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Abstract

For a set P of n points in the plane in general position, a non-crossing spanning tree
is a spanning tree of the points where every edge is a straight-line segment between a pair of
points and no two edges intersect except at a common endpoint. We study the problem of
reconfiguring one non-crossing spanning tree of P to another using a sequence of flips where
each flip removes one edge and adds one new edge so that the result is again a non-crossing
spanning tree of P . There is a known upper bound of 2n− 4 flips [Avis and Fukuda, 1996] and
a lower bound of 1.5n− 5 flips.

We give a reconfiguration algorithm that uses at most 2n − 3 flips but reduces that to
1.5n − 2 flips when one tree is a path and either: the points are in convex position; or the
path is monotone in some direction. For points in convex position, we prove an upper bound
of 2d− Ω(log d) where d is half the size of the symmetric difference between the trees. We also
examine whether the happy edges (those common to the initial and final trees) need to flip,
and we find exact minimum flip distances for small point sets using exhaustive search.

1 Introduction

Let P be a set of n points in the plane in general position. A non-crossing spanning tree is a
spanning tree of P whose edges are straight line segments between pairs of points such that no two
edges intersect except at a common endpoint. A reconfiguration step or flip removes one edge
of a non-crossing spanning tree and adds one new edge so that the result is again a non-crossing
spanning tree of P . We study the problem of reconfiguring one non-crossing spanning of P to
another via a sequence of flips.

Researchers often consider three problems about reconfiguration, which are most easily ex-
pressed in terms of the reconfiguration graph that has a vertex for each configuration (in our
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case, each non-crossing spanning tree) and an edge for each reconfiguration step. The problems are:
(1) connectivity of the reconfiguration graph—is reconfiguration always possible? (2) diameter of
the reconfiguration graph—how many flips are needed for reconfiguration in the worst case? and
(3) distance in the reconfiguration graph—what is the complexity of finding the minimum number
of flips to reconfigure between two given configurations?

For reconfiguration of non-crossing spanning trees, Avis and Fukuda [10, Section 3.7] proved
that reconfiguration is always possible, and that at most 2n−4 flips are needed. Hernando et al. [20]
proved a lower bound of 1.5n− 5 flips. Even for the special case of points in convex position, there
are no better upper or lower bounds known.

Our two main results make some progress in reducing the diameter upper bounds.
(1) For points in general position, we give a reconfiguration algorithm that uses at most 2n− 3

flips but reduces that to 1.5n− 2 flips in two cases: (1) when the points are in convex position and
one tree is a path; (2) for general point sets when one tree is a monotone path. The algorithm first
flips one tree to a downward tree (with each vertex connected to a unique higher vertex) and the
other tree to an upward tree (defined symmetrically) using n− 2 flips—this is where we save when
one tree is a path. After that, we give an algorithm to flip from a downward tree TD to an upward
tree TU using at most n−1 “perfect” flips each of which removes an edge of TD and adds an edge of
TU . The algorithm is simple to describe, but proving that intermediate trees remain non-crossing
is non-trivial. We also show that 1.5n− 5 flips may be required, even in the two special cases. See
Section 2.

(2) For points in convex position, we improve the upper bound on the number of required flips
to 2d − Ω(log d) where d is half the size of the symmetric difference between the trees. So d flips
are needed in any flip sequence, and 2d is an upper bound. The idea is to find an edge e of one
tree that is crossed by at most (roughly) d/2 edges of the other tree, flip all but one of the crossing
edges temporarily to the convex hull (this will end up costing 2 flips per edge), and then flip the
last crossing edge to e. Repeating this saves us one flip, compared to the 2d bound, for each of the
(roughly) log d repetitions. See Section 3.

Notably, neither of our algorithms uses the common—but perhaps limited—technique of observ-
ing that the diameter is at most twice the radius, and bounding the radius of the reconfiguration
graph by identifying a “canonical” configuration that every other configuration can be flipped to.
Rather, our algorithms find reconfiguration sequences tailored to the specific input trees.

In hopes of making further progress on the diameter and distance problems, we address the
question of which edges need to be involved in a minimum flip sequence from an initial non-crossing
spanning tree TI to a final non-crossing spanning tree TF . We say that the edges of TI ∩ TF are
happy edges, and we formulate the Happy Edge Conjecture that for points in convex position,
there is a minimum flip sequence that never flips happy edges. We prove the conjecture for happy
convex hull edges. See Section 4. More generally, we say that a reconfiguration problem has the
“happy element property” if elements that are common to the initial and final configurations can
remain fixed in a minimum flip sequence. Reconfiguration problems that satisfy the happy element
property seem easier. For example, the happy element property holds for reconfiguring spanning
trees in a graph (and indeed for matroids more generally), and the distance problem is easy. On
the other hand, the happy element property fails for reconfiguring triangulations of a point set in
the plane, and for the problem of token swapping on a tree [12], and in both cases, this is the
key to constructing gadgets to prove that the distance problem is NP-hard [26, 31, 4]. As an
aside, we note that for reconfiguring triangulations of a set of points in convex position—where
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the distance problem is the famous open question of rotation distance in binary trees—the happy
element property holds [35], which may be why no one has managed to prove that the distance
problem is NP-hard.

Finally, we implemented a combinatorial search program to compute the diameter (maximum
reconfiguration distance between two trees) and radius of the reconfiguration graph for points in
convex position. For 6 ≤ n ≤ 12 the diameter is b1.5n− 4c and the radius is n− 2. In addition we
provide the same information for the special case when the initial and final trees are non-crossing
spanning paths, though intermediate configurations may be more general trees. We also verify the
Happy Edge Conjecture for n ≤ 10 points in convex position. See Section 5.

1.1 Background and Related Results

Reconfiguration is about changing one structure to another, either through continuous motion or
through discrete changes. In mathematics, the topic has a vast and deep history, for example in
knot theory, and the study of bounds on the simplex method for linear programming. Recently,
reconfiguration via discrete steps has become a focused research area, see the surveys by van den
Heuvel [36] and Nishimura [29]. Examples include sorting a list by swapping pairs of adjacent
elements, solving a Rubik’s cube, or changing one colouring of a graph to another. With discrete
reconfiguration steps, the reconfiguration graph is well-defined. Besides questions of diameter and
distance in the reconfiguration graph, there is also research on enumeration via a Hamiltonian cycle
in the reconfiguration graph, see the recent survey [27], and on mixing properties to find random
configurations, see [33].

Our work is about reconfiguring one graph to another. Various reconfiguration steps have
been considered, for example exchanging one vertex for another (for reconfiguration of paths [14],
independent sets [23, 11], etc.), or exchanging multiple edges (for reconfiguration of matchings [13]).
However, we concentrate on elementary steps (often called edge flips) that exchange one edge for
one other edge. A main example of this is reconfiguring one spanning tree of a graph to another,
which can always be accomplished by “perfect” flips that add an edge of the final tree and delete
an edge of the initial tree—more generally, such a perfect exchange sequence is possible when
reconfiguring bases of a matroid.

Our focus is on geometric graphs whose vertices are points in the plane and whose edges are non-
crossing line segments between the points. In this setting, one well-studied problem is reconfiguring
between triangulations of a point set in the plane, see the survey by Bose and Hurtado [15]. Here,
a flip replaces an edge in a convex quadrilateral by the other diagonal of the quadrilateral. For
the special case of n points in convex position this is equivalent to rotation of an edge in a given
(abstract) rooted binary tree, which is of interest in the study of splay trees, and the study of
phylogenetic trees in computational biology. While an upper bound for the reconfiguration distance
of 2n−10 is known to be tight for n > 12 [32, 35], the complexity of computing the shortest distance
between two triangulations of a convex point set (equivalently between two given binary trees) is
still unknown. See [6, 26, 31] for related hardness results for the flip-distance of triangulations of
point sets and simple polygons.

Another well-studied problem for geometric graphs is reconfiguration of non-crossing perfect
matchings. Here a flip typically exchanges matching and non-matching edges in non-crossing cycles,
and there are results for a single cycle of unbounded length [21], and for multiple cycles [3, 34].
For points in convex position, the flip operation on a single cycle of length 4 suffices to connect the
reconfiguration graph [19], but this is open for general point sets. For a more general flip operation
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that connects any two disjoint matchings whose union is non-crossing, the reconfiguration graph
is connected for points in convex position [1] (and, notably, the diameter is less than twice the
radius), but connectivity is open for general point sets [3, 22].

The specific geometric graphs we study are non-crossing (or “plane”) spanning trees of a set of
points in the plane. For points in convex position, these have been explored for enumeration [30],
and for a duality with quadrangulations and consequent lattice properties, e.g., see [9] and related
literature.

For non-crossing spanning trees of a general point set in the plane, there are several basic
reconfiguration operations that can be used to transform these trees into each other. The one we
use in this work is the simple edge exchange of an edge e by an edge e′ as described above. If we
require that e and e′ do not cross, then this operation is called a compatible edge exchange. Even
more restricted is an edge rotation, where e = uv and e′ = uw share a common vertex u. If the
triangle u, v, w is not intersected by an edge of the two involved trees, then this is called an empty
triangle edge rotation. The most restricted operation is the edge slide (see also Section 4.3) where
the edge vw has to exist in both trees. The name comes from viewing this transformation as sliding
one end of the edge e along vw to e′ (and rotating the other end around u) and at no time crossing
through any other edge of the trees. For an overview and detailed comparison of the described
operations see Nichols et al. [28].

It has been shown that the reconfiguration graph of non-crossing spanning trees is even con-
nected for the “as-local-as-possible” edge slide operation [2]. See also [7] where a tight bound of
Θ(n2) steps for the diameter is show. This implies that also for the other reconfiguration opera-
tions the flip graph is connected. For edge exchange, compatible edge exchange, and edge rotation
a linear upper bound for the diameter is known [10], while for empty triangle edge rotations an
upper bound of O(n log n) has been shown recently [28]. For all operations (except edge slides) the
best known lower bound is 1.5n− 5 [20].

There are several variants for the reconfiguration of spanning trees. For example, the operations
can be performed in parallel, that is, as long as the exchanges (slides etc) do not interfere with
each other, they can be done in one step; see [28] for an overview of results. In a similar direction
of a more global operation we can say that two non-crossing spanning trees are compatible, if their
union is still crossing free. A single reconfiguration step then transforms one such tree into the
other. A lower bound of Ω(log n/ log log n) [16] and an upper bound of O(log n) [2] for the diameter
of this reconfiguration graph has been shown.

Another variation is that the edges are labeled (independent of the vertex labels), and if an
edge is exchanged the replacement edge takes that label. In this way two geometrically identical
trees can have a rather large transformation distance. For labeled triangulations there is a good
characterization of when reconfiguration is possible, and a polynomial bound on the number of
steps required [25].

The reconfiguration of non-crossing spanning paths (where each intermediate configuration
must be a path) has also been considered. For points in convex position, the diameter of the
reconfiguration graph is 2n − 6 for n ≥ 5 [8, 17]. Surprisingly, up to now it remains an open
problem if the reconfiguration graph of non-crossing spanning paths is connected for general point
sets [5].
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1.2 Definitions and Terminology

Let P be a set of n points in general position, meaning that no three points are collinear. The
points of P are in convex position if the boundary of the convex hull of P contains all the points
of P . An edge is a line segment joining two points of P , and a spanning tree T of P is a set
of n − 1 edges that form a tree. Two edges cross if they intersect but do not share a common
endpoint. A non-crossing spanning tree is a spanning tree such that no two of its edges cross.
When we write “two non-crossing spanning trees,” we mean that each tree is non-crossing but we
allow edges of one tree to cross edges of the other tree.

We sometimes consider the special case where a non-crossing spanning tree of P is a path. A
path is monotone if there is a direction in the plane such that the order of points along the path
matches the order of points in that direction.

For a spanning tree of a graph, a flip removes one edge and adds one new edge to obtain a
new spanning tree, i.e., spanning trees T and T ′ are related by a flip if T ′ = T \ {e} ∪ {e′}, where
e ∈ T and e′ /∈ T . The same definition applies to non-crossing spanning trees: If T is a non-crossing
spanning tree of P , and T ′ = T \ {e} ∪ {e′} is a non-crossing spanning tree of P , then we say that
T and T ′ are related by a flip. We allow e and e′ to cross.

Let TI and TF be initial and final non-crossing spanning trees of P . A flip sequence from TI
to TF is a sequence of flips that starts with TI and ends with TF and such that each intermediate
tree is a non-crossing spanning tree. We say that TI can be reconfigured to TF using k flips (or
“in k steps”) if there is a reconfiguration sequence of length at most k. The flip distance from TI
to TF is the minimum length of a flip sequence.

The edges of TI∩TF are called happy edges. Thus, TI∪TF consists of the happy edges together
with the symmetric difference (TI \ TF )∪ (TF \ TI). We have |TI \ TF | = |TF \ TI |. A flip sequence
of length |TI \ TF | is called a perfect flip sequence. In a perfect flip sequence, every flip removes
an edge of TI and adds an edge of TF—these are called perfect flips.

2 A two-phase reconfiguration approach

In this section we give a new algorithm to reconfigure between two non-crossing spanning trees on n
points using at most 2n−3 flips. This is basically the same as the upper bound of 2n−4 originally
achieved by Avis and Fukuda [10], but the advantage of our new algorithm is that it gives a bound
of 1.5n− 2 flips when one tree is a path and either: (1) the path is monotone; or (2) the points are
in convex position. Furthermore, for these two cases, we show a lower bound of 1.5n − 5 flips, so
the bounds are tight up to the additive constant.

Before proceeding, we mention one way in which our upper bound result differs from some
other reconfiguration bounds. Many of those bounds (i.e., upper bounds on the diameter d of the
reconfiguration graph) are actually bounds on the radius r of the reconfiguration graph. The idea
is to identify a “canonical” configuration and prove that its distance to any other configuration is at
most r, thus proving that the diameter d is at most 2r. For example, Avis and Fukuda’s 2n bound
is achieved via a canonical star centered at a convex hull point. As another example, the bound of
O(n2) flips between triangulations of a point set can be proved using the Delaunay triangulation as
a canonical configuration, and the bound of 2n flips for the special case of points in convex position
uses a canonical star triangulation [35]. For some reconfiguration graphs d is equal to 2r (e.g., for
the Rubik’s cube, because of the underlying permutation group). However, in general, d can be
less than 2r, in which case, using a canonical configuration will not give the best diameter bound.
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Indeed, our result does not use a canonical configuration, and we do not bound the radius of the
reconfiguration graph.

Our algorithm has two phases. In the first phase, we reconfigure the input trees in a total of at
most n− 2 flips so that one is “upward” and one is “downward” (this is where we save if one tree
is a path). In the second phase we show that an upward tree can be reconfigured to a downward
tree in n− 1 flips. We begin by defining these terms.

Let P be a set of n points in general position. Order the points v1, . . . , vn by increasing y-
coordinate (if necessary, we slightly perturb the point set to ensure that no two y-coordinates are
identical). Let T be a non-crossing spanning tree of P . Imagining the edges as directed upward,
we call a vertex vi a sink if there are no edges in T connecting vi to a higher vertex vj , j > i, and
we call vi a source if there are no edges connecting vi to a lower vertex vk, k < i. We call T a
downward tree if it has only one sink (which must then be vn) and we call T an upward tree
if it has only one source (which must then be v1). Observe that in a downward tree every vertex
except vn has exactly one edge connected to a higher vertex, and in an upward tree every vertex
except v1 has exactly one edge connected to a lower vertex.

2.1 Phase 1: Reconfiguring to upward/downward trees

We first bound the number of flips needed to reconfigure a single tree T to be upward or downward.
If a tree has t sinks, then we need at least t− 1 flips to reconfigure it to a downward tree—we show
that t− 1 flips suffice. Note that t is at most n− 1 since v1 cannot be a sink (this bound is realized
by a star at v1).

Theorem 1. Let T be a non-crossing spanning tree with s sources and t sinks. T can be reconfigured
to a downward tree with t−1 ≤ n−2 flips. T can be reconfigured to an upward tree with s−1 ≤ n−2
flips. Furthermore, these reconfiguration sequences do not flip any edge of the form vivi+1 where
1 ≤ i < n.

Proof. We give the proof for a downward tree, since the other case is symmetric. The proof is
by induction on t. In the base case, t = 1 and the tree is downward and so no flips are needed.
Otherwise, let vi, 1 < i < n be a sink. The plan is to decrease t by adding an edge going upward
from vi and removing some edge vkvl, k < l from the resulting cycle while ensuring that vk does
not become a sink.

If there is an edge vivj that does not cross any edge of T , we say that vi sees vj . We argue
that vi sees some vertex vj with j > i. If vi sees vn, then choose j = n. Otherwise the upward ray
directed from vi to vn hits some edge e before it reaches vn. Continuously rotate the ray around
vi towards the higher endpoint of e until the ray reaches the endpoint or is blocked by some other
vertex. In either case this gives us a vertex vj visible from vi and higher than vi. For example, in
Figure 1, the sink v5 sees v7.

Adding the edge vivj to T creates a cycle. Let vk be the lowest vertex in the cycle. Then vk has
two upward edges, and in particular, k < i. Remove the edge vkvl that goes higher up. Then vk
does not become a sink, and furthermore, if the edge vkvk+1 is in T , then we do not remove it.

Since no vertex is both a sink and a source, any tree has s + t ≤ n, which yields the following
result that will be useful later on when we reconfigure between a path and a tree.

Corollary 2. Let T be a non-crossing spanning tree. Then either T can be reconfigured to a
downward tree in 0.5n − 1 flips or T can be reconfigured to an upward tree in 0.5n − 1 flips.
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Figure 1: A flip that removes v5 from the set of sinks.

Furthermore, these reconfiguration sequences do not flip any edge of the form vivi+1 where 1 ≤ i <
n.

We next bound the number of flips needed to reconfigure two given trees into opposite trees,
meaning that one tree is upward and one is downward. By Theorem 1, we can easily do this in
at most 2n− 4 flips (using n− 2 flips to reconfigure each tree independently). We now show that
n− 2 flips suffice to reconfigure the two trees into opposite trees.

Theorem 3. Given two non-crossing spanning trees on the same point set, we can flip them into
opposite trees in at most n− 2 flips.

Proof. Let the trees be T1 and T2, and let si and ti be the number of sources and sinks of Ti, for
i = 1, 2. Since si+ti ≤ n, we have s1+t1+s2+t2 ≤ 2n. This implies that s1+t2 ≤ n or t1+s2 ≤ n.
In the former case use Theorem 1 to flip T1 upward and T2 downward in s1 − 1 + t2 − 1 ≤ n − 2
flips; otherwise flip T1 downward and T2 upward in t1 − 1 + s2 − 1 ≤ n− 2 flips.

2.2 Phase 2: Reconfiguring an upward tree into a downward tree

In this section we show how to reconfigure from an initial downward tree TI to a final upward
tree TF on a general point set using only perfect flips. Thus the total number of flips will be
|TI \ TF |. The sequence of flips is simple to describe, and it will be obvious that each flip yields a
spanning tree. What needs proving is that each intermediate tree is non-crossing. To simplify the
description of the algorithm, imagine TI colored red and TF colored blue. Refer to Figure 2. Recall
that v1, . . . , vn is the ordering of the points by increasing y-coordinate. Define bi to be the (unique)
blue edge in TF going down from vi, i = 2, . . . , n. An unhappy edge is an edge of TI \ TF , i.e., it
is red but not blue.

Reconfiguration algorithm. Let T1 = TI . For i = 2, . . . , n we create a tree Ti that contains
b2, . . . , bi and all the happy edges. If bi is happy, then bi is already in the current tree and we simply
set Ti := Ti−1. Otherwise, consider the cycle formed by adding bi to Ti−1 and, in this cycle, let ri
be the unhappy red edge with the lowest bottom endpoint. Note that ri exists, otherwise all edges
in the cycle would be blue. Set Ti := Ti−1 ∪ {bi} \ {ri}.

This reconfiguration algorithm, applied to the trees TI and TF from Figure 2, is depicted in
Figure 3.

Theorem 4. Given a red downward tree TI and a blue upward tree TF on a general point set, the
reconfiguration algorithm described above flips TI to TF using |TI \ TF | perfect flips.
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Figure 2: Reconfiguring opposite trees TI to TF with happy edges marked in thick lines.
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Figure 3: Phase 2: Reconfiguring downward tree T1 into upward tree T9. The dashed horizontal line
separates Bi (below, and drawn with blue edges) from Ri (above). Happy edges are drawn thick. T1 has
unhappy connector-edge r2. T2 has the unhappy connector-edge r3 crossing b3. T4, T6 and T7 have two
happy connector-edges each.
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Proof. It is clear that each Ti is a spanning tree, and that each flip is perfect, so the number of flips
is |TI \TF |. In particular, a happy edge is never removed, so Ti contains all happy edges. We must
show that each Ti is non-crossing. By induction, it suffices to show that if step i ≥ 2 adds edge bi
and removes edge ri, then bi does not cross any edge of Ti−1 except possibly ri. We examine the
structure of Ti−1.

Let Bi−1 be the subtree with edges b2, . . . , bi−1. Note that Bi−1 is connected. By construction,
Ti−1 contains Bi−1 and all the other edges of Ti−1 are red. Let Ri−1 consist of vertices vi, . . . , vn
and the edges of Ti−1 induced on those vertices. The edges of Ri−1 are red, and Ri−1 consists
of some connected components (possibly isolated vertices). In Ti−1 each component of Ri−1 has
exactly one red connector -edge joining it to Bi−1. Thus Ti−1 consists of Bi−1, Ri−1, and the
connector-edges for the components of Ri−1.

Now consider the flip performed to create Ti by adding edge bi and removing edge ri. Since bi
is a blue edge, it cannot cross any edge of Bi−1. Since bi’s topmost vertex is vi, bi cannot cross any
edge of Ri−1. Furthermore, bi cannot cross a happy edge. Thus the only remaining possibility is
for bi to cross an unhappy connector-edge.

We will prove:

Claim 5. If Ri−1 is disconnected, then all connector-edges are happy.

Assuming the claim, we only need to show that bi is non-crossing when Ri−1 is connected. Then
there is only one connector-edge r joining Ri−1 to Bi−1. If r is happy, then bi cannot cross it. So
assume that r is unhappy. Refer to Figure 4(a). Now, the cycle γ in Ti−1 ∪ {bi} contains r, since
bi and r are the only edges between Ri−1 and Bi−1. Of the red edges in γ, r is the one with the
lowest bottom endpoint. This implies that r is chosen as ri, and removed. Therefore bi does not
cross any edges of Ti, so Ti is non-crossing.

vi

bi

r

Ri−1 (connected)

Bi−1 (connected)

(a)

r, e

C (connected)
rj

Ri−1 \ C

vj

bj

γj

γj

γj

Bi−1 (connected)

vk

(b)

Figure 4: For the proof of Theorem 10: (a) when Ri−1 is connected; (b) for the proof of Claim 5.

It remains to prove the claim. Let C be a connected component of Ri−1, and let r be its
connector-edge. Refer to Figure 4(b). We must prove that r is happy. In the initial red tree TI , the
vertices vi, . . . , vn induce a connected subtree, so C and Ri−1 \ C were once connected. Suppose
they first became disconnected by the removal of red edge rj in step j of the algorithm, for some
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j < i. Consider the blue edge bj that was added in step j of the algorithm, and the cycle γj in
Tj−1∪{bj}. Now γj must contain another edge, call it e, with one endpoint in C and one endpoint,
vk, not in C. Note that e is red since it has an endpoint in C, and note that vk is not in Ri−1 \ C
otherwise C and Ri−1 \ C would not be disconnected after the removal of rj . Therefore vk must
lie in Bi−1, i.e., k ≤ i − 1. If e is unhappy, then in step j the algorithm would prefer to remove e
instead of rj since e is a red edge in γj with a lower bottom endpoint. So e is happy, which means
that the algorithm never removes it, and it is contained in Ti−1. Therefore e must be equal to r,
the unique connector-edge in Ti−1 between C and Bi−1. Therefore r is happy.

2.3 Two-phase reconfiguration algorithm

We can now combine the results of Sections 2.1 and 2.2 to develop a new two-phase reconfiguration
algorithm between two non-crossing spanning trees TI and TF :

1. In the first phase we reconfigure TI into T ′I and TF into T ′F such that T ′I and T ′F are opposite
trees (one upward and one downward), using Theorem 3.

2. In the second phase we reconfigure T ′I into T ′F using only perfect flips, as given by Theorem 4.
(Note, however, that the happy edges in T ′I and T ′F may differ from the ones in TI and TF ,
since the first phase does not preserve happy edges).

Finally, we concatenate the reconfiguration sequences from TI to T ′I , from T ′I to T ′F , and the
reverse of the sequence from TF to T ′F .

Theorem 6. If TI and TF are non-crossing spanning trees on a general point set, then the algorithm
presented above reconfigures TI to TF in at most 2n− 3 flips.

Proof. By Theorem 3, the first phase of the algorithm takes at most n−2 flips. By Theorem 4, the
second phase uses at most n−1 flips. It follows that the total number of flips is at most 2n−3.

Theorem 7. For a general point set, if TI is a non-crossing spanning tree and TF is a non-crossing
path that is monotone in some direction, then TI can be reconfigured to TF in at most 1.5n− 2− h
flips, where h = |TI ∩ TF | is the number of happy edges. Furthermore, there is a lower bound of
1.5n− 5 flips, even for points in convex position and if one tree is a monotone path.

Proof. Rotate the plane so that TF is y-monotone. Note that TF is then both an upward and a
downward tree. We thus have the flexibility to turn TI into either an upward or a downward tree
in the first phase of the algorithm. By Corollary 2, TI can be turned into an upward or downward
tree T ′I in at most 0.5n− 1 flips. Furthermore, since TF is a y-monotone path, any edge in TI ∩ TF
has the form vivi+1 for some 1 ≤ i < n, and thus, by Corollary 2, these edges do not flip, which
implies that they are still in T ′I ∩ TF , so |T ′I ∩ TF | ≥ h. The second phase of the algorithm uses
|T ′I \ TF | ≤ n− 1− h perfect flips to reconfigure T ′I into TF . Hence the total number of flips is at
most 1.5n− 2− h.

For the lower bound, see Lemma 8 below.

Lemma 8. On any set of n ≥ 4 points in convex position, for n even, there exists a non-crossing
spanning tree TI and a non-crossing path TF such that reconfiguring TI to TF requires at least
1.5n− 5 flips, and this bound is tight.
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Figure 5: Tight reconfiguration bound: (a) initial tree TI (b) intermediate tree with two happy hull edges
v1v2 and vn−1vn (c) final y-monotone path TF .

Proof. Our construction is depicted in Figure 5. Note that the tree TI is the same as in the lower
bound of 1.5n− 5 proved by Hernando et al. [20], but their tree TF was not a path.

The construction is as follows (refer to Figure 5(a) and (c)). The points v1 . . . vn (ordered by
increasing y-coordinate) are placed in convex position on alternate sides of v1vn. TI contains edges
v1v2i+1 and vnv2i for i = 1, . . . , n/2− 1, and v1vn. Note that v1 and vn have degree n/2 each. TF
is a path that connects vertices in order (so it includes edges vivi+1, for i = 1, . . . , n− 1).

Note that every non-hull edge of TF (in blue) crosses at least n/2 − 1 edges of TI (in red).
Indeed, edges of the form v2i+1v2i cross exactly n/2 edges: n/2 − i − 1 edges incident to v1, plus
i + 1 edges incident to vn, minus 1 because v1vn is included in both counts. Edges of the form
v2iv2i+1 cross one less edge (specifically v1v2i+1).

Thus, any valid reconfiguration from TI to TF must flip n/2 − 1 edges of TI out of the way
before the first of the n − 3 non-hull edges of TF is added. After that, we need at least one flip
for each of the remaining n − 4 non-hull edges of TF . Thus the total number of flips is at least
n/2− 1 + (n− 4) = 1.5n− 5.

We note that our two-phase reconfiguration algorithm uses 1.5n− 3 flips for this instance, but
there is a flip sequence of length 1.5n− 5: first flip v2vn to v1v2 to create a happy hull edge, then
connect vn to all vi for odd i ≥ 7 by performing the flips v1vi to vnvi in order of decreasing i.
The number of flips thus far is n/2− 2 (note that v1v3 and v1v5 stay in place). The resulting tree
(shown in Figure 5b) has two happy hull edges. We show that this tree can be reconfigured into
TF using perfect flips only (so the number of flips is n − 3). Flip v1vn to non-hull edge v4v5 and
view the resulting tree as the union of an upward tree rooted at v1 and a downward subtree rooted
at vn (sharing v4v5). These two subtrees are separated by v4v5 and therefore can be independently
reconfigured into their corresponding subtrees in TF using perfect flips, as given by Theorem 4.
Thus the total number of flips is (n/2− 2) + (n− 3) = 1.5n− 5, proving this bound tight.

Theorem 9. For points in convex position, if TI is a non-crossing spanning tree and TF is a path,
then TI can be reconfigured to TF in at most 1.5n− 2− h flips, where h = |TI ∩ TF | is the number
of happy edges. Furthermore, there is a lower bound of 1.5n− 5 flips.

Proof. When points are in convex position, two edges cross (a geometric property) if and only if
their endpoints alternate in the cyclic ordering of points around the convex hull (a combinatorial
property). This insight allows us to show that the path TF is “equivalent to” a monotone path,
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which means that we can use the previous Theorem 7. In particular, let the ordering of points in
TF be v1, . . . , vn. We claim that the above algorithms can be applied using this ordering in place
of the ordering of points by y-coordinate. Thus, a sink in TI is a point vi with no edge to a later
vertex in the ordering, and etc. One could justify this by examining the steps of the algorithms
(we relied on geometry only to show that we can add a non-crossing edge “upward” from a sink,
which becomes easy for points in convex position). As an alternative, we make the argument formal
by showing how to perturb the points so that TF becomes a monotone path while preserving the
ordering of points around the convex hull—which justifies that the flips for the perturbed points
are correct for the original points.

First adjust the points so that they lie on a circle with v1 lowest at y-coordinate 1 and vn
highest at y-coordinate n. The convex hull separates into two chains from v1 to vn. Observe that
TF visits the points of each chain in order from bottom to top (if a appears before b on one chain
but TF visits b before a, then the subpaths from v1 to b and from a to vn would cross). Thus, we
can place vi at y-coordinate i while preserving the ordering of points around the circle.

We can now apply Theorem 7 to TI and TF on the perturbed points. This gives a sequence
of at most 1.5n − h − 2 flips to reconfigure TI into TF and the flip sequence is still correct on the
original points, thus proving the upper bound claimed by the theorem. For the lower bound, note
that the points in Figure 5 are in convex position and TF is a path. Thus Lemma 8 (which employs
the example from Figure 5) settles the lower bound claim.

3 Improving the Upper Bound for a Convex Point Set

In this section we show that for n points in convex position, reconfiguration between two non-
crossing spanning trees can always be done with fewer than 2n flips.

Theorem 10. There is an algorithm to reconfigure between an initial non-crossing spanning tree TI
and a final non-crossing spanning tree TF on n points in convex position using at most 2d−Ω(log d)
flips, where d = |TI \ TF |.

Before proving the theorem we note that previous reconfiguration algorithms do not respect
this bound. Avis and Fukuda [10, Section 3.7] proved an upper bound of 2n minus a constant by
reconfiguring each spanning tree Ti to a star S using |S \Ti| flips. When Ti is a path, |S∩Ti| ≤ 2, so
|S \ Ti| ≥ n− 3 and their method takes at least 2n− 6 flips. Similarly, the method of flipping both
trees to a canonical path around the convex hull takes at least 2n−6 flips when T1 and T2 are paths
with only two edges on the convex hull. Although paths behave badly for these canonicalization
methods, they are actually easy cases as we showed in Section 2. As in that section, we do not use
a canonical tree to prove Theorem 10—instead, the flips are tailored to the specific initial and final
trees.

Throughout this section, we assume points in convex position. Consider the symmetric differ-
ence D = (TI \TF )∪ (TF \TI), so |D| = 2d. It is easy to reconfigure TI to TF using 2d flips—we use
d flips to move the edges of TI \TF to the convex hull, giving an intermediate tree T , and, from the
other end, use d flips to move the edges of TF \ TI to the same tree T . The plan is to save Ω(log d)
of these flips by using that many perfect flips (recall that a perfect flip exchanges an edge of TI \TF
directly with an edge of TF \ TI). In more detail, the idea is to find an edge e ∈ D that is crossed
by at most (roughly) d/2 edges of the other tree. We flip all but one of the crossing edges out of
the way to the convex hull, and—if e is chosen carefully—we show that we can perform one flip
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from e to the last crossing edge, thus providing one perfect flip after at most d/2 flips. Repeating
this approach log d times gives our claimed bound.

We first show how to find an edge e with not too many crossings. To do this, we define “minimal”
edges. An edge joining points u and v determines two subsets of points, those clockwise from u
to v and those clockwise from v to u (both sets include u and v). We call these the sides of the
edge. An edge is contained in a side if both endpoints are in the side. We call a side minimal
if it contains no edge of the symmetric difference D, and call an edge e ∈ D minimal if at least
one of its sides is minimal. Note that if D is non-empty then it contains at least one minimal edge
(possibly a convex hull edge). We need the following property of minimal edges.

e
f1

f2

u

v

Q
Q a

b

A

B

(a)

e
f1

f2

u

v

Q
Q a

b

A

B

(b)

Figure 6: (a) Illustration for Claim 11 showing TI ∩ TF in thick purple, TI \ TF in red, TF \ TI in blue, and
a minimal edge e ∈ TF . (b) Illustration for Lemma 12 with d = 6, showing two minimal edges a and b with
ka = 5, kb = 4, and kab = 3.

Claim 11. Let e = uv be a minimal edge of D. Let Q be a minimal side of e, and let Q̄ be the other
side. Suppose e ∈ TF . Then TI ∩Q consists of exactly two connected components, one containing
u and one containing v.

Proof. The set TF ∩ Q is a non-crossing tree consisting of edge e and two subtrees Tu containing
u and Tv containing v. Since e is minimal, there are no edges of D in Q except for e itself. This
means that TI ∩ Q consists of Tu and Tv, and since e /∈ TI , these two components of TI ∩ Q are
disconnected in Q. See Figure 6(a).

Our algorithm will operate on a minimal edge e. To guarantee the savings in flips, we need a
minimal edge with not too many crossings.

Lemma 12. If D is non-empty, then there is a minimal edge with at most b(d+ 3)/2c crossings.

Proof. Clearly the lemma holds if some minimal edge is not crossed at all (e.g., a convex hull edge
in D), so we assume that all minimal edges have a crossing. Let a be a minimal edge of D. Suppose
a ∈ TF . Let A be a minimal side of a, and let Ā be the other side. Our plan is to find a second
minimal edge b ∈ TF such that b is inside Ā and b has a minimal side B that is contained in Ā. We
will then argue that a or b satisfies the lemma. See Figure 6(b).

If Ā is minimal, then set b := a and B = Ā. Otherwise, let b be an edge of TF \ TI in Ā whose
B side (the side in Ā) contains no other edge of TF \ TI . Note that b exists, and that all the edges
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of TF in B (except b) lie in TI . If b is not minimal, then B contains a minimal edge c (which must
then be in TI \TF ), and c is not crossed by any edge of TF , because such an edge would either have
to cross b, which is impossible since b ∈ TF , or lie in B, which is impossible since all the edges of
TF in B \ {b} are in TF ∩TI . But we assumed that all minimal edges are crossed, so c cannot exist,
and so b must be minimal.

Let ka be the number of edges of TI crossing a, let kb be the number of edges of TI crossing b,
and let kab be the number of edges of TI crossing both a and b. Observe that ka + kb ≤ d+ kab.

We claim that kab ≤ 3. Then ka + kb ≤ d + 3 so min{ka, kb} ≤ (d + 3)/2, which will complete
the proof since the number of crossings is an integer. By Claim 11, TI ∩ A has two connected
components and TI ∩ B has two connected components. Now 4 connected components in a tree
can have at most three edges joining them, which implies that kab ≤ 3. (Note that this argument
is correct even for a = b, though we get a sharper bound since ka = kb = kab ≤ 3.)

Algorithm. Choose a minimal edge e with k crossings, where 0 ≤ k ≤ (d+ 3)/2 (as guaranteed
by Lemma 12). Suppose e ∈ TF , so the crossing edges belong to TI . The case where e ∈ TI is
symmetric. In either case the plan is to perform some flips on TI and some on TF to reduce the
difference d by k (or by 1, if k = 0) and apply the algorithm recursively to the resulting instance.
Note that the algorithm constructs a flip sequence by adding flips at both ends of the sequence.

If k = 0 then add e to TI . This creates a cycle, and the cycle must have an edge f in TI \ TF .
Remove f . This produces a new tree TI . We have performed one perfect flip and reduced d by 1.
Now recurse.

Next suppose k ≥ 1. Let e = uv. Let Q be the minimal side of e and let Q̄ be the other side
(both sets include u and v). Let f1, . . . , fk be the edges that cross e. We will flip all but the last
crossing edge to the convex hull. For i = 1, . . . k − 1 we flip fi as follows.

1. Perform a flip in TI by removing fi and adding a convex hull edge g that lies in Q̄. (The
existence of g is proved below.)

2. If g ∈ TF then this was a perfect flip and we have performed one perfect flip and reduced d
by 1.

3. Otherwise (if g /∈ TF ), perform a flip in TF by adding g and removing an edge h ∈ TF \ TI ,
that lies in Q̄ and is not equal to e. (The existence of h is proved below.)

At this point, only fk crosses e. Perform one flip in TI to remove fk and add e. (Correctness
proved below.) Now, apply the algorithm recursively to the resulting TI , TF .

This completes the description of the algorithm.

Correctness. We must prove that g and h exist and that the final flip is valid.
First note that e remains a minimal edge after each flip performed inside the loop because we

never add or remove edges inside Q. We need one more invariant of the loop.

Claim 13. Throughout the loop u and v are disconnected in TI ∩ Q̄.

Proof. Suppose there is a path π from u to v in TI ∩ Q̄. Now consider the edge fk which crosses e,
say from x ∈ Q to y ∈ Q̄. Since fk cannot cross π, we have y ∈ π. By Claim 11, TI ∩Q consists of
two components, one containing u and one containing v. Suppose, without loss of generality, that
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x lies in the component containing u. Then there is a path from x to u in TI ∩Q and a path from
u to y in TI ∩ Q̄, and these paths together with fk make a cycle in TI , a contradiction.

First we prove that g exists in Step 1. Removing fi from TI disconnects TI into two pieces.
There are two convex hull edges that connect the two pieces. By Claim 11, TI ∩Q consists of two
connected components, one containing u and one containing v. Thus at most one of the convex
hull edges lies in Q, so at least one lies in Q̄.

Next we prove that h exists in Step 3. Adding g to TF creates a cycle γ in TF and this cycle
must lie in Q̄ (because e ∈ TF ) and must contain at least one edge of TF \ TI (because TI does not
contain a cycle). If e were the only edge of TF \ TI in γ, then u and v would be joined by a path
in TI ∩ Q̄, contradicting Claim 13. Thus h exists.

Finally, we prove that the last flip in TI (to remove fk and add e) is valid. Removing fk leaves
u and v disconnected in Q by Claim 11 and disconnected in Q̄ by Claim 13. Adding e reconnects
them, and yields a non-crossing spanning tree.

Analysis. We now prove that the algorithm uses at most the claimed number of flips.

Observation 14. In each recursive call: if k = 0, then the algorithm performs one perfect flip and
reduces d by 1; and if k > 0, then the algorithm performs at most 2k − 1 flips (one for fk and at
most 2 for each other fi) and reduces d by k (in each loop iteration, g joins the happy set TI ∩ TF
and in the final step e joins the happy set).

Lemma 15. The number of flips performed by the algorithm is at most 2d− blog(d+3)c+ 1.

Proof. We prove this by induction on d. In the base case d = 0 we perform 0 = 2d−blog(d+3)c+ 1
flips.

Now assume d ≥ 1, and consider what happens in the first recursive call of the algorithm, see
Observation 14. If the algorithm chooses an edge with k = 0 crossings, then the algorithm performs
one perfect flip. The resulting instance has a difference set of size d′ = d− 1 and induction applies,
so in the total number of flips we perform is at most

1 + 2d′ − blog(d′+3)c+ 1 = 2d− blog(d+2)c ≤ 2d− blog(d+3)c+ 1,

which proves the result in this case.
Now suppose that the algorithm chooses an edge with k ≥ 1 crossings, where k ≤ b(d+3)/2c.

The algorithm performs at most 2k − 1 flips and the resulting instance has a difference set of size
d′ = d− k and therefore d′+3 ≥ d+3−b(d+3)/2c = d(d+3)/2e ≥ (d+3)/2. By induction, the total
number of flips that we perform is hence at most

(2k − 1) + (2d′ − blog(d′+3)c+ 1) ≤ (2k − 1) + (2(d− k)− blog((d+3)/2)c+ 1)

≤ 2d− blog((d+3)/2)c
≤ 2d− blog(d+3)c+ 1

as desired.

This completes the proof of Theorem 10.
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4 The Happy Edge Conjecture

In this section we make some conjectures and prove some preliminary results in attempts to char-
acterize which edges need to be flipped in minimum flip sequences for non-crossing spanning trees.

Recall that an edge e is happy if e lies in TI ∩ TF . We make the following conjecture for points
in convex position. In fact, we do not have a counterexample even for general point sets, though
our guess is that the conjecture fails in the general case.

Conjecture 16. [Happy Edge Conjecture for Convex Point Sets] For any point set P in
convex position and any two non-crossing spanning trees TI and TF of P , there is a minimum flip
sequence from TI to TF such that no happy edge is flipped during the sequence.

In this section we first prove this conjecture for the case of happy edges on the convex hull.
Then in Section 4.1 we make some stronger conjectures about which extra edges (outside TI and
TF ) might be needed in minimum flip sequences. In Section 4.2 we show that even if no extra
edges are needed, it may be tricky to find a minimum flip sequence—or, at least, a greedy approach
fails. Finally, in Section 4.3 we prove that the Happy Edge Conjecture fails if we restrict the flips
to “slides” where one endpoint of the flipped edge is fixed and the other endpoint moves along an
adjacent tree edge.

If the Happy Edge Conjecture is false then a minimum flip sequence might need to remove an
edge and later add it back. We are able to prove something about such “remove-add” subsequences,
even for general point sets:

Proposition 17. Consider any point set P and any two non-crossing spanning trees TI and TF
on P and any minimum flip sequence from TI to TF . If some edge e is removed and later added
back, then some flip during that subsequence must add an edge f that crosses e.

Before proving this Proposition, we note the implication that the Happy Edge Conjecture is
true for convex hull edges:

Corollary 18. Conjecture 16 is true for happy edges on the convex hull. Furthermore, every
minimum flip sequence keeps the happy convex hull edges throughout the sequence.

Proof. Let e be a happy convex hull edge. Suppose for a contradiction that there is a minimum
flip sequence in which e is removed. Note that e must be added back, since it is in TF . By
Proposition 17, the flip sequence must use an edge f that crosses e. But that is impossible because
e is a convex hull edge so nothing crosses it.

Proof of Proposition 17. Consider a flip sequence from TI to TF and suppose that an edge e is
removed and later added back, and that no edge crossing e is added during that subsequence. We
will make a shorter flip sequence. The argument is similar to the “normalization” technique used
by Sleator et al. [35] to prove the happy edge result for flips in triangulations of a convex point set.

Let T0, . . . , Tk be the trees in the subsequence, where T0 and Tk contain e, but none of the
intervening trees do. Suppose that none of the trees Ti contains an edge that crosses e. We will
construct a shorter flip sequence from T0 to Tk. For each i, 0 ≤ i ≤ k consider adding e to Ti.
For i 6= 0, k, this creates a cycle γi. Let fi be the first edge of γi that is removed during the flip
sequence from Ti to Tk. Note that fi exists since Tk contains e, so it cannot contain all of γi. Define
Ni = Ti∪{e} \{fi} for 1 ≤ i ≤ k− 1, and define N0 := T0. Observe that Ni is a spanning tree, and
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is non-crossing because no edge of Ti crosses e by hypothesis. Furthermore, Nk−1 = Tk because the
flip from Tk−1 to Tk is exactly the same as the flip from Tk−1 to Nk−1.

We claim that N0, . . . , Nk−1 is a flip sequence. This will complete the proof, since it is a shorter
flip sequence from T0 to Tk.

Consider Ni and Ni+1. Suppose that the flip from Ti to Ti+1 adds g and removes h.

Ti Ti+1

Ni Ni+1

+g,−h

+e,−fi +e,−fi+1

+g,−?

Recall that γi is the cycle containing e in Ti ∪ e. If h belongs to γi then fi = h, and then to get
from Ni to Ni+1 we add g and remove fi+1. Next, suppose that h does not belong to γi. Then the
cycle γi still exists in Ti+1. Now, γi+1 is the unique cycle in Ti+1∪ e. Thus γi+1 = γi. Furthermore,
fi+1 is by definition the first edge removed from γi+1 in the flip sequence from Ti+1 to Tk. Thus
fi+1 = fi. Therefore, to get from Ni to Ni+1 we add g and remove h.

This shows that a single flip changes Ni to Ni+1, which completes the proof.

Note that the proof of Proposition 17 produces a strictly shorter flip sequence. But to prove
the Happy Edge Conjecture (Conjecture 16) it would suffice to produce a flip sequence of the same
length. One possible approach is to consider how remove-add pairs and add-remove pairs interleave
in a flip sequence. Proposition 17 shows that a remove-add pair for edge e must contain an add-
remove pair for f inside it. We may need to understand how the order of flips can be rearranged
in a flip sequence. Such flip order rearrangements are at the heart of results on triangulation flips,
both for convex point sets [35, 32] and for general point sets [24].

4.1 Extra edges used in flip sequences

Any flip sequence from TI to TF must involve flips that remove edges of TI \ TF and flips that add
edges of TF \ TI . Recall that in a perfect flip sequence, these are the only moves and they pair up
perfectly, so the number of flips is |TI \ TF |. Theorem 4 gives one situation where a perfect flip
sequence is possible, but typically (e.g., in the example of Figure 5) we must add edges not in TF ,
and later remove them. More formally, an edge outside TI ∪ TF that is used in a flip sequence is
called a parking edge, with the idea that we “park” edges there temporarily.

We make two further successively stronger conjectures. They may not hold, but disproving
them would give more insight.

Conjecture 19. For any point set P in convex position and any two non-crossing spanning trees
TI and TF of P there is a minimum flip sequence from TI to TF that never uses a parking edge
that crosses an edge of TF .

Conjecture 20. For a point set P in convex position and any two non-crossing spanning trees TI
and TF on P there is a minimum flip sequence from TI to TF that only uses parking edges from
the convex hull.

Our experiments verify Conjecture 20 for n ≤ 10 points, (see Observation 22). We note that
Conjecture 20 cannot hold for general point sets (there just aren’t enough convex hull edges).
However, we do not know if Conjecture 19 fails for general point sets.
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Claim 21. Conjecture 20 =⇒ Conjecture 19 =⇒ Conjecture 16.

Proof. The first implication is clear. For the second implication we use Proposition 17. Consider
the minimum flip sequence promised by Conjecture 19. If there is a happy edge e ∈ TI ∩ TF that
is removed during this flip sequence, then by Proposition 17, the flip sequence must add an edge f
that crosses e. But then f is a parking edge that crosses an edge of TF , a contradiction.

4.2 Finding a perfect flip sequence—greedy fails

It is an open question whether there is a polynomial time algorithm to find [the length of] a
minimum flip sequence between two given non-crossing spanning trees TI and TF . A more limited
goal is testing whether there is a flip sequence of length |TI \ TF |—i.e., whether there is a perfect
flip sequence. This is also open.

In Figure 7 we give an example to show that a greedy approach to finding a perfect flip sequence
may fail. In this example there is a perfect flip sequence but a poor choice of perfect flips leads
to a dead-end configuration where no further perfect flips are possible. Note that choosing perfect
flips involves pairing edges of TI \ TF with edges of TF \ TI as well as ordering the pairs.

perfect flip sequence

greedy set of perfect flips

TI TF

no more perfect flips possible

Figure 7: Even if a perfect flip sequence exists, we do not necessarily find it by greedily executing perfect
flips.

4.3 The Happy Edge Conjecture fails for edge slides

Researchers have examined various restricted types of flips for non-crossing spanning trees, see [28].
An edge slide is the most restricted flip operation possible: it keeps one endpoint of the flipped
edge fixed and moves the other one along an adjacent tree edge without intersecting any of the
other edges or vertices of the tree. In other words, the edge that is removed, the edge that is
inserted, and the edge along which the slide takes place form an empty triangle. Aichholzer et
al. [7] proved that for any set P of n points in the plane it is possible to transform between any
two non-crossing spanning trees of P using O(n2) edge slides. The authors also give an example to
show that Ω(n2) slides might be required even if the two spanning trees differ in only two edges.
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This example already implies that for point sets in general position the Happy Edge Conjecture
fails for edge slides. We will show that this is also the case for points in convex position.

happy slides

non-happy slides

TI TF

ba

v1
v2 v3

v4

Figure 8: When flips are restricted to slide along an existing edge the Happy Edge Conjecture fails even for
sets of points in convex position: Flipping from tree TI to tree TF needs 9 flips when respecting happy edges
(top), but can be done with 8 flips (bottom) when using an edge (the edge upward from vertex b) which is
common to both the start and target tree.

Figure 8 shows an example of two plane spanning trees TI and TF on 8 points in convex position
which can be transformed into each other with 8 slides, shown at the bottom of the figure. To obtain
this short sequence we temporarily use an edge which is common to both trees to connect the two
vertices a and b. Thus this sequence contains a non-happy slide operation, that is, an edge that
is common to both, TI and TF is moved. When flipping from tree TI to tree TF by using only
happy slide operations there are some useful observations. First, there can not be an edge directly
connecting a and b, as this would cause a cycle. This implies that any edge which connects a
vertex vi, 1 ≤ i ≤ 4, with b needs at least two slides to connect a to some (possible different)
vertex vj . Moreover, the first of these edges that gets connected to a needs at least three slides,
as at the beginning this is the shortest path connecting b to a. Thus in total we need at least
3 + 2 + 2 + 2 = 9 happy slide operations. Figure 8(top) shows such a sequence. It is not hard to
see that this example can be generalized to larger n and implies that the Happy Edge Conjecture
fails for points in convex position.

5 Exhaustive search over small point sets in convex position

For small point sets in convex position we investigated the minimum flip distance between non-
crossing spanning trees by exhaustive computer search. Table 1 summarizes the obtained results.
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For n = 3, . . . , 12 we give the number of non-crossing spanning trees (which is sequence A001764 in
the On-Line Encyclopedia of Integer Sequences, https://oeis.org) and the number of reconfigu-
ration steps between them. Moreover, we computed the maximum reconfiguration distance between
two trees (the diameter of the reconfiguration graph) as well as the radius of the reconfiguration
graph. We provide the same information for the special case when the trees are non-crossing span-
ning paths. Note that in this case the intermediate graphs can still be non-crossing spanning trees.
For the case where all intermediate graphs are also non-crossing spanning paths the diameter of
the reconfiguration graph for points in convex position is known to be 2n− 6 for n ≥ 5 [8, 17].

n number of number of max flip flip number of path max. path flip
plane trees flip edges distance radius plane paths flip dist. radius

3 3 3 1 1 3 1 1
4 12 32 3 2 8 3 2
5 55 260 4 3 20 4 3
6 273 1 920 5 4 48 5 4
7 1 428 13 566 6 5 112 6 5
8 7 752 93 632 8 6 256 7 6
9 43 263 637 560 9 7 576 8 7

10 246 675 4 305 600 11 8 1 280 10 8
11 1 430 715 28 925 325 12 9 2 816 11 9
12 8 414 640 193 666 176 14 10 6 144 13 10

Table 1: For a set of n points in convex position this table gives the size of the reconfiguration graph (the
number of non-crossing (“plane”) spanning trees and the number of reconfiguration edges) the maximum
reconfiguration distance and radius. For the special case of non-crossing (“plane”) spanning paths also
number, distance, and radius are given.

Results. Our computations show that for small sets in convex position the radius of each re-
configuration graph is strictly larger than half the diameter. More precisely, for 6 ≤ n ≤ 12 the
diameter is b1.5n− 4c and the radius is n− 2 which would give an upper bound for the diameter
of only 2n− 4. But this might be an artefact of small numbers: compare for example the result of
Sleator, Tarjan, and Thurston which give the upper bound of 2n− 10 for the rotation distance of
binary trees which is tight only for n ≥ 13 [32, 35]. That the radius seems not to be suitable for
obtaining a tight bound for the diameter also supports our way of bounding the diameter of the
reconfiguration graph by not using a central canonical tree.

In addition to the results shown in the table, we checked, for n ≤ 10, which edges are exchanged,
in order to test the Happy Edge Conjecture (Conjecture 16) and whether only parking edges on
the convex hull are used (Conjecture 20).

Observation 22. For n ≤ 10 points in convex position (1) the Happy Edge Conjecture is true,
and (2) there are always minimum flip sequences that only use parking edges on the convex hull.

Methods. These computations are rather time consuming, as in principle for any pair of non-
crossing spanning trees (paths) the flip distance has to be computed. For an unweighted and
undirected graph G with n′ nodes (non-crossing spanning trees in our case) and m′ edges (edge
exchanges in our case) the standard algorithm to compute the diameter of G is to apply breath first

20

https://oeis.org


search (BFS) for each node of G. The time requirement for this simple solution is O(n′m′). There
exist several algorithms which achieve a better running time for graphs of real world applications,
see e.g., [18], but in the worst case they still need O(n′m′) time. The basic idea behind these
approaches is to compute the eccentricity e(v) of a node v ∈ G (which is the radius as seen from
this node v), and compare this with the largest distance d between two nodes found so far. If
e(v) = d/2 we know that the diameter of the graph is d and the algorithm terminates. The
difference between the various algorithms is how the nodes for computing the eccentricity and the
lower bound for the diameter are chosen and the performance of the approaches are usually tested
by applying them to a set of examples.

However, it turned out that by the structure of our reconfiguration graphs these approaches do
not perform better than the simple textbook solution. Because the radius of the reconfiguration
graph is strictly larger than half the diameter in our test cases, no algorithmic shortcut is possible.

To still be able to compute the diameter of the rather large graphs (for n = 12 the reconfiguration
graph has 8 414 650 nodes and 193 666 176 edges) we make use of the inherent symmetries of our
graphs. For every tree T we can cyclically shift the labels of the vertices (by 1 to n − 1 steps)
and/or mirror the tree to obtain another non-crossing spanning tree T ′ of the convex point set. All
trees that can be obtained this way can be grouped together. While every tree is needed in the
reconfiguration graph to correctly compute shortest reconfiguration distances, by symmetry a call
of BFS for any tree from the same group will result in the same eccentricity. It is thus sufficient to
call BFS only for one tree of each group. For n points this reduces the number of calls by almost
a factor of 2n, as the size of the group can be up to 2n (some trees are self-symmetric in different
ways, thus some groups have a cardinality less than 2n).

For our experiments on which edges are exchanged (for Observation 22), the computations get
even more involved. The reason is that these properties of edges are defined by the initial and
final tree. So it can happen that a short sub-path is valid only for some, but not all, pairs of trees
where we would like to use it. Moreover, for similar reasons we can not make full use of the above
described symmetry. This is the reason why we have been able to test our conjectures only for sets
with up to n = 10 points.

6 Conclusions and Open Questions

We conclude with some open questions:

1. We gave two algorithms to find flip sequences for non-crossing spanning trees and we bounded
the length of the flip sequence. The algorithms run in polynomial time, but it would be good
to optimize the run-times.

2. A main open question is to close the gap between 1.5n and 2n for the leading term of the
diameter of the reconfiguration graph of non-crossing spanning trees.

3. A less-explored problem is to find the radius of the reconfiguration graph (in the worst case,
as a function of n, the number of points). Is there a lower bound of n − c on the radius of
the reconfiguration graph for some small constant c?

4. Prove or disprove the Happy Edge Conjecture.
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5. Is the distance problem (to find the minimum flip distance between two non-crossing spanning
trees) NP-complete for general point sets? For convex point sets? A first step towards an
NP-hardness reduction would be to find instances where the Happy Edge Conjecture fails.

6. An easier question is to test whether there is a perfect flip sequence between two non-crossing
spanning trees. Can that be done in polynomial time, at least for points in convex position?

7. Suppose the Happy Edge Conjecture turns out to be false. Is the following problem NP-hard?
Given two trees, is there a minimum flip sequence between them that does not flip happy
edges?

8. Suppose we have a minimum flip sequence that does not flip happy edges and does not use
parking edges (i.e., the flips only involve edges of the difference set D = (TI \TF )∪ (TF \TI)).
Is it a perfect flip sequence?

9. All the questions above can be asked for the other versions of flips between non-crossing
spanning trees (as discussed in Section 1.1 and surveyed in [28]).

10. For the convex case, what if we only care about the cyclic order of points around the convex
hull, i.e., we may freely relabel the points so long as we preserve the cyclic order of the labels.
This “cyclic flip distance” may be less than the standard flip distance. For example, two stars
rooted at different vertices have cyclic flip distance 0 but standard flip distance n− 2.
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