As mentioned, Theorem 2 follows directly from Lemma 2 and Lemma 3.
We remark that balanced 4–block colorings are not the only colorings that admit
min-max-crossing matchings. For example, for n ≡ 0 mod 4, a 4-block coloring
with block sizes n

2 + 1, n
2 ,

n
2 − 1, n

2 always induces the same number of crossings
as the according balanced 4–block coloring; see Fig. 4.

R1

R2

B1

B2

B1

R1

B2

R2

Fig. 4: A balanced 4–block coloring (left) and a slightly unbalanced 4–block col-
oring (right) on 16 points and max-crossing matchings on them, each with 20
crossings.

3 Further Results

We have shown that for any n and any k > 3n2

8 − n
2 + 1

8 there exist point sets
P ∈ Cn,n that do not admit any bichromatic perfect matching with k crossings.

It is natural to ask what happens in the range [1, 3n2

8 ]. By straight-forward calcu-
lations, any P ∈ Cn,n with 2n–block coloring cannot have a bichromatic perfect
matching with k crossings for k ∈ {1, 2}. Using computers (with SAT frame-
work) we obtained that every P ∈ C7,7 admits bichromatic perfect matchings
with k crossings for any k ∈ {0, 1, . . . , 15} \ {1, 2}. Based on this, we can show
the following proposition. Its proof is deferred to Appendix B.

Proposition 1. For n ≥ 7, every P ∈ Cn,n admits bichromatic perfect match-

ings with k crossings for any k ∈ {0, 1, . . . , 15(n−6)
7 } \ {1, 2}.

For bichromatic point sets in general (non-convex) position with n red and n
blue points, computer assisted results shows that for n = 6, every such set admits
bichromatic perfect matchings with k crossings for k ∈ {0, 3, 4}. With a similar
proof as for Proposition 1, it follows that every bichromatic point set with n
red and n blue points admits bichromatic perfect matchings with k crossings for

k ∈ {0, 1, . . . , n
3 } \ {1, 2}. In ongoing work, we study the range k ∈ [ 15(n−6)

7 , 3n2

8 ]

for bichromatic convex point sets and the range k ∈ [n3 ,
5n2

18 ] for bichromatic
point sets in general position.
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4 Conclusion

We considered max-crossing matchings of bichromatic convex point sets in the
plane with n red and n blue points. We gave the exact number of crossings
in max-crossing matchings of point sets with balanced 4–block coloring and
showed that these matchings are min-max-crossing matchings of bichromatic
convex point sets. This result implies a negative answer to Question 1 on the

existence of matchings with k crossings in the convex case for k > 3n2

8 − n
2 + 1

8 .

We further answered the question for k ≤ 15(n−6)
7 . From a computational point

of view, an interesting open question is the following:

Question 2. Given a bichromatic (convex) point set P and an integer k, what is
the computational complexity of deciding whether there is a matching with exactly
(or at least) k crossings?
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A Proof of Lemma 3

Before proving Lemma 3, we first show that the max-crossing matching of a
balanced 4–block coloring is a min-max-crossing matching for the set of all P ∈
Cn,n with a 4–block coloring.

Lemma 4. Let Q ∈ Cn,n have a balanced 4–block coloring and let M∨
Q be a

max-crossing matching on Q. Then M∨
Q is a min-max-crossing matching for all

4–block colored point sets of size 2n.

Proof. Let P ∈ Cn,n have a 4–block coloring with blocks R1, B1, R2,B2, labeled
such that |R1|, |B1| ≤ n

2 . Let r1 = |R1| and b1 = |B1|. As mentioned in the
proof of Lemma 2, the function h(r1, b1) = (n − 2r1 − 2b1)x + 2x2 + r1b1 with
x = max{

⌊
1
2 (r1 + b1 − n

2 )
⌉
, 0}3 gives the number of non-crossing edge pairs in

a max-crossing matching of P . To determine a point set with 4–block coloring
such that its max-crossing matchings minimizes the number of crossings among
all max-crossing matchings of 4–block colored point sets, we need to maximize
h(r1, b1) over its domain, that is, over r1, b1 ≤ n

2 .
For that, we separately consider the cases when x = 1

2 (r1 + b1 − n
2 ) + q > 0,

where q is the smallest real number required to make x an integer, and x = 0. The
value q is the smallest real number required to make x an integer. Note that q
depends on the parity of r1 + b1 and on the value of n mod 4 (see Table 1).

r1 + b1 n ≡ 0 mod 4 n ≡ 1 mod 4 n ≡ 2 mod 4 n ≡ 3 mod 4

even 0 − 1
4

1
2

1
4

odd 1
2

1
4

0 − 1
4

Table 1: Values of q for Lemma 4.

By substituting the value x = r1+b1
2 − n

4 + q in the function h(r1, b1), we

obtain h(r1, b1) =
nb1+nr1−b21−r21

2 − n2

8 + 2q2. The critical points of this function
are obtained by setting its partial derivatives with respect to r1 and b1 to zero.
This gives exactly one critical point at (n2 ,

n
2 ). The second partial derivatives

show that this point is a local maximum of h(r1, b1). But
n
2 might be a real

number or not have the correct parity for the requirement. Hence it might not
be give valid maximum w.r.t. r1, b1, n. Thus, we have to separately consider the
different parities of r1+ b1 in combination with the different values of n mod 4.
For that, we consider the following cases. Note that as h(r1, b1) is symmetric in
r1 and b1, w.l.o.g. we can assume that r1 ≤ b1.

3 Here we consider the maximum among
⌊
1
2
(r1 + b1 − n

2
)
⌉
and zero to make sure that

x ≥ 0.
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Case 1: If n ≡ 0 mod 4:
Then n = 4m for some integer m. In this case, the critical point r1 = b1 =
n
2 = 2m, is an integer. In order to find a valid maximum, we also need to
consider the parity of r1 + b1. This leads to the following cases.

If r1 + b1 is even: In this case, h(r1, b1) =
nb1+nr1−b21−r21

2 −n2

8 . Then critical

point r1 = b1 = 2m gives the maximum of h(r1, b1) =
n2

8 .
If r1 + b1 is odd: Here, the above critical point is not valid as the sum is

not odd. In this case, h(r1, b1) =
nb1+nr1−b21−r21

2 − n2

8 + 1
2 . The maximum

is at r1 = 2m and b1 = 2m+ 1 and its value is h(r1, b1) =
n2

8 .

Case 2: If n ≡ 1 mod 4:
Then n = 4m + 1 for some integer m. In this case the critical point, r1 =
b1 = n

2 , does not give an integer value. In order to find the maximum, we
also need to consider the parity of r1 + b1. This leads to the following cases.

If r1 + b1 is even: In this case, h(r1, b1) =
nb1+nr1−b21−r21

2 − n2

8 + 1
8 . Then

the maximum is at r1 = b1 = 2m and has the value h(r1, b1) =
n2

8 − 1
8 .

If r1 + b1 is odd: In this case, h(r1, b1) =
nb1+nr1−b21−r21

2 − n2

8 + 1
8 . The

maximum is obtained at r1 = 2m and b1 = 2m + 1 and has the value
h(r1, b1) =

n2

8 − 1
8 .

Case 3: If n ≡ 2 mod 4:
Then n = 4m + 2 for some integer m. In this case the critical point, r1 =
b1 = n

2 , is an integer value. However, for the maximum, we also need to
consider the parity of r1 + b1. This leads to the following cases.

If r1 + b1 is even: In this case, h(r1, b1) =
nb1+nr1−b21−r21

2 − n2

8 + 1
2 . Then

r1 = b1 = 2m + 1 gives a valid point and the resulting maximum value

is h(r1, b1) =
n2

8 + 1
2 .

If r1 + b1 is odd: In this case, h(r1, b1) =
nb1+nr1−b21−r21

2 − n2

8 . The max-
imum is obtained at r1 = 2m and b1 = 2m + 1 and has the value
h(r1, b1) =

n2

8 − 1
2 .

Case 4: If n ≡ 3 mod 4:
Then n = 4m + 3 for some integer m. In this case the critical point, r1 =
b1 = n

2 , does not have integer values. In order to find the points reaching
the maximum, we again also consider the parity of r1+ b1. This leads to the
following cases.

If r1 + b1 is even: In this case, h(r1, b1) =
nb1+nr1−b21−r21

2 − n2

8 + 1
8 . Then

maximum is at r1 = b1 = 2m+ 2 and has the value h(r1, b1) =
n2

8 − 1
8 .

If r1 + b1 is odd: In this case, h(r1, b1) =
nb1+nr1−b21−r21

2 − n2

8 + 1
8 . Then

maximum is obtained at r1 = 2m+1 and b1 = 2m+2 and has the value
h(r1, b1) =

n2

8 − 1
8 .

In all the above cases, any point set P with balanced 4–block coloring gives
a min-max-crossing matching.
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The only remaining case is to check what happens if when x = 0. Here,
h(r1, b1) = r1b1. We have to maximize this function under the restriction that
r1 + b1 < n

2 and r1, b1 ≥ 0. Thus we get r1 = b1 = n
4 , which again might not be

an integer or not have the right parity of r1 + b1. However, doing an analogous
case distinction as above, the maximum number of non-crossing edges always is
less than and equal to m2 + am, where a is a fixed integer depending on the
case. This is relevantly smaller than the number of non-crossing edges in the
maxima obtained above (by the balanced 4–block coloring), which is given by
2m2 + cm+ d, for some integers c and d. Hence no 4–block colored point set P
with r1+b1 ≤ n

2 minimizes the number of non-crossing edges in M∨
P over all point

sets with 4–block coloring. Altogether, this implies that the number of crossings
in a max-crossing matching is minimized on a balanced 4–block coloring. ⊓⊔

Lemma 3. Let P,Q ∈ Cn,n, where Q has a balanced 4–block coloring and let
M∨

P ,M
∨
Q be max-crossing matchings on P and Q, respectively. Then cr(M∨

P ) ≥
cr(M∨

Q). That is, M
∨
Q is a min-max-crossing matching of the set Cn,n.

Proof. We define a matching MP on P in three steps and then compare its
crossings with those of M∨

Q, where we distinguish two cases.

Step 1: Let S be the subset of P obtained by removing all the b-antipodal pairs
from P . Then S is also a bichromatic convex point set with an equal number
of red and blue points. Since each point in S has an antipodal pair of the
same color, the number of red (blue) points must be even.
If S is empty then all the points in P are b-antipodal pairs. Thus P admits a
crossing family of size n. Then clearly this crossing family (which is a perfect
matching) has more crossings than M∨

Q.
Step 2: Partition the set S into four groups SRT , SRB , SLB , SLT as follows.

First, we partition the points of S into two sets SL and SR of equal size.
Note that each of these sets has an equal number of red and blue points.
Using the ham sandwich theorem, we partition SL into SL,1 and SL,2 such
that SL,1 has the same number of red and blue points, and also SL,2 has the
same number of red and blue points. Note that if the number of red (blue)
points in SL is odd, then the number on red (blue) points in SL,1 and SL,2 will
differ by one. Due to the symmetry of SL and SR we have a corresponding
partition SR,1 and SR,2 of SR. Depending on the ham sandwich cut, SL,1,
SL,2, SR,1, and SR,2 form four or six bundles of consecutive points along the
convex hull. If we have only four bundles, we are done with the partition.
So assume that we have six bundles. Then one partition in the part SR, say
SR,2, is split into SR,2a and SR,2b by SR,1 along the convex hull; see Fig. 2
(left). A similar splitting occurs for SL. As the points in SR,2b and SL,2a,
and SR,2a and SL,2b are m-antipodal pairs, the composition of points in SR,2

is same as in SL,2a ∪ SR,2a and the composition of points in SL,2 is same
as SL,2b ∪ SR,2b. That is, if we have four or six bundles, they can always
be (re)assembled into four cyclically connected groups SRT , SRB , SLB , SLT

of S such that each of these groups has the same number of red and blue
points; see again Fig. 2. Moreover, each group is antipodal to another group:
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SRT is antipodal to SLB and SLT is antipodal to SRB . We call these pairs
of groups matching-pair groups.
If S = P , sort the points in SRT and SLB such that all the red points appear
before the blue points w.r.t. clockwise order. Then sort the points in SRB

and SLT such that all the blue points appear before the red points. This
gives a bichromatic point set W with the partition WRT ,WRB ,WLB ,WLT .
Define the matchings MS and MW on S and W , respectively, as follows.
For any (X,Y ) ∈ {(SRT , SLB), (SRB , SLT ), (WRT ,WLB), (WRB ,WLT )}, the
points in X are matched to points in Y such that any two of the match-
ing edges emanating from the same colored points on X cross each other.
Hence the matching edges of X give two crossing families, where the size
of each family is determined by the number of points in X of each color.
By our construction, the size of the crossing families is the same in both
S and W . But in S these crossing families might cross each other, while
in W they do not cross each other. Hence, cr(MS) ≥ cr(MW ). By construc-
tion W has a balanced 4–block coloring (i.e., W = Q) and MW = M∨

Q. Thus,

cr(MS) ≥ cr(M∨
Q). However, the constructed matching MS might not be a

max-crossing matching on S. Hence, if M∨
S is a max-crossing matching for P ,

then cr(M∨
S) ≥ cr(MS). This implies cr(M∨

S) ≥ cr(M∨
Q), which completes the

proof for the case S = P .
For the remaining part, S is a non-empty proper subset of P .

Step 3: Add back the b-antipodal pairs to S to obtain P and assign each
b-antipodal pairs to one of the matching-pair groups. We denote the new
groups by PRT , PRB , PLB , PLT , respectively. This gives a partition of P into
four groups, where each group may have a different number of red and blue
points, but the number of red (blue) points in one group is equal to the num-
ber of blue (red) points in its matching-pair group. For calculation purposes
we assume that there are x1 new red points and x2 new blue points added
to the group PRT and y1 new red points and y2 new blue points added to
the group PLT .

As we assume that S is non-empty, there are two possible structures for S as
described in Step 2. We consider them as two separate cases. Case 1: All groups
in the matching-pair groups have the same number m of red and blue points.
Case 2: Each group in one matching-pair group has m red (blue) points whereas
each group in the other matching-pair has m+ 1 red (blue) points, see Fig. 3.

Case 1: All groups have m red and m blue points
Define the matching MP on P as follows. For any matching-pair group
(X,Y ) ∈ {(PRT , PLB), (PRB , PLT )}, the points in X are matched to points
in Y such that any two of the matching edges emanating from the same col-
ored points in X cross each other. Since PRT has m+x1 red points, the edges
emanating from these points form a crossing family of sizem+x1 with

(
m+x1

2

)
crossings in MP . Similarly, the edges emanating from the m+x2 blue points
in PRT form a crossing family of size m+ x2 with

(
m+x2

2

)
crossings in MP .

Note that these crossing families can cross each other in MP . Likewise, PLT
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PRT

PRBPLB

PLT

m red

m blue

m red
m blue

m red
m blue

m red

m blue

x1 red

x2 red y2 red

y1 red

x1 blue

x2 bluey2 blue

y1 blue

Fig. 5: Distribution of points in Case 1 of the proof of Lemma 3. Filled vertices
represent m-antipodal pairs and unfilled vertices represent b-antipodal pairs.

admits a crossing family of red points size m+ y1 with
(
m+y1

2

)
crossings and

a crossing family of blue points of size m + y2 with
(
m+y2

2

)
crossings. Fur-

thermore, all the edges emanating from PRT cross all the edges emanating
from PLT , see Fig. 5.

The number of crossings in MP is given by

cr(MP ) ≥
(
m+ x1

2

)
+

(
m+ x2

2

)
+

(
m+ y1

2

)
+

(
m+ y2

2

)
+ (2m+ x1 + x2)(2m+ y1 + y2) + a+ b.

Here, a is the number of crossings obtained between the bundle of edges
emanating from the x1 red points in PRT with the edges emanating from
the x2 blue points in PRT . Similarly, b is the number of crossings between
the edges emanating from the b-antipodal points in PLT of different color.
Note that in this counting we did not count the crossings between the edges
emanating from the red and blue points in SRT and SLT . Also, the crossings
between the edges emanating from the x1 (or x2) newly added red (blue)
points in PRT and m blue (red) points in the corresponding SRT were not
considered in the above counting. Similarly for PLT .

Claim. a ≥ x1 · x2 and b ≥ y1 · y2.

Proof of Claim: In the following we prove a = x1 · x2. The proof for b =
y1 · y2 follows similarly. Assume that {(p1, q1), (p2, q2)} with p1, p2 ∈ PRT

and q1, q2 ∈ PLB are the b-antipodal pairs such that p1, q2 are red and p2, q1
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p1 p2

q2 q1

p1 p2

q2 q1

p1 p2

q2 q1

p1 p2

q2 q1

PRT :

PRT :

PRT :

PRT :

PLB : PLB :

PLB : PLB :

Fig. 6: Possible ways in which b-antipodal points cross in MP . The crossings
counted in the claim are marked by a circle. The crossed red-blue lines represents
the remaining red-blue points in PRT and PLB .

are blue (see Fig. 6). Let ev be the matching edge of MP incident to point v.
We will show that either ep1

or eq1 crosses with ep2
or eq2 .

Note that the edges ep1
and eq1 cross each other as they belong to the same

crossing family and similarly, ep2
and eq2 cross each other. If the edge ep1

separates the points p2 and q2, then either ep2 or eq2 has to cross ep1 as
ep2 and eq2 cross each other. If the edge ep1 does not separate the points p2
and q2, then eq1 separates them as ep1

and eq1 cross each other. Thus, either
ep1

or eq1 has to cross eq2 . ■

By substituting the values of a and b we get

cr(MP ) ≥ 6m2 + 3m(x1 + x2 + y1 + y2)− 2m+ x1y1 + x1y2 + x2y1 + x2y2

+
x2
2 + x2

1 + y21 + y22 − x1 − x2 − y1 − y2
2

+ x1x2 + y1y2.

Consider a balanced 4–block coloringQ ∈ Cn,n with n = 4m+x1+x2+y1+y2.
Then by Lemma 2, we get

cr(M∨
Q) =

3n2

8
− n

2
+ c

=
3(4m+ x1 + x2 + y1 + y2)

2

8
− 4m+ x1 + x2 + y1 + y2

2
+ c

= 6m2 + 3m(x1 + x2 + y1 + y2) +
3(x1y1 + x2y1 + x1y2 + x2y2)

4

+
3(x1x2 + y1y2)

4
+

3(x2
1 + x2

2)

8
+

3(y21 + y22)

8
− 2m− x1

2
− x2

2

− y1
2

− y2
2

+ c,
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where c takes one of the values 1
8 ,−

1
2 ,or 0, depending on the divisibility of n

by four. Comparing the number of crossings in MP and M∨
Q gives

cr(MP )− cr(M∨
Q) ≥

(x1y1 + x2y1 + x1y2 + x2y2)

4
+

(x2
1 + x2

2)

8
+

(y21 + y22)

8

+
(x1x2 + y1y2)

4
− c.

As c ≤ 1
8 and since S is a proper subset of P at least one among x1, x2, y1, y2

is at least 1. Thus cr(MP ) ≥ cr(M∨
Q).

Case 2: Two groups in a matching-pair group have m red (blue)
points and the two remaining groups have m+1 red (blue) points.
As in Case 1, define the matching MP on P as follows. For any matching-
pair group (X,Y ) ∈ {(PRT , PLB), (PRB , PLT )}, the points in X are matched
to points in Y such that any two of the matching edges emanating from
the same colored points on X cross each other. Since PRT has m + x1 red
points, the edges emanating from these points form a crossing family of size
m+x1 with

(
m+x1

2

)
crossings in MP . Similarly, the edges emanating from the

m+x2 blue points in PRT form a crossing family of size m+x2 with
(
m+x2

2

)
crossings inMP . Note that these crossing families can cross each other inMP .
Likewise, PLT admits a crossing family emanating from red points of size
m + y1 + 1 with

(
m+y1+1

2

)
crossings and a crossing family emanating from

blue points of size m + y2 + 1 with
(
m+y2+1

2

)
crossings. Furthermore, all

the edges emanating from PRT cross all the edges emanating from PLT , see
Fig. 7.
The number of crossings in MP is given by

cr(MP ) ≥
(
m+ x1

2

)
+

(
m+ x2

2

)
+

(
m+ y1 + 1

2

)
+

(
m+ y2 + 1

2

)
+ (2m+ x1 + x2)(2m+ y1 + y2 + 2) + a+ b.

Here a is the number of crossings obtained between the bundle of edges
emanating from the x1 red points in PRT with the edges emanating from
the x2 blue points in PRT . Similarly, b is the number of crossings between
the edges emanating from the b-antipodal points in PLT . Note that in this
counting we did not count the crossings between the edges emanating from
the red and blue points in SRT and SLT . Also, the crossings between the
edges emanating from the x1 (or x2) newly added red (blue) points in PRT

and m blue (red) points in the corresponding SRT were not considered in
the above counting. Similarly for PLT . Analogous Case 1, we have a ≥ x1x2

and b ≥ y1y2. By substituting the values of a and b we get

cr(MP ) ≥ 6m2 + 3m(x1 + x2 + y1 + y2) + 4m+ x1y1 + x1y2 + x2y1 + x2y2

+
x2
2 + x2

1 + y21 + y22
2

+
3(x1 + x2)

2
+

(y1 + y2)

2
+ x1x2 + y1y2.
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PRT

PRB
PLB

PLT

m red
m blue

m + 1 red
m + 1 blue

m red
m blue

m + 1 red
m + 1 blue x1 red

x2 red y2 red

y1 red

x1 blue

x2 blue
y2 blue

y1 blue

Fig. 7: Distribution of points in Case 2 of the proof of Lemma 3. Filled vertices
represents m-antipodal pairs and unfilled vertices represents b-antipodal pairs.

Consider a balanced 4–block coloring Q ∈ Cn,n with n = 4m+2+ x1 + x2 +
y1 + y2. Then by Lemma 2, we get

cr(M∨
Q) =

3n2

8
− n

2
+ c

=
3(4m+ x1 + x2 + y1 + y2 + 2)2

8
− 4m+ x1 + x2 + y1 + y2 + 2

2
+ c

= 6m2 + 3m(x1 + x2 + y1 + y2) +
3(x1y1 + x2y1 + x1y2 + x2y2)

4

+
3(x1x2 + y1y2)

4
+

3(x2
1 + x2

2)

8
+

3(y21 + y22)

8
+ 4m+ x1 + x2

+ y1 + y2 +
1

2
+ c,

where c takes one of the values 1
8 ,−

1
2 ,or 0, depending on the divisibility of n

by four. Comparing the number of crossings in MP and M∨
Q gives

cr(MP )− cr(M∨
Q) ≥

(x1y1 + x2y1 + x1y2 + x2y2)

4
+

(x2
1 + x2

2)

8
+

(y21 + y22)

8

+
(x1x2 + y1y2)

4
+

x1 + x2

2
− y1 + y2

2
− 1

2
− c.

For x1 + x2 ≥ 2, we have cr(MP ) − cr(M∨
Q) ≥

(y1+y2)
2

8 + 1
2 − c. As c ≤ 1

8 ,

cr(MP ) ≥ cr(M∨
Q). Thus we only have to consider the case when x1+x2 < 2,

i.e., either x1 = x2 = 0 or x1 = 1 and x2 = 0. Note that we do not have to
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consider the case where x1 = 0 and x2 = 1 separately, as the inequality is
symmetric in x1 and x2 (as well as in y1 and y2).

Case 2.1: Assume that x1 = 1 and x2 = 0. It implies that cr(MP )− cr(M∨
Q) ≥

(y1+y2)(y1+y2−2)
8 + 1

8 − c ≥ (y1+y2)(y1+y2−2)
8 , where the last inequality holds

as c ≤ 1
8 . Thus, cr(MP ) ≥ cr(M∨

Q) whenever y1 + y2 ̸= 1. W.l.o.g. assume
that y1 = 1 and y2 = 0. Then the total number of red points in such a point
set P is n = 4m+4. As n ≡ 0 mod 4, c = 0 by Lemma 2. This implies that
cr(MP ) ≥ cr(M∨

Q).

Case 2.2: Assume that x1 = x2 = 0. Then cr(MP )−cr(M∨
Q) ≥

(y1+y2)(y1+y2−4)
8 −

1
2 − c ≥ (y1+y2)(y1+y2−4)

8 − 1
2 − 1

8 , where the last inequality holds as c ≤ 1
8 .

Thus, cr(MP ) ≥ cr(M∨
Q) whenever y1 + y2 ≥ 5. Assume that y1 + y2 = 4,

then the total number of red points in such a set P is n = 4m + 6, i.e.,
c = − 1

2 . Thus, cr(MP ) ≥ cr(M∨
Q). Next, assume that y1 + y2 = 1. Then

the total number of red points in such a set P is n = 4m + 3, i.e., c = 1
8 .

Thus, cr(MP ) − cr(M∨
Q) ≥ −1. Similarly, assume that y1 + y2 = 2. Then

the total number of red points in such a set P is n = 4m + 4, i.e., c = 0.
Thus, cr(MP ) − cr(M∨

Q) ≥ −1. And finally if y1 + y2 = 3. Then the to-

tal number of red points in such a set P is n = 4m + 5, i.e., c = 1
8 . Thus,

cr(MP )−cr(M∨
Q) ≥ −1. Note that y1+y2 = 0 would imply x1+x2+y1+y2 = 0

which imply S = P which we considered already.
In short, if y1+y2 ≤ 3, cr(MP )− cr(M∨

Q) ≥ −1. In this situation, in order to
show that the max-crossing matching on P has at least as many as crossings
than the max-crossing matching of the corresponding Q, we either have
to find one more crossing in MP which is not counted before, or we should
define a different matching on P and compare its crossings with the crossings
in M∨

Q. If the edges emanating from red and blue points in some group of
S ⊂ P crosses each other, then we can add at least one more crossing to our
counting of cr(MP ) (such crossings are not counted in the formula before).
Then cr(MP ) ≥ cr(M∨

Q). Thus, the only remaining possibility is that the
crossing families formed by the red and blue points in SRT (and SLT ) do
not cross each other, i.e, S has a 4–block coloring. Here, we consider the
following two cases.

Case 2.2.1: Assume that y1 = 0 and S ⊂ P has a 4–block coloring. Then we
have x1 = x2 = y1 = 0 and y2 ̸= 0. If the edges emanating from y2 cross
any other edges that emanates from a different colored point in the same
group, then cr(MP ) ≥ cr(M∨

Q). If not, then P has a 4–block coloring. Then

by Lemma 4, cr(MP ) ≥ cr(M∨
Q).

Case 2.2.2: Assume that y1, y2 ̸= 0 and S ⊂ P has a 4–block coloring. If
the edges emanating from any of the b-antipodal points in PLT crosses an
edge emanating from a m-antipodal point in SLT of different color, then
cr(MP ) ≥ cr(M∨

Q). Otherwise, we define a different matching on P .
As x1 = x2 = 0, P has a 6–block coloring. W.l.o.g. assume that |R1| = 2m+
1+y1, |B1| = 2m+1, |R2| = y2, |B2| = y1, |R3| = 2m+1, |B3| = 2m+1+y2.
We define a matching M ′

P on P as follows: (Note that when we say “match
two collection of points”, we mean to match it as a crossing family). Match
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the first m points in R1 to the last m points of B1. Match next y1 points of
R1 to B2. Then match the remaining m+ 1 points of R1 to the first m+ 1
points of B3. Now match the next y2 points of B3 to R2 and the remaining m
points of B3 is matched to the firstm points of R3. Next match the remaining
unmatched points, that is, the first m + 1 points in B1 to the last m + 1
points in R3 (see Fig 8).

R1

R2

R3

B1

B2

B3

m y1 m + 1

m + 1

m
+
1

y 2
m

m

m
+
1

y
2

y1

m

Fig. 8: 6–blocks and their corresponding matching.

The number of crossings in M ′
P = 2

(
m
2

)
+ 2

(
m+1
2

)
+

(
y1

2

)
+

(
y2

2

)
+ 4m2 +

m+ 2y1(m+ 1) + 2y2(m+ 1) +my1 +my2 + y1y2. For y1 = y2 = 1 we get
cr(M ′

P ) = 6m2 +10m+5. The total number of red points in such a set P is
n = 4m+4, i.e., c = 0. In this case, cr(M∨

Q) = 6m2+10m+4. Thus we have

cr(MP )−cr(M∨
Q) ≥ 0. For y1 = 1 and y2 = 2, we get cr(M ′

P ) = 6m2+13m+9

and the total number of red points in such a set P is n = 4m+5, i.e., c = 1
8 .

In this case, cr(M∨
Q) = 6m2 +13m+7. Thus we have cr(MP )− cr(M∨

Q) ≥ 0.
This completes the last case and hence the whole proof. ⊓⊔
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B Proof of Proposition 1

Proposition 1. For n ≥ 7, every P ∈ Cn,n admits bichromatic perfect match-

ings with k crossings for any k ∈ {0, 1, . . . , 15(n−6)
7 } \ {1, 2}.

Proof. Let P ∈ Cn,n, where n ≥ 7. We will first partition P into subsets
P1, P2, . . . , Pℓ of 14 points each, such that each subset has 7 red and 7 blue
points, plus one (possibly empty) point set Pℓ+1 of at most 6 red and blue
points each. To do this, we will iteratively split of a set Pi from P , starting with
i = 1, in the following way:

Starting with an empty set Pi, we traverse the points along the convex hull
of P in clockwise order (starting from an arbitrary point) and add them to Pi

one by one until Pi has 14 points. Let s be the difference between the number of
red and blue points in Pi. While s ̸= 0, we remove the first point that was added
to Pi and add the next point along the convex hull of P . In each such step, the
value of s either increases by 2 or decreases by 2 or remains unchanged. Note
that since the number of red and blue points in P is the same, summing the
values of s over all different subsets of 14 consecutive points along the convex
hull of P gives zero. Hence we eventually obtain a set Pi with 7 red and 7 blue
points and remove these points from P . Once the iteratively reduced set P has
less than 14 points, we denote this remaining (possibly empty) set as Pℓ+1.

Recall that by computations, we know that for any 1 ≤ i ≤ ℓ and any integer
k′ ∈ {0, 1, 2, . . . , 15}\{1, 2}, there exists a perfect matching of Pi with exactly k′

crossings. Further, Pℓ+1 always admits a plane perfect matching.
Since the convex hulls of the subsets P1, P2, . . . , Pℓ, Pℓ+1 are pairwise disjoint

by construction, no crossing occurs between edges from different subsets. There-
fore, we can construct a perfect matching of P with any number of crossings k
such that 3 ≤ k ≤ 15 · ℓ = 15

7 (n − c), where c ≤ 6 is the number of red (blue,
respectively) points in Pℓ+1, by combining appropriate matchings of the subsets
P1, P2, . . . , Pℓ. ⊓⊔

We remark that the partition of P into balanced bichromatic sets with pair-
wise disjoint convex hulls in the above proof strongly relies on the fact that P is
in convex position. In fact, for a balanced bichromatic point set in general posi-
tion, an according result is in general not possible. An alternative partitioning
method that also works for general point sets is to recursively apply the ham
sandwich theorem until all sets are sufficiently small (but not smaller than the
desired value). Note, however, that the resulting balanced bichromatic sets will
have cardinalities ranging from the desired minimum value to nearly twice that
value. Using this method in the above proof would result in roughly half the
desired bound for k.
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