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Abstract
Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges
share at most one point (a proper crossing or a common endpoint). We introduce a special kind of
simple drawings that we call generalized twisted drawings. A simple drawing is generalized twisted
if there is a point O such that every ray emanating from O crosses every edge of the drawing at
most once and there is a ray emanating from O which crosses every edge exactly once.

Via this new class of simple drawings, we show that every simple drawing of the complete
graph with n vertices contains Ω(n 1

2 ) pairwise disjoint edges and a plane path of length Ω( log n
log log n

).
Both results improve over previously known best lower bounds. On the way we show several
structural results about and properties of generalized twisted drawings. We further present different
characterizations of generalized twisted drawings, which might be of independent interest.
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1 Introduction

Simple drawings are drawings of graphs in the plane such that vertices are distinct points
in the plane, edges are Jordan arcs connecting their endpoints, and edges intersect at most
once either in a proper crossing or in a shared endpoint. The edges and vertices of a drawing
partition the plane (or, more exactly, the plane minus the drawing) into regions, which are
called the cells of the drawing. If a simple drawing is plane (that is, crossing-free), then its
cells are classically called faces.

In the past decades, there has been significant interest in simple drawings. Questions
about plane subdrawings of simple drawings of the complete graph on n vertices, Kn, have
attracted particularly close attention.

Rafla [20] conjectured that every simple drawing of Kn contains a plane Hamiltonian
cycle. The conjecture has been shown to hold for n ≤ 9 [1], as well as for several special
classes of simple drawings, like straight-line, monotone, and cylindrical drawings, but remains
open in general. If Rafla’s conjecture is true, then this would immediately imply that every
simple drawing of the complete graph contains a plane perfect matching. However, to-date
even the existence of such a matchging is still unknown.

Ruiz-Vargas [22] showed in 2017 that every simple drawing of Kn contains Ω(n 1
2 −ε)

pairwise disjoint edges for any ε > 0, which improved over a series of previous results:
Ω((log n) 1

6 ) in 2003 [17], Ω( log n
log log n ) in 2005 [18], Ω((log n)1+ε) in 2009 [10], and Ω(n 1

3 ) in
2013 and 2014 [11, 13, 23].

Pach, Solymosi, and Tóth [17] showed that every simple drawing of Kn contains a
subdrawing of K

c log
1
8 n

, for some constant c, that is either convex or twisted1. They further
showed that every simple drawing of Kn contains a plane subdrawing isomorphic to any
fixed tree with up to c log

1
6 n vertices, for some constant c. This implies that every simple

drawing of Kn contains a plane path of length Ω((log n) 1
6 ), which has been the best lower

bound known prior to this paper.
Concerning general plane substructures, it follows from a result of Ruiz-Vargas [22] that

every simple drawing of Kn contains a plane subdrawing with at least 2n − 3 edges. Further,
García, Pilz, and Tejel [14] showed that every maximal plane subdrawing of a simple drawing
of Kn is biconnected. Note that, in contrast to straight-line drawings, simple drawings of Kn

in general do not contain triangulations, that is, plane subdrawings where all faces (except
at most one) are 3-cycles.

In this paper, we introduce a new family of simple drawings, which we call generalized
twisted drawings. The name stems from the fact that one can show that any twisted drawing
is weakly isomorphic to a generalized twisted drawing (but not every generalized twisted
drawing is weakly isomorphic to a twisted drawing). It follows, that for any n there exists a
generalized twisted drawing. Two drawings D and D′ are weakly isomorphic if there is a
bijection between the vertices and edges of D and D′ such that a pair of edges in D crosses
exactly when the corresponding pair of edges in D′ crosses.

▶ Definition 1. A simple drawing D is c-monotone (short for circularly monotone) if there
is a point O such that any ray emanating from O intersects any edge of D at most once.

1 In their definition for simple drawings, convex means that there is a labeling of the vertices to v1, v2, ..., vn

such that (vi, vj) (i < j) crosses (vk, vl) (k < l) if and only if i < k < j < l or k < i < l < j, and twisted
means that there is a labeling of the vertices to v1, v2, ..., vn such that (vi, vj) (i < j) crosses (vk, vl)
(k < l) if and only if i < k < l < j or k < i < j < l.
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v1

v3

v2v4

v5

O

r

Figure 1 A generalized twisted drawing of K5. All edges cross the (red) ray r.

A simple drawing D of Kn is generalized twisted if there is a point O such that D is
c-monotone with respect to O and there exists a ray r emanating from O that intersects every
edge of D.

We label the vertices of c-monotone drawings v1, . . . , vn in counterclockwise order
around O. In generalized twisted drawings, they are labeled such that the ray r emerges
from O between the ray to v1 and the one to vn. Figure 1 shows an example of a generalized
twisted drawing of K5.

Generalized twisted drawings turn out to have quite surprising structural properties.
We show some crossing properties of generalized twisted drawings in Section 2 and with
that also prove that they always contain plane Hamiltonian paths (Theorem 3). This
result is an essential ingredient for showing that any simple drawing of Kn contains Ω(

√
n)

pairwise disjoint edges (Theorem 9 in Section 3), as well as a plane path of length Ω( log n
log log n )

(Theorem 10 in Section 4). In Section 5, we present different characterizations of generalized
twisted drawings that are of independent interest. We conclude with an outlook on further
work and open problems in Section 6.

2 Twisted Preliminaries

In this section, we show some properties of generalized twisted drawings, which will be used
in the following sections.

▶ Lemma 2. Let D be a generalized twisted drawing of K4, with vertices {v1, v2, v3, v4}
labeled counterclockwise around O. Then the edges v1v3 and v2v4 do not cross.

The full proof of Lemma 2 can be found in Appendix A.

Proof Sketch. Assume, for a contradiction, that the edge v1v3 crosses the edge v2v4. There
are (up to strong isomorphism) two possibilities to draw the crossing edges v1v3 and v2v4,
depending on whether v1v3 crosses the (straight-line) segment from O to v4 or not; cf.
Figure 2. In both cases, there is only one way to draw v1v2 such that the drawing stays
generalized twisted, yielding two regions bounded by all drawn edges (v1v3, v2v4, v1v2). The
vertices v3 and v4 lie in the same region. It is well-known that every simple drawing of K4 has
at most one crossing. Thus, the edge v3v4 cannot leave this region. However, it is impossible
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v4
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Figure 2 The two possibilities to draw v1v3 and v2v4 crossing and generalized twisted.

to draw v3v4 without leaving the region such that it is c-monotone and crosses the ray r (see
the dotted arrows in Figure 2 for necessary emanating directions of v3v4). ◀

Using the crossing property of Lemma 2, it follows directly that generalized twisted
drawings always contain plane Hamiltonian paths.

▶ Theorem 3. Every generalized twisted drawing of Kn contains a plane Hamiltonian path.

Proof of Theorem 3. Let D be a generalized twisted drawing of Kn. Consider the Hamilto-
nian path v1, v⌈ n

2 ⌉+1, v2, v⌈ n
2 ⌉+2, v3, . . . , v⌈ n

2 ⌉−1, vn, v⌈ n
2 ⌉ if n is odd or the Hamiltonian path

v1, v⌈ n
2 ⌉+1, v2, v⌈ n

2 ⌉+2, v3, . . . , vn−1, v⌈ n
2 ⌉, vn if n is even. See for example the Hamiltonian

path v1, v4, v2, v5, v3 in Figure 1. Take any pair of edges (vi, vj) and (vk, vl) of the path,
where we can assume without loss of generality that i < j and k < l. If the two edges share
an endpoint, they are adjacent and do not cross. Otherwise, if they do not share an endpoint,
either i < k < j < l or k < i < l < j by definition of the path. In any of the two cases,
(vi, vj) and (vk, vl) cannot cross by Lemma 2. Therefore, no pair of edges cross, and the
Hamiltonian path is plane. ◀

Analogous to the proof of Theorem 3, one can argue that in every generalized twisted draw-
ing of Kn with n odd, the Hamiltonian cycle v1, v⌈ n

2 ⌉+1, v2, v⌈ n
2 ⌉+2, . . . , v⌈ n

2 ⌉−1, vn, v⌈ n
2 ⌉, v1

is plane. We strongly conjecture that every generalized twisted drawing of Kn contains a
plane Hamiltonian cycle, but its structure for even n is still an open problem.

Theorem 3 will be used heavily in the next two sections. Further, the following statement,
which has been implicitly shown in [11] and [13], will be used in all remaining sections. For
completeness, we include a proof in Appendix B.

▶ Lemma 4. Let D be a simple drawing of a complete graph containing a subdrawing D′,
which is a plane drawing of K2,n. Let A = {a1, a2, . . . , an} and B = {b1, b2} be the sides of
the bipartition of D′. Let DA be the subdrawing of D induced by the vertices of A. Then DA

is weakly isomorphic to a c-monotone drawing. Moreover, if all edges in DA cross the edge
b1b2, then DA is weakly isomorphic to a generalized twisted drawing.
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3 Disjoint Edges in Simple Drawings

In this section, we show that every simple drawing of Kn contains at least
⌊√

n
48

⌋
pairwise

disjoint edges, improving the previously known best bound of Ω(n 1
2 −ε), for any ε > 0, by

Ruiz-Vargas [22]. In addition to the properties of generalized twisted drawings from Section 2,
we use the following theorems and observations to prove this new lower bound.

▶ Theorem 5 ([14]). For n ≥ 3, every maximal plane subdrawing of any simple drawing
of Kn is biconnected.

The following theorem is a direct consequence of Corollary 5 in [21].

▶ Theorem 6. Let D be a simple drawing of Kn with n ≥ 3. Let H be a connected plane
subdrawing of D containing at least two vertices, and let v be a vertex in D \ H. Then D

contains two edges incident to v that connect v with H and do not cross any edges of H.

▶ Observation 7. For any n ≥ 3, the number of edges in a planar graph with n vertices is
at most 3n − 6.

A drawing is outerplane if it is plane, and all vertices lie on the unbounded face of the
drawing. A graph is outerplanar if it can be drawn outerplane. Outerplanar graphs have a
smaller upper bound on their number of edges than planar graphs.

▶ Observation 8. For any n ≥ 3, the number of edges in an outerplanar graph with n vertices
is at most 2n − 3.

▶ Theorem 9. Every simple drawing of Kn contains at least
⌊√

n
48

⌋
pairwise disjoint edges.

Proof. Let D be a simple drawing of Kn, and let M be a maximal plane matching of D. If
m := |M | ≥

√
n
48 , then Theorem 9 holds. So assume that |M | <

√
n
48 . We will show how to

find another plane matching, whose size is at least ⌊
√

n
48 ⌋.

The overall idea is the following: Let H be a maximal plane subdrawing of D whose vertex
set is exactly the vertices matched in M and that contains M . We will find a face f in H

that contains much more unmatched vertices inside than matched vertices on its boundary.
Then we will show that there exists a subset of the vertices inside that face, which induces a
subdrawing of D that is weakly isomorphic to a generalized twisted drawing and contains
enough vertices to guarantee the desired size of the plane matching.

We start towards finding the face f . By Theorem 5, H is biconnected. Thus, H partitions
the plane into faces, where the boundary of each face is a simple cycle. Note that the vertices
of H are exactly the vertices that are matched in M , and the vertices inside faces are the
vertices that are unmatched in M . Let U be the set of vertices of D that are not matched by
any edge of M . We denote the set of vertices of U inside a face fi by U(fi), the number of
vertices in U(fi) by u(fi), and the number of vertices on the boundary of the face fi by |fi|.

We next show that there exists a face f of H such that u(f) ≥
√

48n
12 |f |. Assume for a

contradiction that for every face fi it holds that

u(fi) <

√
48n

12 |fi|.

There are exactly n − 2m unmatched vertices. As every unmatched vertex is in the interior
of a face of H (that might be the unbounded face), we can count the unmatched vertices by
summing over the number of vertices in each face (including the unbounded face). Thus,

n − 2m ≤
∑
fi

u(fi) <

√
48n

12
∑
fi

|fi|. (1)
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The number of edges in H is 1
2

∑
fi

|fi|. Since H is plane, we can use Observation 7 to bound
the number of edges of H by 3n′ − 6, where n′ is the number of vertices in H. As the vertices
of H are exactly the matched vertices, their number is n′ = 2m. Hence,∑

fi

|fi| ≤ 6 · 2m − 12.

From m <
√

n
48 it follows that

∑
fi

|fi| < 12
√

n

48 − 12 (2)

and

n − 2
√

n

48 < n − 2m. (3)

Putting equations (1) to (3) together we obtain that

n − 2
√

n

48 <

√
48n

12 (12
√

n

48 − 12) = n −
√

48n.

However, this inequality cannot be fulfilled by any n ≥ 0. Thus, there exists at least one
face fi with u(fi) ≥

√
48n
12 |fi|. We call that face f . (If there are several such faces, we take

an arbitrary one of them and call it f .)
As a next step, we will find two vertices on the boundary of f to which many vertices

inside f are connected via edges that do not cross each other or H. From f and the set
U(f), we construct a plane subdrawing H ′ as follows; cf. Figure 3 (left). We add the vertices
and edges on the boundary of f . Then we iteratively add all the vertices in U(f), where
for each added vertex v we also add two edges of D incident to v such that the resulting
drawing stays plane. Two such edges exist by Theorem 6. Since the matching M is maximal,
any edges between two unmatched vertices must cross at least one edge of M and thus must
cross the boundary of f . Hence, no edge in H ′ can connect two vertices of U(f) (as they are
unmatched). Consequently, every vertex in U(f) is connected in H ′ to exactly two vertices
that both lie on the boundary of f .

v

w

ff

v

w

Figure 3 Left: The face f in H containing the plane drawing H ′ (blue lines) inside. Right: We
can obtain an outerplane drawing from H ′ by interpreting bundles of edge pairs incident to the
same black vertices as plane edges.

We consider the edges in H ′ that connect a vertex in U(f) as a pair of edges. Every edge
in such a pair is contained in exactly one pair, since it is incident to exactly one unmatched
vertex. Thus, we can see every such pair of edges as one long edge incident to two vertices
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on the boundary of f . If several of those long edges have the same endpoints, we call them a
bundle of edges; see Figure 3 (right).

From the long edges, we can define a graph G′ as follows. The vertices of G′ are the
vertices of D that lie on the boundary of f . Two vertices u and v are connected in G′ if
there is at least one long edge in H ′ that connects them. By the definition of long edges, G′

is outerplanar (as can be observed in Figure 3 (right)). Note that every unmatched vertex in
U(f) defines a long edge, so the number of long edges is u(f) ≥

√
48n
12 |f |. From Observation 8,

it follows that G′ has at most 2|f | − 3 edges. As a consequence, there is a pair of vertices on
the boundary of f such that the number of long edges in its bundle is at least

1
(2|f | − 3)

√
48n

12 |f | >

√
48n

24 .

This implies that there are two vertices, say v and w, to which more than
√

48n
24 vertices

inside f have two plane incident edges. We call the set of vertices in U(f) that have plane
edges to both vertices v and w the set Uvw. This set is marked in Figure 4 (left). We denote
the subdrawing of D induced by Uvw by Dvw; see Figure 4 (right).

v

w

f

vw

Uvw

v

w

vw

v1 v2
vk−1

vk

Figure 4 The subdrawing D′ induced by Uvw and the edges in Dvw. Left: The set Uvw. Right:
The edges adjacent to the leftmost vertex, v1, are drawn (in red).

We show that all edges between vertices in Uvw cross the edge vw. Let x and y be two
vertices of Dvw. Let R1 be the region bounded by the edges xv, vy, yw, and wx that lies
inside the face f ; see Figure 5. We show that xy and vw lie completely outside R1. The edge
xy has to lie either completely inside or completely outside R1, because it is adjacent to all
edges on the boundary of R1. As M is maximal and the edge xy connects two unmatched
vertices, it has to cross at least one matching edge. Thus, xy has to lie completely outside R1.
(There can be no matching edges in R1, as R1 is contained inside the face f .) As H is a
maximal plane subdrawing, vw cannot lie inside the face f and thus has to be outside R1.
Since both edges vw and xy lie completely outside R1 and the vertices along the boundary of
R1 are sorted vxwy, the two edges have to cross. Thus, all edges of Dvw cross the edge vw.

Since the edges from vertices in Uvw to v and w are plane, it follows from Lemma 4 that
Dvw is weakly isomorphic to a generalized twisted drawing. Thus, Dvw contains at least
⌊ 1

2

√
48n
24 ⌋ pairwise disjoint edges by Theorem 3. Hence, D contains at least ⌊

√
n
48 ⌋ pairwise

disjoint edges. ◀
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v

w

vw

f

x y
R1

Figure 5 The edge xy has to cross the edge vw.

4 Plane Paths in Simple Drawings

In the previous section, we used generalized twisted drawings to improve the lower bound
on the number of disjoint edges in simple drawings of Kn. In this section, we show that
generalized twisted drawings are also helpful to improve the lower bound on the length of
the longest path in such drawings, where the length of a path is the number of its edges, to
Ω( log n

log log n ). This improves the previously known best bound of Ω((log n) 1
6 ), which follows

from a result of Pach, Solymosi, and Tóth [17].

▶ Theorem 10. Every simple drawing D of Kn contains a plane path of length Ω( log n
log log n ).

To prove the new lower bound, we first show that all c-monotone drawings on n vertices
contain either a generalized twisted drawing on

√
n vertices or a drawing weakly isomorphic

to an x-monotone drawing on
√

n vertices. We know that drawings weakly isomorphic to
generalized twisted drawings or x-monotone drawings contain plane Hamiltonian paths (by
Theorem 3 and Observation 11 below). We conclude that c-monotone drawings contain plane
paths of the desired size. We then show that every simple drawing of the complete graph
contains either a c-monotone drawing or a plane d-ary tree. With easy observations about
the length of the longest path in d-ary trees and by putting all results together, we obtain
that every simple drawing D of Kn contains a plane path of length Ω( log n

log log n ).

4.1 Plane Paths in C-Monotone Drawings
A simple drawing is x-monotone if any vertical line intersects any edge of the drawing at most
once (see Figure 6b). This family of drawings has been studied extensively in the literature
(see for example [2, 5, 7, 12, 19]). By definition, c-monotone drawings in which there exists
a ray emanating from O, which crosses all edges of the drawing, are generalized twisted.
In contrast, consider a c-monotone drawing D such that there exists a ray r emanating
from O that crosses no edge of D. Then it is easy to see that D is strongly isomorphic to an
x-monotone drawing. (A c-monotone drawing on the sphere can be cut along the ray r and
the result drawn on the plane such that all rays are vertical lines and the ray r is to the very
left of the drawing.) Figure 6a shows a c-monotone drawing D of K5 where no edge crosses
the ray r, and Figure 6b shows an x-monotone drawing of K5 strongly isomorphic to D. We
will call simple drawings that are strongly isomorphic to x-monotone drawings monotone
drawings. In particular, any c-monotone drawing for which there exists a ray emanating
from O that crosses no edge of the drawing is monotone.

It is well-known that any x-monotone drawing of Kn contains a plane Hamiltonian path.
For instance, assuming that the vertices are ordered by increasing x-coordinates, the set of
edges v1v2, v2v3 . . . , vn−1vn form a plane Hamiltonian path.
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v1

v3

v2v4

v5

O

r

(a) A c-monotone drawing D of K5 such
that the ray r crosses no edge of D.

v1

v2

v3

v4

v5

(b) An x-monotone drawing of K5 strongly
isomorphic to D of Figure 6a.

Figure 6 Two strongly isomorphic monotone drawings of K5.

▶ Observation 11. Every monotone drawing of Kn contains a plane Hamiltonian path.

We will show that c-monotone drawings contain plane paths of size
√

n, by showing that
any c-monotone drawing of Kn contains a subdrawing of K√

n that is either generalized
twisted or monotone. To do so, we will use Dilworth’s Theorem on chains and anti-chains
in partially ordered sets. A chain is a subset of a partially ordered set such that any two
distinct elements are comparable. An anti-chain is a subset of a partially ordered set such
that any two distinct elements are incomparable.

▶ Theorem 12 (Dilworth’s Theorem, [9]). Let P be a partially ordered set of at least
(s−1)(t−1)+1 elements. Then P contains a chain of size s or an antichain of size t.

▶ Theorem 13. Let s, t be two integers, 1 ≤ s, t ≤ n, such that (s − 1)(t − 1) + 1 ≤ n. Let D

be a c-monotone drawing of Kn. Then D contains either a generalized twisted drawing of Ks

or a monotone drawing of Kt as subdrawing. In particular, if s = t = ⌈
√

n⌉, D contains a
complete subgraph Ks whose induced drawing is either generalized twisted or monotone.

The full proof of Theorem 13 can be found in Appendix C

Proof Sketch. Without loss of generality we may assume that the vertices of D appear
counterclockwise around O in the order v1, v2, . . . , vn. Let r be a ray emanating from O,
keeping v1 and vn on different sides. We define an order, ⪯, in this set of vertices as follows:
vi ⪯ vj if and only if either i = j or i < j and the edge (vi, vj) crosses r.

We show that ⪯ is a partial order. The relation is clearly reflexive and antisymmetric.
Besides, if vi ⪯ vj and vj ⪯ vk, then vi ⪯ vk, because i < j and j < k imply i < k, and if
vivj and vjvk cross r, then vivk also crosses r (see Figure 7). Hence, the relation is transitive.

In this partial order ⪯, a chain consists of a subset vi1 , . . . , vis−1 of pairwise comparable
vertices, that is, a subset of vertices such that their induced subdrawing is generalized twisted
(all edges cross r). An antichain, vj1 , . . . , vjt−1 , consists of a subset of pairwise incomparable
vertices, that is, a subset of vertices such that their induced subdrawing is monotone (no
edge crosses r). Therefore, the first part of the theorem follows from applying Theorem 12
to the set of vertices of D and the partial order ⪯.

Finally, observe that if s = t ≤ ⌈
√

n⌉, then (s − 1)(t − 1) + 1 ≤ n. Thus, D contains
a complete subgraph K⌈

√
n⌉ whose induced subdrawing is either generalized twisted or

monotone. ◀
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vj

vi

vk

O

r

vj

vi

vk

O

r

Figure 7 If edges vivj and vjvk cross r in a c-monotone drawing, then vivk must also cross r.

Combining Theorems 3 and 13 with Observation 11, we obtain the following theorem.

▶ Theorem 14. Every c-monotone drawing of Kn contains a plane path of length Ω(
√

n).

4.2 Plane Paths in Simple Drawings
To show that any simple drawing of Kn contains a plane path of length Ω( log n

log log n ), we will
use d-ary trees. A d-ary tree is a rooted tree in which no vertex has more than d children. It
is well-known that the height of a d-ary tree on n vertices is Ω( log n

log d ).

Proof of Theorem 10. Let v be a vertex of D and let S(v) be the star centered at v, that
is, the set of edges of D incident to v. S(v) can be extended to a maximal plane subdrawing
H that must be biconnected by Theorem 5. See Figure 8 for a depiction of S(v) and H.

v

Figure 8 A simple drawing of K7. The red edges show the star S(v), the red and blue edges
together form a maximal plane subdrawing H. Dashed edges are edges of K7 that are not in H.

Assume first that there is a vertex w in H \ v that has degree at least (log n)2 in H. Let
Uvw be the set of vertices neighboured in H to both, v and w. Note that |Uvw| ≥ (log n)2.
The subdrawing H ′ of H consisting of the vertices in Uvw, the vertices v, and w, and the
edges from v to vertices in Uvw, and from w to vertices in Uvw is a plane drawing of K2,|Uvw|.
From Lemma 4, it follows that the subdrawing of D induced by Uvw is weakly isomorphic to
a c-monotone drawing. Therefore, by Theorem 14, the subdrawing induced by Uvw contains
a plane path of length Ω(

√
|Uvw|) = Ω(log n).

Assume now that the maximum degree in H\v is less than (log n)2. Since H is biconnected,
H \ v contains a plane tree T of order n − 1 whose maximum degree is at most (log n)2. Thus,



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 11

considering that T is rooted, the diameter of T is at least Ω( log n
log log n ). Therefore, since T is

plane, it contains a plane path of length at least Ω( log n
log log n ) and the theorem follows. ◀

5 Characterizing Generalized Twisted Drawings

In previous sections, we have seen how generalized twisted drawings were used to make
progress on open problems of simple drawings. In addition to this, generalized twisted
drawings are also interesting in their own right and have some quite surprising structural
properties. Despite the fact that research on generalized twisted drawings is rather recent
and still ongoing, there are already several interesting characteristics and structural results.
Some of them will be presented in this section.

One characterization involves curves crossing every edge once. From the definition of
generalized twisted drawing (see Figure 1), there always exists a simple curve that crosses all
edges of the drawing exactly once (for instance, a curve that starts at O and follows r until
it reaches a point Z on r in the unbounded cell). In Theorem 15, we show that the converse
is also true. That is, every simple drawing D of Kn in which we can add a simple curve that
crosses every edge of D exactly once is weakly isomorphic to a generalized twisted drawing.

Another characterization is based on what we call antipodal vi-cells. For any three vertices
in a simple drawing D of Kn, the three edges connecting them form a simple cycle which we
call a triangle. Every such triangle partitions the plane (or sphere) into two disjoint regions
which are the sides of the triangle (in the plane a bounded and an unbounded one). Two
cells of D are called antipodal if for each triangle of D, they lie on different sides. Further,
we call a cell with a vertex on its boundary a vertex-incident-cell or, for short, a vi-cell.

By definition, every generalized twisted drawing D contains two antipodal cells, namely,
the cell containing the starting point of the ray r and the unbounded cell. This follows from
the fact that the ray r crosses every edge exactly once. Hence, r crosses the boundary of any
triangle exactly three times, so the cells containing the “endpoints” of r must be on different
sides of the triangle.

1

2

3
4

6

5

1

2

3
4

6

5

Figure 9 Two weakly isomorphic drawings of K6 that are not weakly isomorphic to any generalized
twisted drawing. Antipodal cells are marked in blue.

It turns out that the converse (existence of two antipodal cells implies weakly isomorphic
to generalized twisted) is not true. Figure 9 (left) shows a drawing of K6 that contains
two antipodal cells, but no antipodal vi-cells. From Theorem 15 bellow it will follow that
such drawings cannot be weakly isomorphic to a generalized twisted drawing. However, we
observed that for all generalized twisted drawings of Kn with n ≤ 6, both, the cell containing
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the startpoint of the ray r and the unbounded cell, are vi-cells. Figure 10 shows all (up to
strong isomorphism) simple drawings of K6 that are weakly isomorphic to generalized twisted
drawings. We show that this is true in general. More than that, we show in Theorem 16 that
every drawing of Kn that is weakly isomorphic to a generalized twisted drawing contains a
pair of antipodal vi-cells. In the other direction, we show in Theorem 15 that every simple
drawing containing a pair of antipodal vi-cells is weakly isomorphic to a generalized twisted
drawing.

v1

v2

v3v4

v5

v6 v1

v2

v3v4

v5

v6v1

v2

v3v4

v5

v6

O O O

Figure 10 All different generalized twisted drawings of K6 (up to weak isomorphism). The
rightmost drawing is twisted.

The final characterization is based on the extension of a given drawing of the complete
graph to a drawing containing a spanning, plane bipartite graph that has all vertices of the
original drawing on one side of the bipartition. From the definition of generalized twisted
drawings, it follows that any genereralized twisted drawing D of Kn can be extended to a
simple drawing D′ of Kn+2 including new vertices O and Z such that D′ contains a plane
drawing of a spanning bipartite graph. One side of the bipartition consists of all vertices
in D and the other side of the bipartition consists of the new vertices O and Z. Moreover,
the edge OZ crosses all edges of D. One way to add the new vertices and edges incident to
them is to draw (1) the vertex O at point O, (2) the vertex Z in the unbounded cell on the
ray r, (3) the edge OZ straight-line (along the ray r), (4) edges from O to the vertices of
D straight-line (along the inner segment of the rays crossing through the vertices), and (5)
edges from Z to the vertices of D first far away in a curve and the final part straight-line
(along the outer segment of the rays crossing through the vertices). The converse, that every
drawing that can be extended like this is weakly isomorphic to a generalized twisted drawing,
has already been shown in Lemma 4.

We show the following characterizations.

▶ Theorem 15 (Characterizations of generalized twisted drawings). Let D be a simple drawing
of Kn. Then, the following properties are equivalent.

Property 1 D is weakly isomorphic to a generalized twisted drawing.
Property 2 D contains two antipodal vi-cells.
Property 3 D can be extended by a simple curve c such that c crosses every edge of D exactly

once.
Property 4 D can be extended by two vertices, O and Z, and edges incident to the new

vertices such that D together with the new vertices and edges is a simple drawing
of Kn+2, the edge OZ crosses every edge of D, and no edge incident to O crosses
any edge incident to Z.
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To prove Theorem 15, we will first show that Property 1 implies Property 2 (Theorem 16).
We next show that Property 2 implies Property 3 (Theorem 17). Then, we show that
Property 3 implies Property 4 (Theorem 18). By Lemma 4, Property 4 implies Property 1 .
Thus, all properties are equivalent. In a full version of this work, we will extend the theorem
to show that also strong isomorphism to a generalized twisted drawing is equivalent to
the properties of Theorem 15. We show this by proving that any simple drawing of Kn

fulfilling Property 4 is strongly isomorphic to a generalized twisted drawing. However, the
reasoning for strong isomorphism is quite lengthy and would exceed the space constraints of
this submission.

In the remaining parts of this section, we will show sketches of the proofs of the above men-
tioned theorems. The full proofs can be found in the Appendix (Theorem 16 in Appendix D,
Theorem 17 in Appendix E, and Theorem 18 in Appendix F).

▶ Theorem 16. Every simple drawing of Kn which is weakly isomorphic to a generalized
twisted drawing of Kn, with n ≥ 3, contains a pair of antipodal vi-cells. In generalized twisted
drawings the cell containing O and the unbounded cell form such a pair.

vi

vk
vl

R

x

r

O

vivi+1

vj

vk

ri

ri+1

rj

rk

rk′

vk′

vj′
rj′

O

r

Figure 11 Left: If there is a vertex vl in R, it cannot be connected to vi without crossing r

before x. Right: If the edge vjvk crosses the segment Ovi and the edge vj′ vk′ crosses the segment
Ovi+1, then there is no way of connecting vi+1 and vj′ .

Proof sketch. We first show that every generalized twisted drawing D of Kn, with n ≥ 3,
contains a pair of antipodal vi-cells, where O lies in a cell of that pair. Let c be the segment
OZ, where Z is a point on r in the unbounded cell. By definition of generalized twisted, c

crosses every edge of D once, so O and Z are in two antipodal cells C1 and C2, respectively.
To prove that C1 is a vi-cell, we use the following properties. First, if we take the first

edge vivk that crosses c (as seen from O) at point x, then we can prove that k = i + 1
and the bounded region R defined by the edge vivi+1 and the segments Ovi and Ovi+1 is
empty (see Figure 11, left). Second, using this empty region we can prove that D cannot
contain simultaneously an edge vjvk crossing Ovi and another edge vj′vk′ crossing Ovi+1
(see Figure 11, right). Therefore, at least one of the segments Ovi and Ovi+1 is uncrossed,
and O necessarily lies in a vi-cell (with either vi or vi+1 on the boundary). Finally, arguing
on the last edge crossing c and the unbounded cell, we can show that Z also lies in a vi-cell.

To show that also every drawing which is weakly isomorphic to a generalized twisted
drawing contains a pair of antipodal vi-cells, we use Gioan’s Theorem [6, 15]. By Gioan’s
Theorem, any two weakly isomorphic drawings of Kn can be transformed into each other
with a sequence of triangle-flips and at most one reflection of the drawing. A triangle-flip is
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v1

v2

c C2

C1

v1

v2

c C2

C1

Figure 12 Building a curve such that it crosses every edge of D once and its endpoints do not lie
on any edges or vertices of D.

C1

v1

v2

w2
w3

v1

v2

w2
w3

c c

C2 C2

C1

Figure 13 Decreasing the number of crossings between c and the edge w2w3.

an operation which transforms a triangular cell △ that has no vertex on its boundary by
moving one of its edges across the intersection of the two other edges of △. We show that if
a drawing D1 contains two antipodal vi-cells, then after performing a triangle flip on D1, the
resulting drawing D2 still has two antipodal vi-cells. The main argument is that triangle-flips
are only applied to cells without vertices on their boundary, and thus the antipodality of the
vi-cells cannot change. ◀

▶ Theorem 17. In any simple drawing D of Kn that contains a pair of antipodal vi-cells, it
is possible to draw a curve c that crosses every edge of D exactly once.

Proof sketch. Let (C1, C2) be a pair of antipodal vi-cells of D. Let v1 be a vertex on the
boundary of C1 and v2 a vertex on the boundary of C2. We construct the curve as follows:
First, we draw a simple curve c from C1 to C2 such that (1) it emanates from v1 in C1 and
ends in C2 very close to v2, (2) does not cross any edge incident to v1, (3) only intersects
edges of D in proper crossings, and (4) has the minimum number of crossings with edges of
D among all curves that fulfill (1), (2) and (3). This curve c always exists since S(v1) is a
plane drawing that has only a face in which both v1 and v2 lie (see Figure 12, left).

Then, we prove that c crosses every edge w2w3 in D that is not incident to v1 exactly
once. On the one hand, since c connects two antipodal cells, the endpoints of c have to be
on two different sides of the triangle T formed by v1, w2 and w3. Thus, c has to cross w2w3
an odd number of times because it does not cross S(v1) and must cross the boundary of T

an odd number of times. On the other hand, if c crosses w2w3 at least three times, then we
can prove that c can be redrawn as shown in Figure 13, decreasing the number of crossings,



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 15

O Z

w

O
Z

w

x

u

O
Z

w

x

u

Figure 14 Top and bottom edges. For simplicity, the curve OZ is drawn as a horizontal line.
Left: A top edge wu. Centre: A bottom edge wu. Right: The (black) top and (blue) bottom edges
of S(w).

which contradicts (4). Therefore, c crosses every edge w2w3 at most twice and, consequently,
only once.

Finally, we change the end of c from v1 to a point in C1 in the following way (see Figure 12,
right). From some point of c sufficiently close to v1 and inside C1, we reroute c by going
around v1 such that only the edges incident to v1 are crossed, and end at a point in C1. ◀

▶ Theorem 18. Let D be a simple drawing of Kn in which it is possible to draw a simple
curve c that crosses every edge of D exactly once. Then, D can be extended by two vertices
O and Z (at the position of the endpoints of the curve), and edges incident to those vertices
such that the obtained drawing is a simple drawing of Kn+2, no edge incident to O crosses
any edge incident to Z, and all edges in D cross the edge OZ.

Proof sketch. Let c = OZ be the curve crossing every edge of D once, oriented from O to Z.
Let wu be an edge of D, oriented from w to u, crossing OZ at a point x. We say that wu is
a top (respectively bottom) edge if the clockwise order of w, Z, u and O around x is w, Z, u, O

(respectively w, O, u, Z). See Figure 14. With these definitions, we can prove that there is a
vertex w1 in D such that all the oriented edges emanating from w1 are top in relation to c.
Thus, by removing w1 and all its incident edges from D, there is a vertex w2 in the new
drawing such that all its incident edges are top, and so on. As a consequence, there is a
natural order w1, w2, . . . , wn of the vertices of D such that for any vertex wi, the edges wiwj

with j > i are top, and the edges wiwj with j < i are bottom.
Given the natural order w1, w2, . . . , wn, our construction of the extended drawing is as

follows. Let D′
0 be the simple drawing formed by the vertices and edges of D, O and Z

as new vertices, and c as the edge connecting O and Z. From D′
0, we build new drawings

D′
1, D′

2, . . . , D′
n, by adding in step i the edges wiO and wiZ. These two edges are added very

close to some edges in D′
i−1. Figure 15 illustrates how these two edges are added in each

step.
In the first step, the edge Ow1 follows the curve OZ until the crossing point between

OZ and the first top edge w1u emanating from w1, and then it follows this top edge until
reaching w1. The edge Zw1 is built in an analogous way, taking the last top edge emanating
from w1. See Figure 15 top-left. For i = 2, . . . , n − 1, in step i we do different constructions
depending on whether the first and last top edges of S(wi) cross the edges wi−1O and wi−1Z.
If the first top edge wiu1 crosses wi−1O at a point x and the last top edge wiuk crosses
wi−1Z at a point y (see Figure 15 top-right), then Owi follows Owi−1 until x, and then it
follows u1wi until wi. The edge Zwi is built following Zwi−1 until y and then following
ukwi. On the contrary, if the first and the last top edges of S(wi) only cross one of wi−1O
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O Z

w1

O Z

wi−1

wi

O Z

wi−1

wi

x y

O
Z

wn−1

wn

Figure 15 Building the (dashed) edges wiO and wiZ.

and wi−1Z, say wi−1Z (see Figure 15 bottom-left), then Owi follows OZ until the crossing
point between OZ and the last bottom edge of S(wi), and then it follows this bottom edge
until wi. The edge Zwi is built as in the first step, using the last top edge of S(wi). In the
last step, we build Own and Zwn as in the first step, but using the first and the last bottom
edges of S(wn) instead of the first and last top edges. See Figure 15 bottom-right.

By a detailed analysis of cases, we can prove for i = 1, . . . , n that D′
i is a simple drawing

such that no edge incident to O crosses any edge incident to Z. Therefore, D′
n is the drawing

of Kn+2 satisfying the required properties. ◀

6 Conclusion and Outlook

Generalized twisted drawings have a suprisingly rich structure and many useful properties. We
showed several of those properties in Section 2 and different characterizations of generalized
twisted drawings in Section 5. We have proven in Section 2 that every generalized twisted
drawing on an odd number of vertices contains a plane Hamiltonian cycle, and therefore one
especially interesting open question is the following.

▶ Conjecture 19. Every generalized twisted drawing of Kn contains a plane Hamiltonian
cycle.

Using properties of generalized twisted drawings has turned out to be helpful for inves-
tigating simple drawings in general. We first improved the lower bound on the number of
disjoint edges in simple drawings of Kn to Ω(

√
n) (Section 3). Then generalized twisted

drawings played the central role to improve the lower bound on the length of plane paths
contained in every simple drawing of Kn to Ω( log n

log log n ) (Section 4).
On the other hand, from Theorem 17 it immediately follows that no drawing that is weakly

isomorphic to a generalized twisted drawing can contain three interior-disjoint triangles
(since the endpoints of the curve crossing every edge once must be on opposite sides of
every triangle, the maximum number of interior-disjoint triangles is two). Up to strong
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isomorphism, there are only two simple drawings of K4. The plane drawing contains three
interior-disjoint triangles. Thus, (up to strong isomorphism) the only drawing of K4 that is
weakly isomorphic to a generalized twisted drawing, is the drawing with a crossing. Hence,
in every generalized twisted drawing all subdrawings induced by 4 vertices contain a crossing
and thus every generalized twisted drawing is crossing maximal. Up to strong isomorphism,
there are two crossing maximal drawings of K5: the convex drawing of K5 and the twisted
drawing of K5. Since the convex drawing contains three interior-disjoint triangles, the only
(up to strong isomorphism) drawing of K5 that is weakly isomorphic to a generalized twisted
drawing is the twisted drawing of K5 (that is drawn generalized twisted in Figure 1).

It is part of our ongoing work to show that for n ≥ 7, a drawing is weakly isomorphic to a
generalized twisted drawing if and only if all subdrawings induced by five vertices are weakly
isomorphic to the twisted K5. Interestingly, the n ≥ 7 is necessary as there is a drawing
with 6 vertices that contains only twisted drawings of K5 but is not weakly isomorphic
to a generalized twisted drawing (see the drawings in Figure 9). There are (up to strong
isomorphism) three more simple drawings of K6 that consist of only twisted drawings of K5
and they are all weakly isomorphic to generalized twisted drawings (see Figure 10).
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A Proof of Lemma 2

▶ Lemma 2. Let D be a generalized twisted drawing of K4, with vertices {v1, v2, v3, v4}
labeled counterclockwise around O. Then the edges v1v3 and v2v4 do not cross.

Proof. Assume, for a contradiction, that the edge v2v4 crosses the edge v1v3. Since any
simple drawing of K4 has at most one crossing, no other edges of D can cross. Recall that
in any generalized twisted drawing, all edges are drawn c-monotone and intersect the ray r.
For every edge, this determines in which direction it emanates from its vertices. Hence there
are (up to strong isomorphism) two possibilities how the crossing edges v1v3 and v2v4 can
be drawn in D, depending on whether v1v3 crosses the ray from O through v4 at a point x3
before or after v4; cf. Figure 16. In both cases, v1v2 has to cross the ray from O through v4
at a point x2. This point x2 has to lie after v4 in the first case and before v4 in the second
case. In both cases, as the edge v3v4 has to cross r, it must emanate from v4 in the interior
of the triangular region bounded by the segment x2x3, the portion v1x3 of v1v3, and the
portion v1x2 of v1v2. However, the vertex v3 is in the exterior of that triangular region, and
therefore v3v4 would have to cross the segment x2x3, contradicting that D is c-monotone, or
one of v1v2 and v1v3, contradicting the simplicity of D. ◀
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Figure 16 The two possibilities to draw v1v3 and v2v4 crossing and generalized twisted.

B Proof of Lemma 4

Lemma 4 has been implicitly shown in [11] and [13]. For completeness, we include a detailed
proof of the lemma in this appendix. We remark that the proof presented here is in parts
similar to the one in [13].

b1

b2

b1b2

a1

a2

an

an−1

a1

a2

an
an−1

r=̂b1b2
O=̂b1

Figure 17 The homeomorphisms of D′. Left: DA, the edges in RA and b1b2 are drawn on the
sphere, such that RA and b1b2 are meridians. Right: The steographic projecton from b2.

▶ Lemma 4. Let D be a simple drawing of a complete graph containing a subdrawing D′,
which is a plane drawing of K2,n. Let A = {a1, a2, . . . , an} and B = {b1, b2} be the sides of
the bipartition of D′. Let DA be the subdrawing of D induced by the vertices of A. Then DA

is weakly isomorphic to a c-monotone drawing. Moreover, if all edges in DA cross the edge
b1b2, then DA is weakly isomorphic to a generalized twisted drawing.

Proof. We call the pair of edges in D′ incident to ai, 1 ≤ i ≤ n, the long edge ri. Let RA be
the set of long edges. We first show that any edge between vertices in A crosses any long
edge at most once. Then we show how to draw D′ such that b1 can be taken as origin O in a
c-monotone drawing weakly isomorphic to DA, where the long edges of RA, as well as the
edge b1b2, emanate as rays to infinity.

We now show that every edge between two vertices of A crosses every edge of RA at
most once. Let a1, a2, and a3 be vertices in A. Let R1 be the region bounded by the edges
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b1a1, a1b2, b2a2 and a2b1 that does not contain a3. Let R2 be the region bounded by the
edges b1a2, a2b2, b2a3 and a3b1 that does not contain a1. Since D′ is plane, these regions
are disjoint.

As the edge e = a1a2 is incident to all edges on the boundary of R1, it cannot cross it.
Thus, e has to lie either completely inside or completely outside R1 (and meet the boundary
only in its endvertices). If e lies inside R1, it can cross neither a3b1 nor a3b2. If it lies outside
R1, it has to cross the boundary of R2 an odd number of times. (Since e must begin at a1
outside R2 and finish at a2 inside R2, and passing through R1 is not possible.) As e cannot
cross edges incident to a2, this means it has to cross exactly one of the edges a3b1 or a3b2.
Thus, e crosses the long edge r3 at most once, for any vertex a3.

We can draw D′ such that b1 is functioning as the origin and RA as rays emerging from it
by doing the following transformations; see Figure 17. We draw the subdrawing induced by
the vertices of D′ on the sphere such that b1 and b2 are antipodes, and the long edges of RA,
as well as the edge b1b2, are meridians. By the general Jordan-Schoenflies theorem [16, 8],
the drawing on the sphere is homeomorphic to the original drawing on the plane. We then
apply a stereographic projection from b2 onto the plane. This way, the long edges in RA and
the edge b1b2 correspond to rays emerging from vertex b1, where the long edges in RA are
exactly the rays through the vertices of D′.

Finally, we can obtain a c-monotone drawing that is weakly isomorphic to DA. We
consider the stereographic projection. As all edges of DA cross the long edges in RA only
once, they cross in between two long edges (or rays in the projection) r1 and r2 if and only
if their order along the rays changes (that is, the edge closer to b1 at r1 is further away
from b1 at r2). Consequently, we can draw the edge-segments between every two rays as
straight-lines and obtain a c-monotone drawing that is weakly isomorphic to DA. If all edges
of DA cross the edge b1b2, they cross a ray to infinity in the weakly isomorphic c-monotone
drawing, and thus the c-monotone drawing is also generalized twisted. ◀

C Proof of Theorem 13

▶ Theorem 13. Let s, t be two integers, 1 ≤ s, t ≤ n, such that (s − 1)(t − 1) + 1 ≤ n. Let D

be a c-monotone drawing of Kn. Then D contains either a generalized twisted drawing of Ks

or a monotone drawing of Kt as subdrawing. In particular, if s = t = ⌈
√

n⌉, D contains a
complete subgraph Ks whose induced drawing is either generalized twisted or monotone.

Proof. Without loss of generality we may assume that the vertices of D appear counter-
clockwise around O in the order v1, v2, . . . , vn. Let r be a ray emanating from O, keeping v1
and vn on different sides. We define an order, ⪯, in this set of vertices as follows: vi ⪯ vj if
and only if either i = j or i < j and the edge (vi, vj) crosses r.

We show that ⪯ is a partial order. The relation is clearly reflexive and antisymmetric.
Besides, if vi ⪯ vj and vj ⪯ vk, then i < j and j < k imply i < k, so for the transitive
property, we only have to prove that if vivj and vjvk cross r, then vivk also crosses r. We
denote by ri, rj , rk the rays emanating from O and passing trough vi, vj , vk, respectively.
We have two cases depending on where vjvi crosses the ray rk at a point xk; in the first
case, xk is located before vk on rk, while in the second one it is located after vk. Then
vjvk has to cross the ray ri at a point xi, which is after vi in the first case and before vi in
the second case (see Figure 18). Let Q be the region bounded by the segments Oxi, Oxk

and the portions vjxi, vjxk of the edges vjvk, vjvi, respectively. In both cases, the edge
vkvi cannot be contained in the counterclockwise wedge from ri to rk, because vivk should
connect a vertex placed outside Q with points placed inside that region, contradicting either
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vj
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O

r

xk

xi ri

rj
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Q

vj

vi

vk

O

r

xk

xi

ri

rj

rk

Q

Figure 18 If edges vivj and vjvk cross r in a c-monotone drawing, then vivk must also cross r.

the simplicity or the c-monotonicity of D. Therefore, vivk must be in the clockwise wedge
from ri to rk and thus crosses the ray r.

In this partial order ⪯, a chain consists of a subset vi1 , . . . , vis−1 of pairwise comparable
vertices, that is, a subset of vertices such that their induced subdrawing is generalized twisted
(all edges cross r). An antichain, vj1 , . . . , vjt−1 , consists of a subset of pairwise incomparable
vertices, that is, a subset of vertices such that their induced subdrawing is monotone (no
edge crosses r). Therefore, the first part of the theorem follows from applying Theorem 12
to the set of vertices of D and the partial order ⪯.

Finally, observe that if s = t ≤ ⌈
√

n⌉, then (s − 1)(t − 1) + 1 ≤ n. Thus, D contains
a complete subgraph K⌈

√
n⌉ whose induced subdrawing is either generalized twisted or

monotone. ◀

D Generalized twisted drawings contain a pair of antipodal vi-cells

In this section, we will show that every drawing weakly isomorphic to a generalized drawing
of Kn contains a pair of antipodal vi-cells (Theorem 16). Before proving the theorem, we
will see some useful properties of generalized twisted drawings. Recall that in a generalized
twisted drawing, vertices are labeled v1, v2, . . . , vn counterclockwise around the origin O,
the ray emanating from O and passing through a vertex vi is denoted by ri, and the ray r

that emanates from O and crosses every edge once is between rn and r1, counterclockwise
from rn.

▶ Lemma 20. Let D be a generalized twisted drawing of Kn with n ≥ 4. Suppose the two
edges vivj and vkvl of D cross, and i < j < k < l. Then the crossing point between these
two edges is in the wedge W defined by rj and rk, counterclockwise from rj to rk.

Proof. Assume for contradiction that the crossing point is not in W , so it is in the wedge
defined by rl and ri, counterclockwise from rl. There are four cases, depending on whether
vk and vl are to the left or the right of the directed edge vjvi; see Figure 19. In any of the
four cases, there is no way of connecting vk and vj without crossing either vivj or vkvl, which
is a contradiction. ◀

▶ Lemma 21. For every generalized twisted drawing D with n ≥ 3 vertices, the following
statements hold.

i) There exists a vertex vi, with 1 ≤ i ≤ n − 1, such that the bounded region RB defined by
the edge vivi+1 and the segments Ovi and Ovi+1 is empty.
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Figure 19 Illustrating the proof of Lemma 20.

ii) There exists a vertex vj ̸= vi, with 1 ≤ j ≤ n − 1, such that the unbounded region RU

defined by the edge vjvj+1 and the segments Ovj and Ovj+1 is empty.

Proof. We show statement i), we take the first edge vivk (with i < k) that crosses r and we
show that vi satisfies i). Let x be the crossing point between vivk and r, and let R be the
bounded region defined by the edge vivk and the segments Ovi and Ovk.

vi

vk
vl

R

x

r

vi

vk

vlR

x

r

O O

Figure 20 Illustrating the proof of Lemma 21.

Suppose that there is a vertex vl inside R. See Figure 20, left. Then there is no way of
connecting vl and vi without crossing r before x, which contradicts that vivk is the first edge
crossing r. Thus, R must be empty.
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Suppose now that k ̸= i + 1, so there is a vertex vl with i < l < k. See Figure 20, right.
The edge vlvk must cross r at a point after x. But then there is no way of adding the edge
vivl without crossing r before x or without crossing vlvk. Therefore, k = i + 1 and i) follows.
The proof of ii) is analogous by taking the last edge crossing r. In addition, vi and vj must
be different since a same edge vivi+1 cannot be at the same time the first and the last edge
crossing r. ◀

▶ Lemma 22. Let D be a generalized twisted drawing of Kn with n ≥ 3 vertices. Then the
cell containing O and the unbounded cell have at least one vertex on their boundaries.

Proof. We show that the cell containing O is a vi-cell. The proof for the unbounded cell
follows analogously.

By Lemma 21 i), there exists a vertex vi, with 1 ≤ i ≤ n−1, such that the bounded region
RB defined by the edge vivi+1 and the segments Ovi and Ovi+1 is empty. We now show
that either the segment Ovi or the segment Ovi+1 is uncrossed. Thus, it follows immediately
that O lies in a vi-cell (with either vi or vi+1 on the boundary).

vi

vi+1

vj

vk

ri

ri+1

rj

rk

O

(a)

vivi+1

vj

vk

ri

ri+1

rj

rk

rk′

vk′

vj′
rj′

O

(b)

vivi+1

vj

vk

ri

ri+1

rj

rk

rk′

vk′

vj′rj′
O

(c)

Figure 21 One of the segments Ovi and Ovi+1 is uncrossed.

Suppose to the contrary that neither segments are uncrossed, so there is an edge vjvk,
with j < k, crossing the segment Ovi, and another edge vj′vk′ , with j′ < k′, crossing the
segment Ovi+1.

Observe now the following. First, since RB is empty, an edge vi+1vl cannot cross Ovi

for any l, so neither vj nor vk can be vi+1. Second, suppose that j, k > i + 1. Since both
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vertices are outside RB, if vjvk crosses Ovi, then it must also cross vivi+1 (see Figure 21a).
Hence, by Lemma 20, the crossing point between vjvk and vivi+1 is in the wedge defined
by ri+1 and rj . But then, after crossing vivi+1 and Ovi, the edge vjvk must cross vivi+1 a
second time to reach vk, which is a contradiction. Therefore, j, k < i.

Using an analogous reasoning, we also obtain that if an edge vj′vk′ crosses Ovi+1,
then j′, k′ > i + 1. As a consequence, the relative position of these three edges of D is as
shown in Figures 21b and 21c. After emanating in vk, the edge vkvj crosses vivi+1 at a point
in the wedge defined by rk and ri; then it crosses Ovi, and reaches vj surrounding vivi+1
by the exterior. The edge vj′vk′ must do the same but in opposite direction, crossing first
vivi+1 at a point in the wedge defined by ri+1 and rj′ , then crossing Ovi+1 and reaching vk′

surrounding vivi+1 by the exterior. Note that vjvk and vj′vk′ necessarily cross, and that the
crossing point must be in the wedge defined by ri and ri+1. Hence, vj′ must be to the left of
the oriented edge vkvj and vk must be to the right of the oriented edge vj′vk′ . Otherwise, if
vj′ is to the right of the oriented edge vkvj or vk is to the left of the oriented edge vj′vk′ ,
then edges vjvk and vj′vk′ would cross twice.

For the vertices vj and vk′ , there are two possibilities, depending on whether vk′ is to
the right (see Figure 21b) or to the left (see Figure 21c) of the oriented edge vkvj . But in
the first case, the edge vj′vi+1 would cross vjvk twice, and in the second case, the edge vivk

would cross vj′vk′ twice. Therefore, at least one of Ovi and Ovi+1 is uncrossed. ◀

▶ Lemma 23. Let D be a generalized twisted drawing of Kn with n ≥ 3 vertices. Then the
cell of D containing O an the unbounded cell are a pair of antipodal vi-cells.

Proof. Let c be the segment OZ, where O is the origin and Z is a point on r in the unbounded
cell. By Lemma 22, both O and Z lie in vi-cells. We will show that those cells are antipodal.
Since r crosses every edge of D exactly once and Z lies in the unbounded cell, also the
segment c crosses every edge exactly once. Consequently, c crosses the boundary of every
triangle of D exactly three times. Since every triangle of D is plane, this means c starts and
ends at different sides of every triangle. Thus, O and Z have to lie in antipodal cells. ◀

Figure 22 A triangle-flip.

We extend Lemma 23 to drawings weakly isomorphic to generalized twisted drawings
using Gioan’s Theorem [6, 15] that any two weakly isomorphic drawings of Kn can be
transformed into each other with a sequence of triangle-flips and at most one reflection of
the drawing. A triangle-flip is the operation that transforms a triangular cell △ that has no
vertex on its boundary, by moving one of its edges across the intersection of the two other
edges of △ (see Figure 22).

▶ Theorem 16. Every simple drawing of Kn which is weakly isomorphic to a generalized
twisted drawing of Kn, with n ≥ 3, contains a pair of antipodal vi-cells. In generalized twisted
drawings the cell containing O and the unbounded cell form such a pair.

Proof. Let D be a simple drawing of Kn that is weakly isomorphic to a generalized twisted
drawing D′. By Lemma 23, the cell in which O lies in D and the unbounded cell of D
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are antipodal vi-cell pairs. Without loss of generality, we can assume that O is very close
to a vertex v on the boundary of C1 and Z is very close to a vertex w on the boundary
of C2. Using Gioan’s Theorem, it is enough to show that afer every triangle flip that can
be transformed on a drawing D̃ containing antipodal vi-cells, the resulting drawing D̃2 still
contains antipodal vi-cells.

As triangle-flips are only applied to cells without vertices on its boundary, and points O

and Z are close enough to vertices on the boundary of their cell in D̃, they stay in vi-cells
(with the vertices they are close to) after every triangle-flip. What remains to be shown is
that the vi-cells stay antipodal.

Let T be a triangle of D̃. (Note that a triangle of the drawing is the simple cycle formed
by the three edges connecting three vertices of the graph, and not the triangular cells on
which we perform triangle flips.) Whenever a flip is performed on a cell △, the cell △
disappears and a new cell appears. The new cell might (but not has to) be on the other side
of T , but no other cells are affected. In particular, since triangle flips are never applied on
vi-cells, any pair of vi-cells that was antipodal before stays antipodal after the flip. ◀

E Characterizing via antipodal vi-cells

In this section, we prove that in any simple drawing D of Kn containing antipodal vi-cells it
is possible to add a simple curve crossing every edge of D exactly once (Theorem 17). To
this end, we will use the following lemmata that show some properties of antipodal vi-cells.

▶ Lemma 24. Let D be a drawing of Kn with n ≥ 4, and let (C1, C2) be a pair of antipodal
vi-cells. Then there is no vertex that lies on the boundary of both cells.

Proof. Assume, for a contradiction, that a vertex v1 lies on the boundary of both cells C1
and C2. See Figure 23. Consider another cell C ′ different from C1 and C2, with v1 on its
boundary. Since v1 has degree n − 1 ≥ 3, this cell exists. Let u1 and u2 be the two vertices
whose edges to v1 are on the boundary of that cell C ′. Then the triangle formed by vertices
u1, u2, and v1 always have the cells C1 and C2 on the same side, contradicting that C1 and
C2 are antipodal. ◀

v1 v1
C1 C1

C2
C2

u1 u1

u2u2

Figure 23 Edges of the star S(v1) incident to v1 are drawn black; the antipodal cells are filled
purple; the additional cell is indicated in cyan; the different ways to draw the edge u1u2 are drawn
dashed in blue.

▶ Lemma 25. Let D be a simple drawing of Kn that contains two antipodal vi-cells C1
and C2. Let v1 be a vertex on the boundary of C1. Let T be a triangle formed by v1 and two
other vertices u2 and u3. If there is a vertex u that lies on the same side of T as C1, then
the edge v1u lies completely on that side.
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Proof. Assume, for a contradiction, that the edge v1u does not lie completely on the same
side of T as C1, and thus crosses the boundary of T . See Figure 24. The only edge it can
cross is u2u3, as the other edges are incident to v1. Thus, the drawing induced by v1, u2, u3
and u contains a crossing between v1u and u2u3. Since any simple drawing of K4 contains
at most one crossing, the edges uu2 and uu3 cannot cross the boundary of T . Thus, the
triangle T ′ formed by u, u2 and u3 has to lie on the same side of T as C1, but keeping C1
and C2 on one of its sides, which is a contradiction to the definition of antipodal. ◀

v1

v2

u2
u3

u

C2

C1

Figure 24 An illustration of Lemma 25. The vertex v2 is placed as an example in one of the
possible faces and could be at another place, but C1 and C2 lie on different sides of the triangle
v1u2u3 by definition. Thus, by construction of the triangle uu2u3, the cells C2 and C1 lie on the
same side of uu2u3.

Now, we can prove Theorem 17.

▶ Theorem 17. In any simple drawing D of Kn that contains a pair of antipodal vi-cells, it
is possible to draw a curve c that crosses every edge of D exactly once.

Proof. Let (C1, C2) be a pair of antipodal vi-cells of D, v1 a vertex on the boundary of C1,
v2 a vertex on the boundary of C2, and S(v1) the star of v1. Note that by Lemma 24, v1
and v2 are different. We draw a simple curve c from v1 to v2 such that it emerges from v1 in
the cell C1 and ends in the cell C2 very close to v2, and the following holds:

1. The curve c does not cross any edges of S(v1).
2. All intersections of c with edges of D are proper crossings.
3. Over all curves for which 1 and 2 hold, the curve c has the minimum number of crossings

with edges of D.

Since S(v1) is a plane drawing that has only one face in which both v1 and v2 lie, drawing c

is always possible. See for example Figure 25. We will prove that c crosses every edge of
D \ S(v1) exactly once. To show that c crosses an arbitrary edge w2w3 exactly once, we will
first show that c crosses w2w3 an odd number of times and then show that c crosses w2w3 at
most twice.

To observe that c has to cross w2w3 an odd number of times, consider the triangle T

formed by v1, w2 and w3. Since c connects two antipodal cells, the endpoints of c have to be
on two different sides of T . Thus, c has to cross the boundary of T an odd number of times.
Since c does not cross S(v1), it has to cross w2w3 an odd number of times.

We show now that c crosses w2w3 at most twice. Assume to the contrary that c crosses
w2w3 at least three times. Without less of generality, we may assume that C1 is inside T and
C2 is outside. Given two crossing points x and y between c and w2w3 that are consecutive
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v1

v2

c C2

C1

Figure 25 Edges of the star S(v1) incident to v1 are drawn black; the antipodal cells are filled
purple; the curve c is drawn in red.

on c when going from v1 to v2, a lens is the region to the left of the cycle formed by the
arc xy on c and the arc yx on w2w3. See Figure 26 for an illustration. The pairs of two
consecutive crossing points between c and w2w3 on c define a set of lenses on both sides of
T , possibly nested (see Figure 26). Note that since c crosses w2w3 at least 3 times, there is
at least one lens on each side of T . Among all the lens on the same side of T as C1, we take
one that does not contain any other lens in its interior. This lens L always exists by taking
the "innermost" one in a set of nested lenses.

v1

v2

c

C1

C2

w3

w2

xy

Figure 26 The curve c crossing several times the edge w2w3. If there are nested lenses in T , we
take a minimal one that does not contain any nested lenses. This minimal lens L is shaded green.

Let x and y be the two crossing points defining the lens, so the boundary of L consists of
arc xy on c and arc yx on w2w3. We claim that there is no vertex in L. Assume that there
is a vertex u inside L (see Figure 27). By Lemma 25, the edge uv1 cannot cross the edge
w2w3. Thus, it has to cross c in order to get from u inside the lens to v1 outside the lens.
This is a contradiction to c being drawn such that it does not cross S(v1). Thus, there is no
vertex in L, as claimed.

Since L does not contain any vertex, then every edge that crosses the arc yx on w2w3
has to also cross at least once the arc xy on the curve c (as there is no vertex in the lens
where it could stop and it cannot cross the edge w2w3 more than once); see Figure 28 (left).
Thus, c can be drawn such that it stops before x, follows an arc very close to the arc xy on
w2w3 until a point very close to y, and then continues as c did before; see Figure 28 (right).
This way the new drawing of the curve is still simple and does not have any crossings that
the original one did not, but two less crossings with w2w3, which is a contradiction to the
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v1
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uc

C2

C1

x
y

Figure 27 There is no vertex in L. If there is a vertex u inside L, then the edge from u to v1

(drawn dashed) would have to cross c, which it cannot by construction.

minimality of c. In conclusion, the curve c cannot cross any edge w2w3 more than twice.

C1

v1

v2

w2
w3

v1

v2

w2
w3

c c

C2 C2

C1

x
y

x
y

Figure 28 Left: The lens L does not contain any vertices, thus all edges crossing w2w3 within the
lens have to leave the lens crossing c. Right: The curve c is redrawn such that it has fewer crossings.

Therefore, since c crosses all edges in D \ S(v1) an odd number of times and at most
twice, it follows that it crosses all edges in D \ S(v1) exactly once, while (per construction)
it does not cross any edges of S(v1).

We can transform c to a curve that crosses all edges exactly once in the following way:
Instead of the starting point being v1 we remove an ε of the curve on this end such that
it starts very close to v1 in the cell C1 (and consequently still crosses exactly the edges it
crossed before). Then, on that start in C1, we extend the curve by going around the vertex
v1 so close to v1 that the extension crosses exactly the edges of S(v1), and then ending again
in C1; see Figure 29. This way the extension crosses all edges of S(v1) exactly once and
consequently, we obtained a curve crossing all edges exactly one, with its endpoints not lying
on any edges or vertices of D. ◀

F Characterizing via a Curve Crossing Everything

In this section we prove Theorem 18.

▶ Theorem 18. Let D be a simple drawing of Kn in which it is possible to draw a simple
curve c that crosses every edge of D exactly once. Then, D can be extended by two vertices
O and Z (at the position of the endpoints of the curve), and edges incident to those vertices
such that the obtained drawing is a simple drawing of Kn+2, no edge incident to O crosses
any edge incident to Z, and all edges in D cross the edge OZ.
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v1

v2

c C2

C1

Figure 29 The resulting curve after the extension. The last part crossing S(v1) is drawn bold.

We first show several properties for drawings such that there is a simple curve c = OZ

crossing every edge once. Then, we show that we can extend the drawing D = Dn to a
drawing Dn+2 of Kn+2 by adding O and Z as vertices, the curve c as an edge, and edges
from O and Z to each vertex w of Dn in such a way that Dn+2 fulfills the following properties.

(P1) Dn+2 is a simple drawing. (This implies in particular that none of the curves incident
to O crosses another curve incident to O and no curve incident to Z crosses another
curve incident to Z.)

(P2) No edge incident to O crosses any edge incident to Z.

Notation and Basic Properties
Assume that Dn is a simple drawing of Kn and c = OZ a simple curve crossing every edge
of Dn once.

We will consider two orientations for each edge of Dn. By uv we denote the edge oriented
from u to v, and by vu the same edge oriented from v to u. If x, y are points placed in that
order on the edge uv of Dn+2, then the portion of the curve uv placed between x and y is
called the arc xy. We also consider the arcs oriented from the first point to the second point.
Consequently, yx has the same points as xy but with the opposite orientation. We orient c

from O to Z. When considering the star S(w) of a vertex w, we will always consider the
edges oriented from w to the other endpoint.

When the edge wu crosses OZ in a crossing point x we know that this crossing can be of
two different ways, depending on the radial order of the arcs xO, xw, xZ, xu around point
x. We will say that wu is a top edge if around x the arcs xu, xO, xw, xZ appear clockwise
in this order, and wu is a bottom edge when that clockwise order is xu, xZ, xw, xO. In the
figures we draw the curve c = OZ as a horizontal line, thus the directed edges reaching that
line by its top side are precisely the top edges. Note that if wu is a top edge, then uw is a
bottom edge.

Three arcs, xy on the edge e1, yz on the edge e2 and zx on the edge e3, form a cycle and
divide the plane (or the sphere) into two regions A, B. By triangular region xyz we mean
the region (A or B) found on the left side when we walk the cycle in the order x, then y,
then z, and returning to x, using the corresponding arcs in e1, e2, e3. In the same way, if the
arcs x1x2, x2x3, . . . , xk−1xk, xkx1 form a simple cycle, the region found on the left side when
we walk the cycle in the order x1, x2, . . . , xk, x1 will be denoted by x1x2 . . . xk. We suppose
that the drawings are on the sphere S2, so we consider drawings homeomorphic in S2 as
topologically identical, like the left and right drawings of Figure 30. However, in the figures,
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O Z ZO
x1 x1

y1 y1

w

w

xk xk
yk′ yk′

Figure 30 Top edges are drawn in black, bottom edges are drawn in blue.

as the drawings are shown on the plane, a given region can be bounded or unbounded. For
example, region wx1y1 is bounded in the left drawing of Figure 30 and unbounded in the
right drawing. But in both drawings, the arcs, vertices and crossings inside region wx1y1 are
the same.

In our constructions, we are going to draw new arcs that are close to (or glued to) arcs
of Dn. A new arc a′ is close or glued to the arc ux if

(g1) An edge crosses a′ if and only if it crosses ux.
(g2) All the crossing points on a′ and on ux have the same order.
(g3) The arcs a′ and ux do not cross each other. (They can share the endpoints, points

u, x, but do not have to.)

▶ Lemma 26. Let w be a vertex of Dn. The edges of S(w) satisfy the following properties:

(a1) When exploring counterclockwise around w the edges of S(w), the top edges are con-
secutive, wu1, wu2 . . . , wuk, and cross the curve c = OZ at points x1, . . . , xk in that
order. Then the bottom edges are consecutive, wv1, . . . , wvk′ (where k′ = n − k − 1),
and cross the curve c′ = ZO at points y1, . . . , yk′ in that order. See Figure 30.

(a2) Let z1 and zn−1 be the first and the last crossing points of S(w) on the curve c. Then
the endpoints of the bottom edges of S(w) are inside the triangular region z1zn−1w,
and the endpoints of the top edges are outside that region. See Figure 31.

Proof. (a1) Draw a new arc a glued to OZ by its top part, and another arc a′ glued to
ZO on the bottom part. Both have endpoints O and Z, and thus a, a′ define a cycle C.
The edges of the star S(w) in counterclockwise order have to reach (that is, have their first
crossing point with) the cycle C at points placed in clockwise order on C. The top edges of
S(w) are the ones reaching C on the arc a, and the corresponding crossing points x1, . . . , xk

on OZ are in increasing order (from O to Z). Then come the bottom edges reaching C on
the arc a′, their corresponding crossing points y1, . . . , yk′ in this order on ZO.

(a2) Notice that z1 can be either x1 or yk′ . Similarly, zn−1 can be xk or y1. In any case,
the only way to connect w to a vertex v placed inside the triangular region z1zn−1w and
crossing OZ, is crossing the arc z1zn−1 from its bottom part. For the same reason, all the
vertices placed outside that region are precisely the endpoints of the top edges of S(w). See
Figure 31. ◀

▶ Lemma 27. Assume wu1, . . . , wuk are the top edges of S(w), k ≥ 2, and let x1, . . . , xk

be the corresponding crossing points on OZ. Consider two of those edges wui, wuj, with xi

placed before xj. Then
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O Z

w

z1 zn−1

Figure 31 Property a2: The vertices placed in the regions with a blue circle can be reached from
w only with bottom edges.

(b1) If e = uiuj is bottom, it must cross c at a point x placed on Oxi. If it is top, it must
cross c at a point y placed on xjZ. See Figure 32.

(b2) Suppose that there is an edge e of Dn crossing both arc wx1 and arc wxk. Then the
two endpoints of e, vertices v, v′, have to be endpoints of bottom edges of S(w), and
not both vertices can be inside the triangle x1xkw.

Proof. (b1) Suppose e = uiuj is a bottom edge; the other case follows analogously. Since
the two endpoints ui, uj are outside the triangular region xixjw, the edge uiuj cannot enter
in that region without breaking the simplicity, and therefore uiuj cannot cross the arc xixj .
If the edge e crosses OZ at a point x on xjZ, just after crossing OZ, e is outside the region
uixxjw, but vertex uj is inside that region, so it is impossible to reach uj without either
breaking the simplicity of Dn or crossing the curve OZ twice. Hence, e must cross OZ on
the arc Oxi. See Figure 32 left.

O Zx xi xj

ui uj

w

O Zy
xi xj

ui uj

w

Figure 32 Property b1: The edge uiuj must cross OZ as in the left figure or as in the right figure.

(b2) Suppose that the edge e = vv′ crosses both wx1 and wxk.
We first analyze the case when both endpoints of e, vertices v, v′, are inside the triangular

region x1xkw, and therefore, by Property (a2), both are endpoints of bottom edges of S(w).
Let y be the crossing point of wv with OZ. Then, e = vv′ cannot cross the arc x1xk because
otherwise the boundary of x1xkw is crossed three times, contradicting that both v, v′ are
in that region. So, vv′ has to first cross either the arc wx1 or wxk. In the first case, after
crossing wx1, the edge is in the region wyx1 and the vertex v′ is outside that region, hence
the edge cannot leave that region keeping the simplicity. See Figure 33 left. Similarly, if
vv′ first crosses wxk, it enters in the region wxky, but the vertex v′ is outside that region,
therefore the edge cannot leave that region without breaking the simplicity.
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Figure 33 Property b2: Edge e cannot cross both wx1, wxk if its endpoints are inside x1xkw or
when one of them is an endpoint of a top edge.

Suppose now that v is inside the region x1xkw, and v′ is an endpoint of a top edge wv′

crossing OZ at a point x. As above, let y be the crossing point of wv with OZ, and suppose
that y is placed before x on OZ. See Figure 33 centre. Then, v is in the region wyx and v′

is outside that region, therefore the edge e = vv′ has to cross the arc yx. On the other hand,
since neither v′ nor v are in the region xxkw and e crosses wxk, it has to cross also the arc
xxk, hence e should cross OZ twice, a contradiction. A similar analysis can be done in the
symmetric case, when y is placed after x.

Finally, suppose that v is outside the region x1xkw, and v′ is an endpoint of a top edge
wv′ crossing OZ at point x. As both vertices v, v′ are outside the region x1xkw, the edge
vv′ cannot cross three times the boundary of that region, so e cannot cross the arc x1xk.
However, when e enters in that region, by crossing wx1 or wxk, as it cannot cross the arc
wx, it should cross x1xk, again a contradiction. See Figure 33 right. ◀

If we consider a mirror drawing of Dn on the horizontal line OZ, all the top edges become
bottom and vice versa, then, (b1) has a symmetric Property (b′

1):
If wui, wuj are bottom edges and the crossing point xi is placed before xj , then if e = uiuj

is top, it must cross c at a point x placed on Oxi, and if it is bottom, it must cross c at a
point y placed on xjZ.

▶ Lemma 28. There is one vertex w1 such that all the edges emanating from w1 are top.

Lemma 28 is depicted in Figure 34.

O Z

x1
O Z

x1

w w

xk xk y
w′

w′

Figure 34 Lemma 28: There is a vertex w1 such that all the edges of S(w1) are top.

Proof. We prove the existence of such a vertex by induction on the number of vertices n. For
n = 2 the lemma obviously is true. Now, consider a simple drawing Dn of Kn and assume
that the lemma holds for any simple drawing of Kn−1 (with all their edges crossed by a
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curve). By removing a vertex w′ of Dn, we obtain a simple drawing of Kn−1, by induction,
containing a vertex w such that all the edges of S(w) are top. If ww′ is also top in Dn,
all the edges of S(w) are top in Dn, and w is the sought vertex. Suppose now that ww′

is bottom and let x1, xk be the crossing points of the first and last edges of S(w). If ww′

crosses the arc x1xk, w′ has to be inside the region x1xkw. Then, as all the other vertices
are outside that region, by Property(b2), all the edges of S(w′) must cross first x1xk and
therefore they are top. Finally, if ww′ is bottom and does not cross x1xk it has to cross OZ

through a point y on the arc xkZ or on the arc Ox1. Suppose y is on xkZ (the other case is
symmetric), then w′ is in the triangular region x1yw, and all the other vertices out of that
region. Thus, again by Property(b2), all edges incident to w′ have to cross first the top part
of OZ, and therefore w′ is the sought vertex. ◀

By removing w1, we obtain a subdrawing with one vertex w2 of which all the edges are
top, by removing w2 another vertex w3, and so on. Thus, we obtain an order of the vertices
w1, . . . , wn such that for each vertex wi the edges wiwj with j > i are top edges (n − i

edges) and the edges wiwl, with l < i are bottom edges (i − 1 edges).

Construction of the drawing Dn+2

Beginning with the simple drawing D′
0 formed by Dn and the curve c = OZ, we build new

drawings D′
1, . . . , D′

i, . . . , D′
n, where drawing D′

i is obtained from drawing D′
i−1 by adding

two simple curves Owi, wiZ, following the order w1, w2, . . . wn explained above. Hence, we
start adding Ow1, w1Z, where w1 is the unique vertex such that all the edges of S(w1) are
top, and we finish by adding Own, wnZ, where wn is the unique vertex such that all the edges
of S(wn) are bottom. We build the new drawings in such a way that in D′

i, the following
invariants are satisfied:

1. The curves OZ, Zwi, wiO form a well defined triangular region (region Ri = OZwi)
containing the triangular region Ri−1 = OZwi−1, and containing no vertex wj with j > i.
Notice that this invariant implies that Ri contains precisely the vertices wl with l < i,
and that neither Owi nor Zwi can properly cross any edge Owl or Zwl with l < i.

2. The drawing D′
i is a simple drawing.

The last drawing obtained, D′
n, taking O and Z as vertices, provides the sought drawing

Dn+2, since Invariants 1 and 2 imply that it satisfies properties (P1) and (P2).
To prove that D′

i satisfies Invariants 1 and 2, we suppose that D′
i−1 satisfies these two

invariants. Then, the crossing points of the edges of D′
i−1 with the boundary of OZwi−1

must satisfy the properties given in the following lemma.

▶ Lemma 29. Suppose that D′
i−1 satisfies Invariants 1, 2, and let xs, xt, x be the crossing

points of OZ with the edges wi−1ws, wi−1wt, wswt, respectively. Then

(c1) All the top edges of S(wi−1) are counterclockwise between wi−1O and wi−1Z, and the
bottom edges are counterclockwise between wi−1Z and wi−1O.

(c2) Any edge wswt with s < t < i − 1 crosses first OZ then one of the curves Owi−1 or
Zwi−1.
Besides, if wswt crosses Zwi−1, the order of the above crossing points on OZ is xt, xs, x,
and if wswt crosses Owi−1, this order is x, xs, xt.

(c3) Any edge wswt with s < i − 1 < t crosses first OZ and it does not cross any other arc
of the boundary of OZwi.
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Besides, if ws is in the region Oxtwi−1, the order of the above crossing points on OZ

is xs, x, xt, and if ws is in the region xtZwi−1, the order is xt, x, xs.
(c4) Any edge wswt with i − 1 < s < t first crosses one of Owi−1 or Zwi−1, then OZ.

Besides, if wswt crosses Zwi−1, the order of the crossing points is xs, xt, x, and if it
crosses Owi−1, the order is x, xt, xs.

Proof. (c1) A top edge wi−1wt with t > i − 1 of S(wi−1) has to reach OZ by inside of
OZwi−1, and since D′

i−1 is simple, it must start entering in that region, hence it must be
counterclockwise between wi−1O and wi−1Z. The same reasoning works for bottom edges
wi−1ws with s < i − 1.

(c2) Since s < t < i − 1, by Invariant 1, the vertices ws, wt are both in OZwi−1. Hence,
the edge wswt must cross the boundary of OZwi−1 an even number of times. And since it
has to cross OZ, it has to cross also only one of the boundary curves Owi−1, wi−1Z. Finally,
since wswt is a top edge, it has to cross first OZ then the other boundary curve.

On the other hand, suppose that the edge wswt crosses wi−1Z at a point z. Then, the
vertex wi−1 is in the region xZz, like the vertices ws, wt. Therefore, if wtwi−1 (or wswi−1)
leaves that region crossing the arc xZ, it cannot reach wi−1 without crossing again the
boundary of that region, breaking the simplicity of D′

i−1. Therefore, xs, xt have to be placed
before x on OZ. Finally, wtwi−1 cannot cross the arc xsws (on the edge wi−1ws) or the arc
wsx (on the edge wswt), therefore it cannot cross OZ between xs and x, and the order of
the crossing points must be xt, xs, x. The same arguments can be used when the edge wswt

crosses Owi−1

(c3) By Invariant 1, ws is inside the region OZwi−1 and wt is outside, so the edge wswt

has to cross the boundary of OZwi−1 an odd number of times. Suppose that it crosses the
three curves of the boundary, curves OZ, Owi−1, wi−1Z. It cannot cross first Owi−1 (or
wi−1Z) then OZ because wswt is a top edge. It cannot cross first OZ then Owi−1 and finally
wi−1Z because then, by (c1), it has to cross the top edge wi−1wt. By the same reason it
cannot cross the boundary in the order first OZ, next wi−1Z and then Owi−1. Finally, if
it crosses first Owi−1, next wi−1Z and then OZ, then, again by (c1), it has to cross the
bottom edge wi−1ws.

Besides, since wi−1wt is a top edge, the arc wi−1xt divides the region OZwi−1 into two
disjoint regions Oxtwi−1 and xtZwi−1. Then, if ws is in the region Oxtwi−1, the edge
wswi − 1 has to cross by the arc Oxt. And then, necessarily the crossing point x must be
between xs and xt. The same argument can be used when ws is in the region xtZwi−1. (c4)
Since i − 1 < s < t, both vertices ws, wt are outside region OZwi−1, and we use the same
reasonings as in (c2): The boundary of OZwi−1 has to be crossed twice, and since wswt is
a top edge, first one of Owi−1 or Zwi−1 is crossed, then OZ.

Now, if wswt crosses wi−1Z at a point z, then none of the edges wi−1ws, wi−1wt can
cross the arc xz (placed on wswt), so they cannot cross the arc xZ either. Therefore the
crossing points xs, xt have to be placed before x on OZ. Finally, wi−1 and wt are in different
sides of the region xsxws and the edge wi−1wt cannot cross the arc wsxs (on edge wi−1ws)
or the arc wsx (on the edge wswt), therefore it has to cross OZ between xs and x, and the
order of the crossing points must be xs, xt, x. The same arguments can be used when the
edge wswt crosses Owi−1. ◀

Observe that, as we suppose that D′
i−1 satisfies Invariants 1 and 2, properties (c2),

(c3), (c4) imply that no edge of Dn can cross simultaneously the curve Owi−1 and the
curve wi−1Z.



O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger 35

O
Zx1 xn−1

w1

a1

b1

a2

b2

Figure 35 Step 1: How to draw Ow1, Zw1.

For the construction of the drawings D′
i, we will make a first step (for D′

1), a generic step
(for D′

i with 1 < i < n), and a final step (for D′
n).

Step 1. Let x1, . . . , xn−1 denote the crossing points of S(w1) with OZ. We draw Ow1
following (slightly counterclockwise) the curve OZ until the point x1, then we turn counter-
clockwise following the arc x1w1; see Figure 35. We draw Zw1 analogously, following ZO

until xn−1, then following the arc xn−1w1. If we denote the arcs Ox1, x1w1, Zxn−1, xn−1w1
by a1, b1, a2, b2 respectively, then Ow1 has a first part glued to a1, then a second part glued
to b1, and in the same way, Zw1 consists of two parts glued to a2 and b2 respectively. Clearly,
OZw1 is a well defined region and by Property (a2), there are no vertices in the triangu-
lar region w1x1xn−1, hence region OZw1 does not contain any vertices. That establishes
Invariant 1.

Suppose now that the edge wswt, 1 < s < t ≤ n − 1 crosses the arc a1, and let xs, xt be
the crossings points on OZ of w1ws, w1wt, respectively. Notice that xs can be placed before
or after xt, but x is placed before these two points. Then, by Property (b1), since the bottom
edge is wtws, xt has to be placed before xs, and the order of the crossing points on OZ must
be x, x1, xt, xs. Besides, the arc b1 must start at w1 by outside the triangular region w1wtws

(because it is the first top arc), and it finishes at x1, a point also placed outside w1wtws.
Therefore, the arc b1 cannot cross wswt, the unique edge of the triangle w1wtws not incident
to w1. A symmetric argument can be used to prove that an edge wswt, 1 ≤ s < t < n − 1
crossing a2 cannot cross b2. This establishes Invariant 2 for D′

1.
Step i (2 ≤ i ≤ n − 1). We will draw Owi in two different ways, Way 1 and Way 2,

depending on whether the first top edge of S(wi), edge e1, first crosses Owi−1 or wi−1Z.
When e1 first crosses Owi−1 at a point z′

1, we draw Owi in Way 1, which is the following:
Owi follows the curve Owi−1 (very close to that curve, slightly counterclockwise) until it
reaches the crossing point z′

1, then Owi continues close to z′
1wi until it reaches its endpoint wi;

see Figure 36 left.
When e1 crosses first wi−1Z, by Property (c4) applied to e1 (e1 is some wiwt with

i − 1 < i < t), the edge wi−1wi has to cross OZ before x′
1 (the crossing point of e1 with OZ),

and therefore, the last bottom edge of S(wi), edge e′
k′ , crosses OZ at a point y′

k′ placed
before x′

1 (or e′
k′ coincides with wiwi−1). In this case, we draw Owi in Way 2, which is

the following: Owi follows the curve OZ (very close to that curve, slightly clockwise) until
it reaches the crossing point y′

k′ , then Owi continues close to the arc y′
k′wi on e′

k′ until it
reaches the endpoint wi; see Figure 36 right.

In both ways, we consider the curve Owi as consisting of two arcs a1 and b1. In Way 1,
the arcs of Owi are first a1 glued to Oz′

1 and second b1 glued to z′
1wi. In Way 2, the arcs

are first a1 glued to Oy′
k′ and then b1 glued to y′

k′wi.
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Figure 36 Case 1 and Case 2.

Symmetric constructions are used for drawing Zwi. When ek, the last top edge of S(wi),
first crosses wi−1Z at a point z′

k, Zwi is drawn in Way 1: Zwi consists of the arcs a2 and b2
glued to Zz′

k and z′
kwi respectively. When ek first crosses Owi−1, then OZ at a point x′

k,
the first bottom edge of S(wi), edge e′

1, has to cross OZ at a point y′
1 placed after x′

k. Then,
we build Zwi in Way 2: it consists of an arc a2 (counterclockwise) close to Zy′

1, then an arc
b2 glued to y′

1wi on edge e′
1.

As construction Way 2 can only be used in one of the two curves Owi, Zwi, we only need
to see that Invariants 1, 2 hold in two cases: Case 1, when construction Way 1 is used for
both Owi and wiZ, and Case 2, when Way 2 is used for Owi and Way 1 for wiZ. The case
when Way 2 is used for Zwi and Way 1 for Owi is symmetric to Case 2; see Figure 36.

To prove that Invariants 2 holds for D′
i, we will see that in both Case 1 and Case 2, each

edge of Dn crosses at most one of the arcs a1, b1 and at most one of the arcs a2, b2 of D′
i.

Case 1.-
By construction, the curves Owi and wiZ do not cross each other, the triangular region

OZwi contains the region OZwi−1, and Owi, wiZ cannot properly cross any edge Owl, wlZ,
with l < i, because these last edges are inside OZwi. Notice that the order of the edges
around O and Z are counterclockwise OZ, Ow1, . . . , Owi and ZO, Zwi, . . . , Zw1, respectively.
Moreover, by Property (a2), all the vertices in the triangular region x′

1x′
kwi must be reached

from wi via a bottom edge (where x′
1, . . . , x′

k are the crossing points of the top edges of
S(wi) with curve OZ). On the other hand, all the vertices ws, s ≤ i − 1 are in OZwi−1
(wi−1 on the boundary), and these are precisely the endpoints of the bottom edges of S(wi).
Therefore, the subregion z′

1wi−1z′
kwi must be empty, and OZwi contains all ws with s < i

and does not contain vertices wt, t > i.
To prove the simplicity of D′

i, it is enough to prove that for any edge wswt of Dn, the
drawing formed by Owi, wiZ, wswt is simple. The following subcases 1, 2, 3, 4, 5 prove that
simplicity for edges wswt when s = i, s = i − 1, s < t < i − 1, s < i − 1 < i < t and i < s < t,
respectively.

-1 No edge of S(wi) can cross any of the arcs a1, b1, a2, b2.
For the arcs b1, b2, this is obvious since these arcs are glued to edges of S(wi). Besides, no
top edge of S(wi) can cross arc a1 because this arc follows the curve Owi−1 until precisely
the first crossing point with a top edge of S(wi). By the same reason, top edges of S(wi)
cannot cross a2 either. Finally, by the simplicity of D′

i−1 the bottom edge wiwi−1 cannot
cross a1 or a2, and by Property (c3) applied to an edge wiws with s < i − 1 < i, this
bottom edge of S(wi) cannot cross Owi−1 or Zwi−1, and therefore it cannot cross a1
or a2.

-2 Any edge of S(wi−1) crosses at most one of the arcs a1, b1 and at most one of the arcs
a2, b2.
Since the edges of S(wi−1) cannot cross the arc a1 nor the arc a2, the result follows.
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Figure 37 Left: wswt crosses in the order OZ, b2, a2. Right: It crosses in the order OZ, b1, a1.
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Figure 38 wswt crosses b2 and a2. The edge wtwi−1 cannot be drawn.

-3 Any edge e = wswt, s < t < i − 1 crosses at most one of the arcs a1, b1 and at most one
of the arcs a2, b2.
Suppose that the edge wswt crosses both a2 and b2. By Property (c2), this edge first
crosses OZ at a point x, then reaches a2 at a point z before finishing at wt. Since
b2 = wiz

′
k is outside OZwi−1 the crossing of b2 with wswt must be at a point in the

arc xz, as shown in Figure 37 left. Observe that after crossing b2, which is an arc on the
last top edge of S(wi), the edge wswt enters in OZwi−1 crossing a2, therefore it cannot
cross again the last top edge of S(wi), and thus wt has to be placed inside the region
x′

kZz′
k. A totally symmetric case occurs when the edge wswt crosses both a1 and b1, then

wt must be inside the region Ox′
1z′

1, see Figure 37 right.
Let us analyze only the first case, when e = wswt crosses OZ, b2, a2 in that order, because
the other case is totally symmetric. We are going to prove that the edge wtwi−1 cannot
be drawn without breaking the simplicity. By Property (c2) applied to wswt, the crossing
point of wtwi−1 with OZ, must be placed before x on OZ. On the other hand, if x′ is the
crossing point of wi−1wi with OZ, by Property (c4) applied to ek (the last top edge of
S(wi)), the point x′ has to be placed before x′

k. Then, by Property (c3) applied to wtwi

(t < i − 1 < i), as wt is in region x′Zwi−1, the edge wtwi−1 has to cross OZ after x′.
Therefore, the edge wtwi−1 should cross OZ after x′ and before x, and this is not possible
when x is placed before x′; see Figure 38 (left). Finally, if x is placed after x′, then x′ is
inside the region xZz, wi outside that region, and therefore the arc x′wi has to cross the
arc xz at some point y, see Figure 38 (right). But then, the edge wtwi−1 has to cross
OZ on the arc x′x, entering into the region x′xy, bounded by arcs on the edges wswt

and wiwi−1, that cannot be crossed by wtwi−1 without breaking the simplicity of Dn.
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Figure 39 Left: Case 2 for drawing Owi, Zwi. Right: Edges of S(wi−1) at most cross one
of a1, b1.

-4 Any edge wswt, s < i − 1 < i < t crosses at most one of the arcs a1, b1 or a2, b2.
Observe that ws is inside the triangular region OZwi−1 and wt is outside that region.
Then, by Property (c3), the edge wswt must first cross OZ and it cannot enter the region
OZwi−1 again. Therefore, it cannot cross a1 or a2.

-5 Any edge wswt, i < s < t crosses at most one of the arcs a1, b1 or a2, b2.
First observe that by Property (b2) applied to S(wi), the edge wswt cannot cross both
b1 and b2 (because wiws and wiwt are top edges of that star). Besides, ws and wt are
outside the triangular region OZwi, therefore if edge wswt crosses b1 or b2 it has to cross
also z′

1wi−1 or wi−1z′
k. Finally, according to Property (c4), the edge wswt must enter to

OZwi−1 crossing only one of a1,z′
1wi−1,a2,wi−1z′

k, then leaving through OZ, therefore it
cannot cross both a1, b1 or both a2, b2.

Case 2.-
Again, by the method that the construction is done, the curves Owi and wiZ do not

cross each other and the triangular region OZwi contains the region OZwi−1, hence Owi,
wiZ cannot properly cross any edge Owl, wlZ, with l < i. See Figure 36 right. Moreover,
by Property (a2) all the vertices in region Owi−1z′

kwiy
′
k′ are endpoints of bottom edges of

S(wi), but all these endpoints w1, . . . , wi−1 of the bottom edges of S(wi) must be inside
the region OZwi−1 (wi−1 on the boundary). Therefore, region Owi−1z′

kwiy
′
k′ is empty and

OZwi only contains inside the i − 1 endpoints w1, . . . , wi−1. So, Invariant 1, holds.
Like in Case 1, to prove the simplicity of D′

i we analyze the same five subcases.

-1 No edge of S(wi) can cross any of the arcs a1, b1, a2, b2.
As in Case 1, no edge of S(wi) can cross the arcs b1, b2, no a top edge of that star
can cross a2. Besides, by Property (c3), a bottom edge wiws, s < i − 1 < i, cannot
cross Zwi−1, therefore it cannot cross a2 either. Finally, a top edge cannot cross either
arc a1, (because the crossing points x′

1, . . . , x′
k are after y′

k′), and a bottom edge cannot
cross a1 = Oy′

k′ because y′
k′ is the first crossing point of those edges.

-2 Any edge of S(wi−1) crosses at most one of the arcs a1, b1 or one of a2, b2.
See Figure 39 left. Since they cannot cross a2, we only have to prove that one of this
edges cannot cross both a1 and b1. In the definition of Way 2, we have seen that the
crossing point x′ of wiwi−1 with OZ must be placed before x′

1 and after y′
k′ . Hence, if

xt is the crossing point on OZ of a top edge wiwt, t > i, then x′ is placed between y′
k′

and xt. But then, by Property (c4) applied to wiwt, i − 1 < i < t, the crossing point of
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wi−1wt on OZ must be placed between x′ and xt, so after y′
k′ . Therefore, the top edges

wi−1wt, t > i − 1 of S(wi−1) cannot cross a1.
Finally, suppose that an edge wswi−1, s < i − 1 crosses both a1 and b1. Necessarily,
wswi−1 first crosses OZ at a point x, then b1 at a point y, finishing at wi−1. See Figure 39
right. Then, the vertices wi, ws must be both inside the region xZwi−1. However, the
bottom edge wiws cannot cross a1, (remember that y′

k′ is the first crossing point of those
bottom edges). Therefore, by Property (c3), wiws cannot cross Owi−1 or wi−1Z, and it
has to enter in OZwi−1 crossing through the bottom of the arc y′

k′Z, but then it should
first cross the arc xwi−1 (on wswi−1), contradicting the simplicity of Dn.

-3 Any edge e = wswt, s < t < i crosses at most one of the arcs a1, b1 or one of a2, b2.
A scheme of this situation is shown in Figure 40, where the two blue curves mark the
boundary of regions OZws and OZwt.

O
a1

b1

a2

b2

wi

wi−1

y′k′

z′k

ws

wt

Zx′

Figure 40 Case 2-3.

On the contrary, suppose that wswt crosses both a1 and b1. Necessarily, it first crosses a1
at a point x, next b1 at a point y, then entering in region OZwi−1 by crossing either
Owi−1 or wi−1Z at a point z, until reaching wt. See Figure 41 left. But then, by the
same reasonings as in the previous Case 2-2, the edge wiws cannot be drawn. As above,
ws and wi are in the region xZz, if z is on wi−1Z, or in the region xZwi−1z when z is on
Owi−1. However, wiws cannot cross a1 or Owi−1 or wi−1Z, so it has to enter in OZwi−1
crossing through the arc y′

k′Z, and therefore so it should first cross the arc xz (on wswt),
a contradiction.

O Z
a1

b1

wi

wi−1

y′k′

ws

wt

O Z
a1

a2

b2

wi

wi−1

y′k′

z′k
ws wt

x′kx x′
x

z

Figure 41 Case 2-3: Left, wswt crosses a1, then b1. Right, wswt crosses b2, then a2.

Finally, suppose that wswt crosses a2 and b2. We are exactly in the same situation as
in Case 1-3 (see Figure 38): necessarily the edge first crosses OZ at a point x, next
crosses b2, then reaches a2 at a point z before finishing at wt. And we have seen that a
contradiction is reached in this situation. It does not matter if the edge wswt crosses a1
(like in Figure 41 right) or not.
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O Z
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b1
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wi
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y′k′

z′kws

wt

x xt
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Figure 42 Case 2-4.

-4 Any edge wswt, s < i − 1 < i < t crosses at most one of the arcs a1, b1 or a2, b2.
By Property (c3), an edge wswt with s < i < t cannot cross wi−1Z, hence, it cannot
cross a2. So we have to prove that it cannot cross both a1 and b1. Let us see that in this
situation the edge wswi cannot be drawn without breaking the simplicity of the drawing.
If wswt, s < i − 1 < t crosses both a1 and b1, necessarily it starts crossing OZ through a1,
then crossing b1 at a point y, finishing at vertex wt, see Figure 42. Then, ws has to be
inside the region wiywt. On the other hand, the bottom edge wiws must start from wi

counterclockwise after the arc b2 (on the last top edge of S(wi)), and before the arc b1 (on
the last bottom edge of S(wi)). Therefore, wiws should start outside the region wiywt,
and should finish at ws, placed inside that region. However, wiws cannot cross any of
the arcs of the boundary of wiywt, because they are on edges incident to either wi or ws.

O Z
a1

b1

a2

b2

wi

wi−1

y′k′

z′k

wt

ws

Figure 43 Case 2-5:wswt enters into region Ri crossing either b1 or b2 or a2.

-5 Any edge wswt,i < s < t crosses at most one of the arcs a1, b1 or a2, b2.
Since ws and wt are outside the triangular region OZwi−1, by Property (c4), wswt must
cross first either Owi−1 or wi−1Z, and then OZ. On the other hand, ws and wt are
outside the region R = y′

k′Zz′
kwi, bounded by the four arcs y′

k′Z,a2,b2,b1, so edge wswt

has to enter into that region crossing first either b1 or b2 or a2 and it has to cross either
two or four of those arcs. Suppose that it enters by crossing b1, then it cannot exit by
crossing b2 or a2, because then all the top edges of S(wi) would be crossed, contradicting
Property (b2). So, it has to exit crossing first Owi−1 or wi−1Z, then crossing y′

k′Z. After
crossing y′

k′Z it cannot cross again the boundary Owi−1, wi−1Z, so it cannot cross a2,
and therefore in this case, only b1 and y′

k′Z can be crossed. See Figure 43.
Similarly, if wswt enters in R crossing through b2, then it cannot exit by crossing b1,
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that contradicts the Property (b2), not by crossing a2, because then the boundary
Owi−1, wi−1Z would be crossed twice, so, it has to exit crossing Owi−1 or wi−1Z, then
crossing y′

k′Z, and again after that crossings, the edge cannot enter again in R. Therefore
in this case, only b2 and y′

k′Z are crossed.
Finally, if wswt enters in R by crossing a2, again, it cannot exit by crossing b1, that
contradicts the Property (b2), not by crossing b2, the boundary Owi−1, wi−1Z would be
crossed twice, so, it has to exit crossing y′

k′Z. After crossing y′
k′Z, the edge cannot cross

b1 or b2, because it should cross both, contradicting again Property (b2). Therefore in
this last case, only a2 and y′

k′Z are crossed.

These 5 subcases prove that Invariant 2 holds also for D′
i in Case 2.

O Z
a1

b1

b2

wn

wn−1

y′k′
a2

y′1

Figure 44 Final Step.

Final Step.- After D′
n−1 has been built, we have to add the curves Own, wnZ to D′

n−1,
where wn is the last vertex, the one with only bottom edges in S(wn). That is done as in
Step 1, changing bottom for top, and counterclockwise by clockwise; see Figure 44. Again,
by construction, the curves Own and wnZ do not cross each other, the triangular region
OZwn contains the region OZwn−1, and Own, wnZ cannot properly cross any edge Owl,
wlZ, with l < n. Since the arcs a1, b1 forming the curve Own are build in Way 2, the
reasonings used in Cases 2-1,2-2,2-3, to prove the simplicity for the arcs a1, b1, also work in
this final step, with i = n. By symmetry, the same arguments prove the simplicity for the
arcs a2, b2.

This finishes the proof: The last drawing obtained, D′
n, satisfies Invariants 1, 2. Then, tak-

ing O and Z as vertices, it is the sought drawing Dn+2, the one satisfying the Properties (P1)
and (P2).
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