Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

Oswin Aichholzer \square (0)
Institute of Software Technology, Graz University of Technology, Austria

Alfredo García
Departamento de Métodos Estadísticos and IUMA, Universidad de Zaragoza, Spain

Javier Tejel \square (0)
Departamento de Métodos Estadísticos and IUMA, Universidad de Zaragoza, Spain

Birgit Vogtenhuber \square (0)
Institute of Software Technology, Graz University of Technology, Austria

Alexandra Weinberger \square (0)
Institute of Software Technology, Graz University of Technology, Austria

Abstract

Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). We introduce a special kind of simple drawings that we call generalized twisted drawings. A simple drawing is generalized twisted if there is a point O such that every ray emanating from O crosses every edge of the drawing at most once and there is a ray emanating from O which crosses every edge exactly once.

Via this new class of simple drawings, we show that every simple drawing of the complete graph with n vertices contains $\Omega\left(n^{\frac{1}{2}}\right)$ pairwise disjoint edges and a plane path of length $\Omega\left(\frac{\log n}{\log \log n}\right)$. Both results improve over previously known best lower bounds. On the way we show several structural results about and properties of generalized twisted drawings. We further present different characterizations of generalized twisted drawings, which might be of independent interest. []

2012 ACM Subject Classification Mathematics of computing \rightarrow Combinatorics; Mathematics of computing \rightarrow Graph theory

Keywords and phrases Simple drawings, simple topological graphs, disjoint edges, plane matching, plane path

Funding Oswin Aichholzer: Partially supported by the Austrian Science Fund (FWF): W1230 and by H2020-MSCA-RISE project 734922 - CONNECT. Alfredo García: Supported by H2020-MSCA-RISE project 734922-CONNECT and Gobierno de Aragón project E41-17R. Javier Tejel: Supported by H2020-MSCA-RISE project 734922-CONNECT, Gobierno de Aragón project E41-17R and project PID2019-104129GB-I00 / AEI / 10.13039/501100011033 of the Spanish Ministry of Science and Innovation. Birgit Vogtenhuber: Partially supported by Austrian Science Fund within the collaborative DACH project Arrangements and Drawings as FWF project I $3340-\mathrm{N} 35$ and by H2020-MSCA-RISE project 734922 - CONNECT. Alexandra Weinberger: Supported by the Austrian Science Fund (FWF): W1230 and by H2020-MSCA-RISE project 734922-CONNECT.

[^0]
1 Introduction

Simple drawings are drawings of graphs in the plane such that vertices are distinct points in the plane, edges are Jordan arcs connecting their endpoints, and edges intersect at most once either in a proper crossing or in a shared endpoint. The edges and vertices of a drawing partition the plane (or, more exactly, the plane minus the drawing) into regions, which are called the cells of the drawing. If a simple drawing is plane (that is, crossing-free), then its cells are classically called faces.

In the past decades, there has been significant interest in simple drawings. Questions about plane subdrawings of simple drawings of the complete graph on n vertices, K_{n}, have attracted particularly close attention.

Rafla [20] conjectured that every simple drawing of K_{n} contains a plane Hamiltonian cycle. The conjecture has been shown to hold for $n \leq 9$ [1] as well as for several special classes of simple drawings, like straight-line, monotone, and cylindrical drawings, but remains open in general. If Rafla's conjecture is true, then this would immediately imply that every simple drawing of the complete graph contains a plane perfect matching. However, to-date even the existence of such a matchging is still unknown.

Ruiz-Vargas [22] showed in 2017 that every simple drawing of K_{n} contains $\Omega\left(n^{\frac{1}{2}-\varepsilon}\right)$ pairwise disjoint edges for any $\varepsilon>0$, which improved over a series of previous results: $\Omega\left((\log n)^{\frac{1}{6}}\right)$ in 2003 [17], $\Omega\left(\frac{\log n}{\log \log n}\right)$ in 2005 [18], $\Omega\left((\log n)^{1+\varepsilon}\right)$ in 2009 [10], and $\Omega\left(n^{\frac{1}{3}}\right)$ in 2013 and 2014 [11, 13, 23].

Pach, Solymosi, and Tóth [17] showed that every simple drawing of K_{n} contains a subdrawing of $K_{c \log \frac{1}{8} n}$, for some constant c, that is either convex or twisted ${ }^{1}$ They further showed that every simple drawing of K_{n} contains a plane subdrawing isomorphic to any fixed tree with up to $c \log ^{\frac{1}{6}} n$ vertices, for some constant c. This implies that every simple drawing of K_{n} contains a plane path of length $\Omega\left((\log n)^{\frac{1}{6}}\right)$, which has been the best lower bound known prior to this paper.

Concerning general plane substructures, it follows from a result of Ruiz-Vargas [22] that every simple drawing of K_{n} contains a plane subdrawing with at least $2 n-3$ edges. Further, García, Pilz, and Tejel [14] showed that every maximal plane subdrawing of a simple drawing of K_{n} is biconnected. Note that, in contrast to straight-line drawings, simple drawings of K_{n} in general do not contain triangulations, that is, plane subdrawings where all faces (except at most one) are 3-cycles.

In this paper, we introduce a new family of simple drawings, which we call generalized twisted drawings. The name stems from the fact that one can show that any twisted drawing is weakly isomorphic to a generalized twisted drawing (but not every generalized twisted drawing is weakly isomorphic to a twisted drawing). It follows, that for any n there exists a generalized twisted drawing. Two drawings D and D^{\prime} are weakly isomorphic if there is a bijection between the vertices and edges of D and D^{\prime} such that a pair of edges in D crosses exactly when the corresponding pair of edges in D^{\prime} crosses.

- Definition 1. A simple drawing D is c-monotone (short for circularly monotone) if there is a point O such that any ray emanating from O intersects any edge of D at most once.

[^1]

Figure 1 A generalized twisted drawing of K_{5}. All edges cross the (red) ray r.

A simple drawing D of K_{n} is generalized twisted if there is a point O such that D is c-monotone with respect to O and there exists a ray remanating from O that intersects every edge of D.

We label the vertices of c-monotone drawings v_{1}, \ldots, v_{n} in counterclockwise order around O. In generalized twisted drawings, they are labeled such that the ray r emerges from O between the ray to v_{1} and the one to v_{n}. Figure 1 shows an example of a generalized twisted drawing of K_{5}.

Generalized twisted drawings turn out to have quite surprising structural properties. We show some crossing properties of generalized twisted drawings in Section 2 and with that also prove that they always contain plane Hamiltonian paths (Theorem 3). This result is an essential ingredient for showing that any simple drawing of K_{n} contains $\Omega(\sqrt{n})$ pairwise disjoint edges (Theorem 9 in Section 3 , as well as a plane path of length $\Omega\left(\frac{\log n}{\log \log n}\right)$ (Theorem 10 in Section 4). In Section 5, we present different characterizations of generalized twisted drawings that are of independent interest. We conclude with an outlook on further work and open problems in Section 6 .

2 Twisted Preliminaries

In this section, we show some properties of generalized twisted drawings, which will be used in the following sections.

- Lemma 2. Let D be a generalized twisted drawing of K_{4}, with vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ labeled counterclockwise around O. Then the edges $v_{1} v_{3}$ and $v_{2} v_{4}$ do not cross.

The full proof of Lemma 2 can be found in Appendix A.
Proof Sketch. Assume, for a contradiction, that the edge $v_{1} v_{3}$ crosses the edge $v_{2} v_{4}$. There are (up to strong isomorphism) two possibilities to draw the crossing edges $v_{1} v_{3}$ and $v_{2} v_{4}$, depending on whether $v_{1} v_{3}$ crosses the (straight-line) segment from O to v_{4} or not; cf. Figure 2. In both cases, there is only one way to draw $v_{1} v_{2}$ such that the drawing stays generalized twisted, yielding two regions bounded by all drawn edges $\left(v_{1} v_{3}, v_{2} v_{4}, v_{1} v_{2}\right)$. The vertices v_{3} and v_{4} lie in the same region. It is well-known that every simple drawing of K_{4} has at most one crossing. Thus, the edge $v_{3} v_{4}$ cannot leave this region. However, it is impossible

Figure 2 The two possibilities to draw $v_{1} v_{3}$ and $v_{2} v_{4}$ crossing and generalized twisted.
to draw $v_{3} v_{4}$ without leaving the region such that it is c-monotone and crosses the ray r (see the dotted arrows in Figure 2 for necessary emanating directions of $v_{3} v_{4}$).

Using the crossing property of Lemma 2 it follows directly that generalized twisted drawings always contain plane Hamiltonian paths.

- Theorem 3. Every generalized twisted drawing of K_{n} contains a plane Hamiltonian path.

Proof of Theorem 3. Let D be a generalized twisted drawing of K_{n}. Consider the Hamiltonian path $v_{1}, v_{\left\lceil\frac{n}{2}\right\rceil+1}, v_{2}, v_{\left\lceil\frac{n}{2}\right\rceil+2}, v_{3}, \ldots, v_{\left\lceil\frac{n}{2}\right\rceil-1}, v_{n}, v_{\left\lceil\frac{n}{2}\right\rceil}$ if n is odd or the Hamiltonian path $v_{1}, v_{\left\lceil\frac{n}{2}\right\rceil+1}, v_{2}, v_{\left\lceil\frac{n}{2}\right\rceil+2}, v_{3}, \ldots, v_{n-1}, v_{\left\lceil\frac{n}{2}\right\rceil}, v_{n}$ if n is even. See for example the Hamiltonian path $v_{1}, v_{4}, v_{2}, v_{5}, v_{3}$ in Figure 1 . Take any pair of edges $\left(v_{i}, v_{j}\right)$ and $\left(v_{k}, v_{l}\right)$ of the path, where we can assume without loss of generality that $i<j$ and $k<l$. If the two edges share an endpoint, they are adjacent and do not cross. Otherwise, if they do not share an endpoint, either $i<k<j<l$ or $k<i<l<j$ by definition of the path. In any of the two cases, $\left(v_{i}, v_{j}\right)$ and $\left(v_{k}, v_{l}\right)$ cannot cross by Lemma 2 Therefore, no pair of edges cross, and the Hamiltonian path is plane.

Analogous to the proof of Theorem 3 one can argue that in every generalized twisted drawing of K_{n} with n odd, the Hamiltonian cycle $v_{1}, v_{\left\lceil\frac{n}{2}\right\rceil+1}, v_{2}, v_{\left\lceil\frac{n}{2}\right\rceil+2}, \ldots, v_{\left\lceil\frac{n}{2}\right\rceil-1}, v_{n}, v_{\left\lceil\frac{n}{2}\right\rceil}, v_{1}$ is plane. We strongly conjecture that every generalized twisted drawing of K_{n} contains a plane Hamiltonian cycle, but its structure for even n is still an open problem.

Theorem 3 will be used heavily in the next two sections. Further, the following statement, which has been implicitly shown in [11] and [13], will be used in all remaining sections. For completeness, we include a proof in Appendix B.

- Lemma 4. Let D be a simple drawing of a complete graph containing a subdrawing D^{\prime}, which is a plane drawing of $K_{2, n}$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$ be the sides of the bipartition of D^{\prime}. Let D_{A} be the subdrawing of D induced by the vertices of A. Then D_{A} is weakly isomorphic to a c-monotone drawing. Moreover, if all edges in D_{A} cross the edge $b_{1} b_{2}$, then D_{A} is weakly isomorphic to a generalized twisted drawing.

3 Disjoint Edges in Simple Drawings

In this section, we show that every simple drawing of K_{n} contains at least $\left\lfloor\sqrt{\frac{n}{48}}\right\rfloor$ pairwise disjoint edges, improving the previously known best bound of $\Omega\left(n^{\frac{1}{2}-\varepsilon}\right)$, for any $\varepsilon>0$, by Ruiz-Vargas [22]. In addition to the properties of generalized twisted drawings from Section 2 , we use the following theorems and observations to prove this new lower bound.

- Theorem 5 ([14]). For $n \geq 3$, every maximal plane subdrawing of any simple drawing of K_{n} is biconnected.

The following theorem is a direct consequence of Corollary 5 in [21].

- Theorem 6. Let D be a simple drawing of K_{n} with $n \geq 3$. Let H be a connected plane subdrawing of D containing at least two vertices, and let v be a vertex in $D \backslash H$. Then D contains two edges incident to v that connect v with H and do not cross any edges of H.
- Observation 7. For any $n \geq 3$, the number of edges in a planar graph with n vertices is at most $3 n-6$.

A drawing is outerplane if it is plane, and all vertices lie on the unbounded face of the drawing. A graph is outerplanar if it can be drawn outerplane. Outerplanar graphs have a smaller upper bound on their number of edges than planar graphs.

- Observation 8. For any $n \geq 3$, the number of edges in an outerplanar graph with n vertices is at most $2 n-3$.
- Theorem 9. Every simple drawing of K_{n} contains at least $\left\lfloor\sqrt{\frac{n}{48}}\right\rfloor$ pairwise disjoint edges. Proof. Let D be a simple drawing of K_{n}, and let M be a maximal plane matching of D. If $m:=|M| \geq \sqrt{\frac{n}{48}}$, then Theorem 9 holds. So assume that $|M|<\sqrt{\frac{n}{48}}$. We will show how to find another plane matching, whose size is at least $\left\lfloor\sqrt{\frac{n}{48}}\right\rfloor$.

The overall idea is the following: Let H be a maximal plane subdrawing of D whose vertex set is exactly the vertices matched in M and that contains M. We will find a face f in H that contains much more unmatched vertices inside than matched vertices on its boundary. Then we will show that there exists a subset of the vertices inside that face, which induces a subdrawing of D that is weakly isomorphic to a generalized twisted drawing and contains enough vertices to guarantee the desired size of the plane matching.

We start towards finding the face f. By Theorem $5 H$ is biconnected. Thus, H partitions the plane into faces, where the boundary of each face is a simple cycle. Note that the vertices of H are exactly the vertices that are matched in M, and the vertices inside faces are the vertices that are unmatched in M. Let U be the set of vertices of D that are not matched by any edge of M. We denote the set of vertices of U inside a face f_{i} by $U\left(f_{i}\right)$, the number of vertices in $U\left(f_{i}\right)$ by $u\left(f_{i}\right)$, and the number of vertices on the boundary of the face f_{i} by $\left|f_{i}\right|$.

We next show that there exists a face f of H such that $u(f) \geq \frac{\sqrt{48 n}}{12}|f|$. Assume for a contradiction that for every face f_{i} it holds that

$$
u\left(f_{i}\right)<\frac{\sqrt{48 n}}{12}\left|f_{i}\right|
$$

There are exactly $n-2 m$ unmatched vertices. As every unmatched vertex is in the interior of a face of H (that might be the unbounded face), we can count the unmatched vertices by summing over the number of vertices in each face (including the unbounded face). Thus,

$$
\begin{equation*}
n-2 m \leq \sum_{f_{i}} u\left(f_{i}\right)<\frac{\sqrt{48 n}}{12} \sum_{f_{i}}\left|f_{i}\right| . \tag{1}
\end{equation*}
$$

The number of edges in H is $\frac{1}{2} \sum_{f_{i}}\left|f_{i}\right|$. Since H is plane, we can use Observation 7 to bound the number of edges of H by $3 n^{\prime}-6$, where n^{\prime} is the number of vertices in H. As the vertices of H are exactly the matched vertices, their number is $n^{\prime}=2 m$. Hence,

$$
\sum_{f_{i}}\left|f_{i}\right| \leq 6 \cdot 2 m-12
$$

From $m<\sqrt{\frac{n}{48}}$ it follows that

$$
\begin{equation*}
\sum_{f_{i}}\left|f_{i}\right|<12 \sqrt{\frac{n}{48}}-12 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
n-2 \sqrt{\frac{n}{48}}<n-2 m \tag{3}
\end{equation*}
$$

Putting equations (1) to (3) together we obtain that

$$
n-2 \sqrt{\frac{n}{48}}<\frac{\sqrt{48 n}}{12}\left(12 \sqrt{\frac{n}{48}}-12\right)=n-\sqrt{48 n}
$$

However, this inequality cannot be fulfilled by any $n \geq 0$. Thus, there exists at least one face f_{i} with $u\left(f_{i}\right) \geq \frac{\sqrt{48 n}}{12}\left|f_{i}\right|$. We call that face f. (If there are several such faces, we take an arbitrary one of them and call it f.)

As a next step, we will find two vertices on the boundary of f to which many vertices inside f are connected via edges that do not cross each other or H. From f and the set $U(f)$, we construct a plane subdrawing H^{\prime} as follows; cf. Figure 3 (left). We add the vertices and edges on the boundary of f. Then we iteratively add all the vertices in $U(f)$, where for each added vertex v we also add two edges of D incident to v such that the resulting drawing stays plane. Two such edges exist by Theorem 6 Since the matching M is maximal, any edges between two unmatched vertices must cross at least one edge of M and thus must cross the boundary of f. Hence, no edge in H^{\prime} can connect two vertices of $U(f)$ (as they are unmatched). Consequently, every vertex in $U(f)$ is connected in H^{\prime} to exactly two vertices that both lie on the boundary of f.

Figure 3 Left: The face f in H containing the plane drawing H^{\prime} (blue lines) inside. Right: We can obtain an outerplane drawing from H^{\prime} by interpreting bundles of edge pairs incident to the same black vertices as plane edges.

We consider the edges in H^{\prime} that connect a vertex in $U(f)$ as a pair of edges. Every edge in such a pair is contained in exactly one pair, since it is incident to exactly one unmatched vertex. Thus, we can see every such pair of edges as one long edge incident to two vertices
on the boundary of f. If several of those long edges have the same endpoints, we call them a bundle of edges; see Figure 3 (right).

From the long edges, we can define a graph G^{\prime} as follows. The vertices of G^{\prime} are the vertices of D that lie on the boundary of f. Two vertices u and v are connected in G^{\prime} if there is at least one long edge in H^{\prime} that connects them. By the definition of long edges, G^{\prime} is outerplanar (as can be observed in Figure 3 (right)). Note that every unmatched vertex in $U(f)$ defines a long edge, so the number of long edges is $u(f) \geq \frac{\sqrt{48 n}}{12}|f|$. From Observation 8 , it follows that G^{\prime} has at most $2|f|-3$ edges. As a consequence, there is a pair of vertices on the boundary of f such that the number of long edges in its bundle is at least

$$
\frac{1}{(2|f|-3)} \frac{\sqrt{48 n}}{12}|f|>\frac{\sqrt{48 n}}{24}
$$

This implies that there are two vertices, say v and w, to which more than $\frac{\sqrt{48 n}}{24}$ vertices inside f have two plane incident edges. We call the set of vertices in $U(f)$ that have plane edges to both vertices v and w the set $U_{v w}$. This set is marked in Figure 4 (left). We denote the subdrawing of D induced by $U_{v w}$ by $D_{v w}$; see Figure 4 (right).

Figure 4 The subdrawing D^{\prime} induced by $U_{v w}$ and the edges in $D_{v w}$. Left: The set $U_{v w}$. Right: The edges adjacent to the leftmost vertex, v_{1}, are drawn (in red).

We show that all edges between vertices in $U_{v w}$ cross the edge $v w$. Let x and y be two vertices of $D_{v w}$. Let R_{1} be the region bounded by the edges $x v, v y, y w$, and $w x$ that lies inside the face f; see Figure 5 We show that $x y$ and $v w$ lie completely outside R_{1}. The edge $x y$ has to lie either completely inside or completely outside R_{1}, because it is adjacent to all edges on the boundary of R_{1}. As M is maximal and the edge $x y$ connects two unmatched vertices, it has to cross at least one matching edge. Thus, $x y$ has to lie completely outside R_{1}. (There can be no matching edges in R_{1}, as R_{1} is contained inside the face f.) As H is a maximal plane subdrawing, $v w$ cannot lie inside the face f and thus has to be outside R_{1}. Since both edges $v w$ and $x y$ lie completely outside R_{1} and the vertices along the boundary of R_{1} are sorted $v x w y$, the two edges have to cross. Thus, all edges of $D_{v w}$ cross the edge $v w$.

Since the edges from vertices in $U_{v w}$ to v and w are plane, it follows from Lemma 4 that $D_{v w}$ is weakly isomorphic to a generalized twisted drawing. Thus, $D_{v w}$ contains at least $\left\lfloor\frac{1}{2} \frac{\sqrt{48 n}}{24}\right\rfloor$ pairwise disjoint edges by Theorem 3. Hence, D contains at least $\left\lfloor\sqrt{\frac{n}{48}}\right\rfloor$ pairwise disjoint edges.

Figure 5 The edge $x y$ has to cross the edge $v w$.

4 Plane Paths in Simple Drawings

In the previous section, we used generalized twisted drawings to improve the lower bound on the number of disjoint edges in simple drawings of K_{n}. In this section, we show that generalized twisted drawings are also helpful to improve the lower bound on the length of the longest path in such drawings, where the length of a path is the number of its edges, to $\Omega\left(\frac{\log n}{\log \log n}\right)$. This improves the previously known best bound of $\Omega\left((\log n)^{\frac{1}{6}}\right)$, which follows from a result of Pach, Solymosi, and Tóth [17].

- Theorem 10. Every simple drawing D of K_{n} contains a plane path of length $\Omega\left(\frac{\log n}{\log \log n}\right)$.

To prove the new lower bound, we first show that all c-monotone drawings on n vertices contain either a generalized twisted drawing on \sqrt{n} vertices or a drawing weakly isomorphic to an x-monotone drawing on \sqrt{n} vertices. We know that drawings weakly isomorphic to generalized twisted drawings or x-monotone drawings contain plane Hamiltonian paths (by Theorem 3 and Observation 11 below). We conclude that c-monotone drawings contain plane paths of the desired size. We then show that every simple drawing of the complete graph contains either a c-monotone drawing or a plane d-ary tree. With easy observations about the length of the longest path in d-ary trees and by putting all results together, we obtain that every simple drawing D of K_{n} contains a plane path of length $\Omega\left(\frac{\log n}{\log \log n}\right)$.

4.1 Plane Paths in C-Monotone Drawings

A simple drawing is x-monotone if any vertical line intersects any edge of the drawing at most once (see Figure 6b). This family of drawings has been studied extensively in the literature (see for example [2, 5, 7, 12, 19]). By definition, c-monotone drawings in which there exists a ray emanating from O, which crosses all edges of the drawing, are generalized twisted. In contrast, consider a c-monotone drawing D such that there exists a ray r emanating from O that crosses no edge of D. Then it is easy to see that D is strongly isomorphic to an x-monotone drawing. (A c-monotone drawing on the sphere can be cut along the ray r and the result drawn on the plane such that all rays are vertical lines and the ray r is to the very left of the drawing.) Figure 6a shows a c-monotone drawing D of K_{5} where no edge crosses the ray r, and Figure 6 b shows an x-monotone drawing of K_{5} strongly isomorphic to D. We will call simple drawings that are strongly isomorphic to x-monotone drawings monotone drawings. In particular, any c-monotone drawing for which there exists a ray emanating from O that crosses no edge of the drawing is monotone.

It is well-known that any x-monotone drawing of K_{n} contains a plane Hamiltonian path. For instance, assuming that the vertices are ordered by increasing x-coordinates, the set of edges $v_{1} v_{2}, v_{2} v_{3} \ldots, v_{n-1} v_{n}$ form a plane Hamiltonian path.

(a) A c-monotone drawing D of K_{5} such that the ray r crosses no edge of D.

(b) An x-monotone drawing of K_{5} strongly isomorphic to D of Figure 6a

Figure 6 Two strongly isomorphic monotone drawings of K_{5}.

- Observation 11. Every monotone drawing of K_{n} contains a plane Hamiltonian path.

We will show that c-monotone drawings contain plane paths of size \sqrt{n}, by showing that any c-monotone drawing of K_{n} contains a subdrawing of $K_{\sqrt{n}}$ that is either generalized twisted or monotone. To do so, we will use Dilworth's Theorem on chains and anti-chains in partially ordered sets. A chain is a subset of a partially ordered set such that any two distinct elements are comparable. An anti-chain is a subset of a partially ordered set such that any two distinct elements are incomparable.

- Theorem 12 (Dilworth's Theorem, [9]). Let P be a partially ordered set of at least $(s-1)(t-1)+1$ elements. Then P contains a chain of size s or an antichain of size t.
- Theorem 13. Let s, t be two integers, $1 \leq s, t \leq n$, such that $(s-1)(t-1)+1 \leq n$. Let D be a c-monotone drawing of K_{n}. Then D contains either a generalized twisted drawing of K_{s} or a monotone drawing of K_{t} as subdrawing. In particular, if $s=t=\lceil\sqrt{n}, D$ contains a complete subgraph K_{s} whose induced drawing is either generalized twisted or monotone.

The full proof of Theorem 13 can be found in Appendix C
Proof Sketch. Without loss of generality we may assume that the vertices of D appear counterclockwise around O in the order $v_{1}, v_{2}, \ldots, v_{n}$. Let r be a ray emanating from O, keeping v_{1} and v_{n} on different sides. We define an order, \preceq, in this set of vertices as follows: $v_{i} \preceq v_{j}$ if and only if either $i=j$ or $i<j$ and the edge $\left(v_{i}, v_{j}\right)$ crosses r.

We show that \preceq is a partial order. The relation is clearly reflexive and antisymmetric. Besides, if $v_{i} \preceq v_{j}$ and $v_{j} \preceq v_{k}$, then $v_{i} \preceq v_{k}$, because $i<j$ and $j<k$ imply $i<k$, and if $v_{i} v_{j}$ and $v_{j} v_{k}$ cross r, then $v_{i} v_{k}$ also crosses r (see Figure 7). Hence, the relation is transitive.

In this partial order \preceq, a chain consists of a subset $v_{i_{1}}, \ldots, v_{i_{s-1}}$ of pairwise comparable vertices, that is, a subset of vertices such that their induced subdrawing is generalized twisted (all edges cross r). An antichain, $v_{j_{1}}, \ldots, v_{j_{t-1}}$, consists of a subset of pairwise incomparable vertices, that is, a subset of vertices such that their induced subdrawing is monotone (no edge crosses r). Therefore, the first part of the theorem follows from applying Theorem 12 to the set of vertices of D and the partial order \preceq.

Finally, observe that if $s=t \leq\lceil\sqrt{n}$, then $(s-1)(t-1)+1 \leq n$. Thus, D contains a complete subgraph $K_{\lceil\sqrt{n}\rceil}$ whose induced subdrawing is either generalized twisted or monotone.

Figure 7 If edges $v_{i} v_{j}$ and $v_{j} v_{k}$ cross r in a c-monotone drawing, then $v_{i} v_{k}$ must also cross r.

Combining Theorems 3 and 13 with Observation 11, we obtain the following theorem.

- Theorem 14. Every c-monotone drawing of K_{n} contains a plane path of length $\Omega(\sqrt{n})$.

4.2 Plane Paths in Simple Drawings

To show that any simple drawing of K_{n} contains a plane path of length $\Omega\left(\frac{\log n}{\log \log n}\right)$, we will use d-ary trees. A d-ary tree is a rooted tree in which no vertex has more than d children. It is well-known that the height of a d-ary tree on n vertices is $\Omega\left(\frac{\log n}{\log d}\right)$.

Proof of Theorem 10. Let v be a vertex of D and let $S(v)$ be the star centered at v, that is, the set of edges of D incident to $v . S(v)$ can be extended to a maximal plane subdrawing H that must be biconnected by Theorem 5 See Figure 8 for a depiction of $S(v)$ and H.

Figure 8 A simple drawing of K_{7}. The red edges show the star $S(v)$, the red and blue edges together form a maximal plane subdrawing H. Dashed edges are edges of K_{7} that are not in H.

Assume first that there is a vertex w in $H \backslash v$ that has degree at least $(\log n)^{2}$ in H. Let $U_{v w}$ be the set of vertices neighboured in H to both, v and w. Note that $\left|U_{v w}\right| \geq(\log n)^{2}$. The subdrawing H^{\prime} of H consisting of the vertices in $U_{v w}$, the vertices v, and w, and the edges from v to vertices in $U_{v w}$, and from w to vertices in $U_{v w}$ is a plane drawing of $K_{2,\left|U_{v w}\right|}$. From Lemma 4 it follows that the subdrawing of D induced by $U_{v w}$ is weakly isomorphic to a c-monotone drawing. Therefore, by Theorem 14, the subdrawing induced by $U_{v w}$ contains a plane path of length $\Omega\left(\sqrt{\left|U_{v w}\right|}\right)=\Omega(\log n)$.

Assume now that the maximum degree in $H \backslash v$ is less than $(\log n)^{2}$. Since H is biconnected, $H \backslash v$ contains a plane tree T of order $n-1$ whose maximum degree is at most $(\log n)^{2}$. Thus,
considering that T is rooted, the diameter of T is at least $\Omega\left(\frac{\log n}{\log \log n}\right)$. Therefore, since T is plane, it contains a plane path of length at least $\Omega\left(\frac{\log n}{\log \log n}\right)$ and the theorem follows.

5 Characterizing Generalized Twisted Drawings

In previous sections, we have seen how generalized twisted drawings were used to make progress on open problems of simple drawings. In addition to this, generalized twisted drawings are also interesting in their own right and have some quite surprising structural properties. Despite the fact that research on generalized twisted drawings is rather recent and still ongoing, there are already several interesting characteristics and structural results. Some of them will be presented in this section.

One characterization involves curves crossing every edge once. From the definition of generalized twisted drawing (see Figure 1], there always exists a simple curve that crosses all edges of the drawing exactly once (for instance, a curve that starts at O and follows r until it reaches a point Z on r in the unbounded cell). In Theorem 15 we show that the converse is also true. That is, every simple drawing D of K_{n} in which we can add a simple curve that crosses every edge of D exactly once is weakly isomorphic to a generalized twisted drawing.

Another characterization is based on what we call antipodal vi-cells. For any three vertices in a simple drawing D of K_{n}, the three edges connecting them form a simple cycle which we call a triangle. Every such triangle partitions the plane (or sphere) into two disjoint regions which are the sides of the triangle (in the plane a bounded and an unbounded one). Two cells of D are called antipodal if for each triangle of D, they lie on different sides. Further, we call a cell with a vertex on its boundary a vertex-incident-cell or, for short, a vi-cell.

By definition, every generalized twisted drawing D contains two antipodal cells, namely, the cell containing the starting point of the ray r and the unbounded cell. This follows from the fact that the ray r crosses every edge exactly once. Hence, r crosses the boundary of any triangle exactly three times, so the cells containing the "endpoints" of r must be on different sides of the triangle.

Figure 9 Two weakly isomorphic drawings of K_{6} that are not weakly isomorphic to any generalized twisted drawing. Antipodal cells are marked in blue.

It turns out that the converse (existence of two antipodal cells implies weakly isomorphic to generalized twisted) is not true. Figure 9 (left) shows a drawing of K_{6} that contains two antipodal cells, but no antipodal vi-cells. From Theorem 15 bellow it will follow that such drawings cannot be weakly isomorphic to a generalized twisted drawing. However, we observed that for all generalized twisted drawings of K_{n} with $n \leq 6$, both, the cell containing
the startpoint of the ray r and the unbounded cell, are vi-cells. Figure 10 shows all (up to strong isomorphism) simple drawings of K_{6} that are weakly isomorphic to generalized twisted drawings. We show that this is true in general. More than that, we show in Theorem 16 that every drawing of K_{n} that is weakly isomorphic to a generalized twisted drawing contains a pair of antipodal vi-cells. In the other direction, we show in Theorem 15 that every simple drawing containing a pair of antipodal vi-cells is weakly isomorphic to a generalized twisted drawing.

Figure 10 All different generalized twisted drawings of K_{6} (up to weak isomorphism). The rightmost drawing is twisted.

The final characterization is based on the extension of a given drawing of the complete graph to a drawing containing a spanning, plane bipartite graph that has all vertices of the original drawing on one side of the bipartition. From the definition of generalized twisted drawings, it follows that any genereralized twisted drawing D of K_{n} can be extended to a simple drawing D^{\prime} of K_{n+2} including new vertices O and Z such that D^{\prime} contains a plane drawing of a spanning bipartite graph. One side of the bipartition consists of all vertices in D and the other side of the bipartition consists of the new vertices O and Z. Moreover, the edge $O Z$ crosses all edges of D. One way to add the new vertices and edges incident to them is to draw (1) the vertex O at point O,(2) the vertex Z in the unbounded cell on the ray r, (3) the edge $O Z$ straight-line (along the ray r), (4) edges from O to the vertices of D straight-line (along the inner segment of the rays crossing through the vertices), and (5) edges from Z to the vertices of D first far away in a curve and the final part straight-line (along the outer segment of the rays crossing through the vertices). The converse, that every drawing that can be extended like this is weakly isomorphic to a generalized twisted drawing, has already been shown in Lemma 4

We show the following characterizations.

- Theorem 15 (Characterizations of generalized twisted drawings). Let D be a simple drawing of K_{n}. Then, the following properties are equivalent.
Property $1 D$ is weakly isomorphic to a generalized twisted drawing.
Property $2 D$ contains two antipodal vi-cells.
Property $3 D$ can be extended by a simple curve c such that c crosses every edge of D exactly once.
Property $4 D$ can be extended by two vertices, O and Z, and edges incident to the new vertices such that D together with the new vertices and edges is a simple drawing of K_{n+2}, the edge $O Z$ crosses every edge of D, and no edge incident to O crosses any edge incident to Z.

To prove Theorem 15 , we will first show that Property 1 implies Property 2 (Theorem 16 . We next show that Property 2 implies Property 3 (Theorem 17). Then, we show that Property 3 implies Property 4 (Theorem 18). By Lemma 4 Property 4 implies Property 1 Thus, all properties are equivalent. In a full version of this work, we will extend the theorem to show that also strong isomorphism to a generalized twisted drawing is equivalent to the properties of Theorem 15 . We show this by proving that any simple drawing of K_{n} fulfilling Property 4 is strongly isomorphic to a generalized twisted drawing. However, the reasoning for strong isomorphism is quite lengthy and would exceed the space constraints of this submission.

In the remaining parts of this section, we will show sketches of the proofs of the above mentioned theorems. The full proofs can be found in the Appendix (Theorem 16 in Appendix D , Theorem 17 in Appendix E and Theorem 18 in Appendix F.

- Theorem 16. Every simple drawing of K_{n} which is weakly isomorphic to a generalized twisted drawing of K_{n}, with $n \geq 3$, contains a pair of antipodal vi-cells. In generalized twisted drawings the cell containing O and the unbounded cell form such a pair.

Figure 11 Left: If there is a vertex v_{l} in R, it cannot be connected to v_{i} without crossing r before x. Right: If the edge $v_{j} v_{k}$ crosses the segment $\overline{O v_{i}}$ and the edge $v_{j^{\prime}} v_{k^{\prime}}$ crosses the segment $\overline{O v_{i+1}}$, then there is no way of connecting v_{i+1} and $v_{j^{\prime}}$.

Proof sketch. We first show that every generalized twisted drawing D of K_{n}, with $n \geq 3$, contains a pair of antipodal vi-cells, where O lies in a cell of that pair. Let c be the segment $O Z$, where Z is a point on r in the unbounded cell. By definition of generalized twisted, c crosses every edge of D once, so O and Z are in two antipodal cells C_{1} and C_{2}, respectively.

To prove that C_{1} is a vi-cell, we use the following properties. First, if we take the first edge $v_{i} v_{k}$ that crosses c (as seen from O) at point x, then we can prove that $k=i+1$ and the bounded region R defined by the edge $v_{i} v_{i+1}$ and the segments $\overline{O v_{i}}$ and $\overline{O v_{i+1}}$ is empty (see Figure 11, left). Second, using this empty region we can prove that D cannot contain simultaneously an edge $v_{j} v_{k}$ crossing $\overline{O v_{i}}$ and another edge $v_{j^{\prime}} v_{k^{\prime}}$ crossing $\overline{O v_{i+1}}$ (see Figure 11 right). Therefore, at least one of the segments $\overline{O v_{i}}$ and $\overline{O v_{i+1}}$ is uncrossed, and O necessarily lies in a vi-cell (with either v_{i} or v_{i+1} on the boundary). Finally, arguing on the last edge crossing c and the unbounded cell, we can show that Z also lies in a vi-cell.

To show that also every drawing which is weakly isomorphic to a generalized twisted drawing contains a pair of antipodal vi-cells, we use Gioan's Theorem [6, 15]. By Gioan's Theorem, any two weakly isomorphic drawings of K_{n} can be transformed into each other with a sequence of triangle-flips and at most one reflection of the drawing. A triangle-flip is

Figure 12 Building a curve such that it crosses every edge of D once and its endpoints do not lie on any edges or vertices of D.

Figure 13 Decreasing the number of crossings between c and the edge $w_{2} w_{3}$.
an operation which transforms a triangular cell \triangle that has no vertex on its boundary by moving one of its edges across the intersection of the two other edges of \triangle. We show that if a drawing D_{1} contains two antipodal vi-cells, then after performing a triangle flip on D_{1}, the resulting drawing D_{2} still has two antipodal vi-cells. The main argument is that triangle-flips are only applied to cells without vertices on their boundary, and thus the antipodality of the vi-cells cannot change.

- Theorem 17. In any simple drawing D of K_{n} that contains a pair of antipodal vi-cells, it is possible to draw a curve c that crosses every edge of D exactly once.

Proof sketch. Let $\left(C_{1}, C_{2}\right)$ be a pair of antipodal vi-cells of D. Let v_{1} be a vertex on the boundary of C_{1} and v_{2} a vertex on the boundary of C_{2}. We construct the curve as follows: First, we draw a simple curve c from C_{1} to C_{2} such that (1) it emanates from v_{1} in C_{1} and ends in C_{2} very close to v_{2}, (2) does not cross any edge incident to v_{1}, (3) only intersects edges of D in proper crossings, and (4) has the minimum number of crossings with edges of D among all curves that fulfill (1), (2) and (3). This curve c always exists since $S\left(v_{1}\right)$ is a plane drawing that has only a face in which both v_{1} and v_{2} lie (see Figure 12 left).

Then, we prove that crosses every edge $w_{2} w_{3}$ in D that is not incident to v_{1} exactly once. On the one hand, since c connects two antipodal cells, the endpoints of c have to be on two different sides of the triangle T formed by v_{1}, w_{2} and w_{3}. Thus, c has to cross $w_{2} w_{3}$ an odd number of times because it does not cross $S\left(v_{1}\right)$ and must cross the boundary of T an odd number of times. On the other hand, if c crosses $w_{2} w_{3}$ at least three times, then we can prove that c can be redrawn as shown in Figure 13, decreasing the number of crossings,

Figure 14 Top and bottom edges. For simplicity, the curve $O Z$ is drawn as a horizontal line. Left: A top edge $w u$. Centre: A bottom edge $w u$. Right: The (black) top and (blue) bottom edges of $S(w)$.
which contradicts (4). Therefore, c crosses every edge $w_{2} w_{3}$ at most twice and, consequently, only once.

Finally, we change the end of c from v_{1} to a point in C_{1} in the following way (see Figure 12 , right). From some point of c sufficiently close to v_{1} and inside C_{1}, we reroute c by going around v_{1} such that only the edges incident to v_{1} are crossed, and end at a point in C_{1}.

- Theorem 18. Let D be a simple drawing of K_{n} in which it is possible to draw a simple curve c that crosses every edge of D exactly once. Then, D can be extended by two vertices O and Z (at the position of the endpoints of the curve), and edges incident to those vertices such that the obtained drawing is a simple drawing of K_{n+2}, no edge incident to O crosses any edge incident to Z, and all edges in D cross the edge $O Z$.

Proof sketch. Let $c=O Z$ be the curve crossing every edge of D once, oriented from O to Z. Let $w u$ be an edge of D, oriented from w to u, crossing $O Z$ at a point x. We say that $w u$ is a top (respectively bottom) edge if the clockwise order of w, Z, u and O around x is w, Z, u, O (respectively $w, O, u, Z)$. See Figure 14 With these definitions, we can prove that there is a vertex w_{1} in D such that all the oriented edges emanating from w_{1} are top in relation to c. Thus, by removing w_{1} and all its incident edges from D, there is a vertex w_{2} in the new drawing such that all its incident edges are top, and so on. As a consequence, there is a natural order $w_{1}, w_{2}, \ldots, w_{n}$ of the vertices of D such that for any vertex w_{i}, the edges $w_{i} w_{j}$ with $j>i$ are top, and the edges $w_{i} w_{j}$ with $j<i$ are bottom.

Given the natural order $w_{1}, w_{2}, \ldots, w_{n}$, our construction of the extended drawing is as follows. Let D_{0}^{\prime} be the simple drawing formed by the vertices and edges of D, O and Z as new vertices, and c as the edge connecting O and Z. From D_{0}^{\prime}, we build new drawings $D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{n}^{\prime}$, by adding in step i the edges $w_{i} O$ and $w_{i} Z$. These two edges are added very close to some edges in D_{i-1}^{\prime}. Figure 15 illustrates how these two edges are added in each step.

In the first step, the edge $O w_{1}$ follows the curve $O Z$ until the crossing point between $O Z$ and the first top edge $w_{1} u$ emanating from w_{1}, and then it follows this top edge until reaching w_{1}. The edge $Z w_{1}$ is built in an analogous way, taking the last top edge emanating from w_{1}. See Figure 15 top-left. For $i=2, \ldots, n-1$, in step i we do different constructions depending on whether the first and last top edges of $S\left(w_{i}\right)$ cross the edges $w_{i-1} O$ and $w_{i-1} Z$. If the first top edge $w_{i} u_{1}$ crosses $w_{i-1} O$ at a point x and the last top edge $w_{i} u_{k}$ crosses $w_{i-1} Z$ at a point y (see Figure 15 top-right), then $O w_{i}$ follows $O w_{i-1}$ until x, and then it follows $u_{1} w_{i}$ until w_{i}. The edge $Z w_{i}$ is built following $Z w_{i-1}$ until y and then following $u_{k} w_{i}$. On the contrary, if the first and the last top edges of $S\left(w_{i}\right)$ only cross one of $w_{i-1} O$

Figure 15 Building the (dashed) edges $w_{i} O$ and $w_{i} Z$.
and $w_{i-1} Z$, say $w_{i-1} Z$ (see Figure 15 bottom-left), then $O w_{i}$ follows $O Z$ until the crossing point between $O Z$ and the last bottom edge of $S\left(w_{i}\right)$, and then it follows this bottom edge until w_{i}. The edge $Z w_{i}$ is built as in the first step, using the last top edge of $S\left(w_{i}\right)$. In the last step, we build $O w_{n}$ and $Z w_{n}$ as in the first step, but using the first and the last bottom edges of $S\left(w_{n}\right)$ instead of the first and last top edges. See Figure 15 bottom-right.

By a detailed analysis of cases, we can prove for $i=1, \ldots, n$ that D_{i}^{\prime} is a simple drawing such that no edge incident to O crosses any edge incident to Z. Therefore, D_{n}^{\prime} is the drawing of K_{n+2} satisfying the required properties.

6 Conclusion and Outlook

Generalized twisted drawings have a suprisingly rich structure and many useful properties. We showed several of those properties in Section 2 and different characterizations of generalized twisted drawings in Section 5 . We have proven in Section 2 that every generalized twisted drawing on an odd number of vertices contains a plane Hamiltonian cycle, and therefore one especially interesting open question is the following.

- Conjecture 19. Every generalized twisted drawing of K_{n} contains a plane Hamiltonian cycle.

Using properties of generalized twisted drawings has turned out to be helpful for investigating simple drawings in general. We first improved the lower bound on the number of disjoint edges in simple drawings of K_{n} to $\Omega(\sqrt{n})$ (Section 3). Then generalized twisted drawings played the central role to improve the lower bound on the length of plane paths contained in every simple drawing of K_{n} to $\Omega\left(\frac{\log n}{\log \log n}\right)$ (Section 4 .

On the other hand, from Theorem 17 it immediately follows that no drawing that is weakly isomorphic to a generalized twisted drawing can contain three interior-disjoint triangles (since the endpoints of the curve crossing every edge once must be on opposite sides of every triangle, the maximum number of interior-disjoint triangles is two). Up to strong
isomorphism, there are only two simple drawings of K_{4}. The plane drawing contains three interior-disjoint triangles. Thus, (up to strong isomorphism) the only drawing of K_{4} that is weakly isomorphic to a generalized twisted drawing, is the drawing with a crossing. Hence, in every generalized twisted drawing all subdrawings induced by 4 vertices contain a crossing and thus every generalized twisted drawing is crossing maximal. Up to strong isomorphism, there are two crossing maximal drawings of K_{5} : the convex drawing of K_{5} and the twisted drawing of K_{5}. Since the convex drawing contains three interior-disjoint triangles, the only (up to strong isomorphism) drawing of K_{5} that is weakly isomorphic to a generalized twisted drawing is the twisted drawing of K_{5} (that is drawn generalized twisted in Figure 1).

It is part of our ongoing work to show that for $n \geq 7$, a drawing is weakly isomorphic to a generalized twisted drawing if and only if all subdrawings induced by five vertices are weakly isomorphic to the twisted K_{5}. Interestingly, the $n \geq 7$ is necessary as there is a drawing with 6 vertices that contains only twisted drawings of K_{5} but is not weakly isomorphic to a generalized twisted drawing (see the drawings in Figure 9). There are (up to strong isomorphism) three more simple drawings of K_{6} that consist of only twisted drawings of K_{5} and they are all weakly isomorphic to generalized twisted drawings (see Figure 10 .

__ References

1 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Thomas Hackl, Jürgen Pammer, Alexander Pilz, Pedro Ramos, Gelasio Salazar, and Birgit Vogtenhuber. All good drawings of small complete graphs. In Proc. $31^{\text {st }}$ European Workshop on Computational Geometry EuroCG '15, pages 57-60, Ljubljana, Slovenia, 2015. URL: http: //www.ist.tu-graz.ac.at/files/publications/geometry/aafhpprsv-agdsc-15.pdf
2 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Pedro Ramos, and Gelasio Salazar. Shellable drawings and the cylindrical crossing number of K_{n}. Discrete \mathcal{E} Computational Geometry, 52(4):743-753, 2014. doi:10.1007/s00454-014-9635-0.
3 Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger. Plane matchings in simple drawings of complete graphs. In Abstracts of the Computational Geometry: Young Researchers Forum, pages 6-10, 2021. URL: https://cse.buffalo.edu/ socg21/files/YRF-Booklet.pdf\#page=6
4 Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger. Plane paths in simple drawings of complete graphs. In Abstracts of XIX Encuentros de Geometría Computacional, page 4, 2021. URL: https://quantum-explore.com/wp-content/ uploads/2021/06/Actas_egc21.pdf\#page=11.
5 Oswin Aichholzer, Thomas Hackl, Alexander Pilz, Gelasio Salazar, and Birgit Vogtenhuber. Deciding monotonicity of good drawings of the complete graph. In Abstracts XVI Spanish Meeting on Computational Geometry (XVI EGC, pages 33-36, 2015.
6 Alan Arroyo, Dan McQuillan, R. Bruce Ritcher, and Gelasio Salazar. Drawings of K_{n} with the same rotation scheme are the same up to Reidemeister moves (Gioan's theorem). Australasian Journal of Combinatorics, 67:131-144, 2017.
7 Martin Balko, Radoslav Fulek, and Jan Kynčl. Crossing numbers and combinatorial characterization of monotone drawings of K_{n}. Discrete Comput. Geom., 53(1):107-143, 2015. doi:10.1007/s00454-014-9644-z.
8 Morton Brown. A proof of the generalized Schoenflies theorem. Bulletin of the American Mathematical Society, 66(2):74-76, 1960. doi:10.1090/S0002-9904-1960-10400-4
9 Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1):161-166, 1950. doi:10.2307/1969503
10 Jacob Fox and Benny Sudakov. Density theorems for bipartite graphs and related ramsey-type results. Combinatorica, 29(2):153-196, 2009. doi:10.1007/s00493-009-2475-5

11 Radoslav Fulek. Estimating the number of disjoint edges in simple topological graphs via cylindrical drawings. SIAM Journal on Discrete Mathematics, 28(1):116-121, 2014. doi: 10.1137/130925554

12 Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Hanani-Tutte, monotone drawings, and level-planarity. In Thirty essays on geometric graph theory, pages 263-287. Springer, New York, NY, 2013. doi:10.1007/978-1-4614-0110-0_14
13 Radoslav Fulek and Andres J. Ruiz-Vargas. Topological graphs: empty triangles and disjoint matchings. In Proceedings of the 29th Annual Symposium on Computational Geometry (SoCG'13), pages 259-266, 2013. doi:10.1145/2462356.2462394.
14 Alfredo García, Alexander Pilz, and Javier Tejel. On plane subgraphs of complete topological drawings. ARS MATHEMATICA CONTEMPORANEA, 20:69-87, 2021. doi:10.26493/ 1855-3974.2226.e93.
15 Emeric Gioan. Complete graph drawings up to triangle mutations. In Graph-Theoretic Concepts in Computer Science. WG 2005. Lecture Notes in Computer Science, vol 3787, pages 139-150. Springer, 2005. doi:10.1007/11604686_13
16 Barry Mazur. On embeddings of spheres. Bulletin of the American Mathematical Society, 65:59-65, 1959. doi:10.1090/S0002-9904-1959-10274-3.
17 János Pach, József Solymosi, and Gézak Tóth. Unavoidable configurations in complete topological graphs. Discrete Comput Geometry, 30:311-320, 2003. doi:10.1007/s00454-003-0012-9
18 János Pach and Géza Tóth. Disjoint edges in topological graphs. In Proceedings of the 2003 Indonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory (IJC$C G G T{ }^{\prime} 03$), volume 3330, pages 133-140, 2005. doi:10.1007/978-3-540-30540-8_15
19 János Pach and Géza Tóth. Monotone crossing number. In Graph Drawing, pages 278-289. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-25878-7_27
20 Nabil H. Rafla. The good drawings D_{n} of the complete graph K_{n}. PhD thesis, McGill University, Montreal, 1988. URL: https://escholarship.mcgill.ca/concern/file_sets/cv43nx65m? locale=en.
21 Andres J. Ruiz-Vargas. Empty triangles in complete topological graphs. In Discrete Computational Geometry, volume 53, pages 703-712, 2015. doi:10.1007/s00454-015-9671-4.
22 Andres J. Ruiz-Vargas. Many disjoint edges in topological graphs. Computational Geometry, 62:1-13, 2017. doi:10.1016/j.comgeo.2016.11.003.
23 Andrew Suk. Disjoint edges in complete topological graphs. Discrete \& Computational Geometry, 49(2):280-286, 2013. doi:10.1007/s00454-012-9481-x

A Proof of Lemma 2

- Lemma 2. Let D be a generalized twisted drawing of K_{4}, with vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ labeled counterclockwise around O. Then the edges $v_{1} v_{3}$ and $v_{2} v_{4}$ do not cross.

Proof. Assume, for a contradiction, that the edge $v_{2} v_{4}$ crosses the edge $v_{1} v_{3}$. Since any simple drawing of K_{4} has at most one crossing, no other edges of D can cross. Recall that in any generalized twisted drawing, all edges are drawn c-monotone and intersect the ray r. For every edge, this determines in which direction it emanates from its vertices. Hence there are (up to strong isomorphism) two possibilities how the crossing edges $v_{1} v_{3}$ and $v_{2} v_{4}$ can be drawn in D, depending on whether $v_{1} v_{3}$ crosses the ray from O through v_{4} at a point x_{3} before or after v_{4}; cf. Figure 16 In both cases, $v_{1} v_{2}$ has to cross the ray from O through v_{4} at a point x_{2}. This point x_{2} has to lie after v_{4} in the first case and before v_{4} in the second case. In both cases, as the edge $v_{3} v_{4}$ has to cross r, it must emanate from v_{4} in the interior of the triangular region bounded by the segment $x_{2} x_{3}$, the portion $v_{1} x_{3}$ of $v_{1} v_{3}$, and the portion $v_{1} x_{2}$ of $v_{1} v_{2}$. However, the vertex v_{3} is in the exterior of that triangular region, and therefore $v_{3} v_{4}$ would have to cross the segment $x_{2} x_{3}$, contradicting that D is c-monotone, or one of $v_{1} v_{2}$ and $v_{1} v_{3}$, contradicting the simplicity of D.

Figure 16 The two possibilities to draw $v_{1} v_{3}$ and $v_{2} v_{4}$ crossing and generalized twisted.

B Proof of Lemma 4

Lemma 4 has been implicitly shown in [11] and [13]. For completeness, we include a detailed proof of the lemma in this appendix. We remark that the proof presented here is in parts similar to the one in [13].

Figure 17 The homeomorphisms of D^{\prime}. Left: D_{A}, the edges in R_{A} and $b_{1} b_{2}$ are drawn on the sphere, such that R_{A} and $b_{1} b_{2}$ are meridians. Right: The steographic projecton from b_{2}.

Lemma 4. Let D be a simple drawing of a complete graph containing a subdrawing D^{\prime}, which is a plane drawing of $K_{2, n}$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$ be the sides of the bipartition of D^{\prime}. Let D_{A} be the subdrawing of D induced by the vertices of A. Then D_{A} is weakly isomorphic to a c-monotone drawing. Moreover, if all edges in D_{A} cross the edge $b_{1} b_{2}$, then D_{A} is weakly isomorphic to a generalized twisted drawing.

Proof. We call the pair of edges in D^{\prime} incident to $a_{i}, 1 \leq i \leq n$, the long edge r_{i}. Let R_{A} be the set of long edges. We first show that any edge between vertices in A crosses any long edge at most once. Then we show how to draw D^{\prime} such that b_{1} can be taken as origin O in a c-monotone drawing weakly isomorphic to D_{A}, where the long edges of R_{A}, as well as the edge $b_{1} b_{2}$, emanate as rays to infinity.

We now show that every edge between two vertices of A crosses every edge of R_{A} at most once. Let a_{1}, a_{2}, and a_{3} be vertices in A. Let R_{1} be the region bounded by the edges
$b_{1} a_{1}, a_{1} b_{2}, b_{2} a_{2}$ and $a_{2} b_{1}$ that does not contain a_{3}. Let R_{2} be the region bounded by the edges $b_{1} a_{2}, a_{2} b_{2}, b_{2} a_{3}$ and $a_{3} b_{1}$ that does not contain a_{1}. Since D^{\prime} is plane, these regions are disjoint.

As the edge $e=a_{1} a_{2}$ is incident to all edges on the boundary of R_{1}, it cannot cross it. Thus, e has to lie either completely inside or completely outside R_{1} (and meet the boundary only in its endvertices). If e lies inside R_{1}, it can cross neither $a_{3} b_{1}$ nor $a_{3} b_{2}$. If it lies outside R_{1}, it has to cross the boundary of R_{2} an odd number of times. (Since e must begin at a_{1} outside R_{2} and finish at a_{2} inside R_{2}, and passing through R_{1} is not possible.) As e cannot cross edges incident to a_{2}, this means it has to cross exactly one of the edges $a_{3} b_{1}$ or $a_{3} b_{2}$. Thus, e crosses the long edge r_{3} at most once, for any vertex a_{3}.

We can draw D^{\prime} such that b_{1} is functioning as the origin and R_{A} as rays emerging from it by doing the following transformations; see Figure 17 . We draw the subdrawing induced by the vertices of D^{\prime} on the sphere such that b_{1} and b_{2} are antipodes, and the long edges of R_{A}, as well as the edge $b_{1} b_{2}$, are meridians. By the general Jordan-Schoenflies theorem [16, 8], the drawing on the sphere is homeomorphic to the original drawing on the plane. We then apply a stereographic projection from b_{2} onto the plane. This way, the long edges in R_{A} and the edge $b_{1} b_{2}$ correspond to rays emerging from vertex b_{1}, where the long edges in R_{A} are exactly the rays through the vertices of D^{\prime}.

Finally, we can obtain a c-monotone drawing that is weakly isomorphic to D_{A}. We consider the stereographic projection. As all edges of D_{A} cross the long edges in R_{A} only once, they cross in between two long edges (or rays in the projection) r_{1} and r_{2} if and only if their order along the rays changes (that is, the edge closer to b_{1} at r_{1} is further away from b_{1} at r_{2}). Consequently, we can draw the edge-segments between every two rays as straight-lines and obtain a c-monotone drawing that is weakly isomorphic to D_{A}. If all edges of D_{A} cross the edge $b_{1} b_{2}$, they cross a ray to infinity in the weakly isomorphic c-monotone drawing, and thus the c-monotone drawing is also generalized twisted.

C Proof of Theorem 13

- Theorem 13. Let s, t be two integers, $1 \leq s, t \leq n$, such that $(s-1)(t-1)+1 \leq n$. Let D be a c-monotone drawing of K_{n}. Then D contains either a generalized twisted drawing of K_{s} or a monotone drawing of K_{t} as subdrawing. In particular, if $s=t=\lceil\sqrt{n}, D$ contains a complete subgraph K_{s} whose induced drawing is either generalized twisted or monotone.

Proof. Without loss of generality we may assume that the vertices of D appear counterclockwise around O in the order $v_{1}, v_{2}, \ldots, v_{n}$. Let r be a ray emanating from O, keeping v_{1} and v_{n} on different sides. We define an order, \preceq, in this set of vertices as follows: $v_{i} \preceq v_{j}$ if and only if either $i=j$ or $i<j$ and the edge (v_{i}, v_{j}) crosses r.

We show that \preceq is a partial order. The relation is clearly reflexive and antisymmetric. Besides, if $v_{i} \preceq v_{j}$ and $v_{j} \preceq v_{k}$, then $i<j$ and $j<k$ imply $i<k$, so for the transitive property, we only have to prove that if $v_{i} v_{j}$ and $v_{j} v_{k}$ cross r, then $v_{i} v_{k}$ also crosses r. We denote by r_{i}, r_{j}, r_{k} the rays emanating from O and passing trough v_{i}, v_{j}, v_{k}, respectively. We have two cases depending on where $v_{j} v_{i}$ crosses the ray r_{k} at a point x_{k}; in the first case, x_{k} is located before v_{k} on r_{k}, while in the second one it is located after v_{k}. Then $v_{j} v_{k}$ has to cross the ray r_{i} at a point x_{i}, which is after v_{i} in the first case and before v_{i} in the second case (see Figure 18). Let Q be the region bounded by the segments $O x_{i}, O x_{k}$ and the portions $v_{j} x_{i}, v_{j} x_{k}$ of the edges $v_{j} v_{k}, v_{j} v_{i}$, respectively. In both cases, the edge $v_{k} v_{i}$ cannot be contained in the counterclockwise wedge from r_{i} to r_{k}, because $v_{i} v_{k}$ should connect a vertex placed outside Q with points placed inside that region, contradicting either

Figure 18 If edges $v_{i} v_{j}$ and $v_{j} v_{k}$ cross r in a c-monotone drawing, then $v_{i} v_{k}$ must also cross r.
the simplicity or the c-monotonicity of D. Therefore, $v_{i} v_{k}$ must be in the clockwise wedge from r_{i} to r_{k} and thus crosses the ray r.

In this partial order \preceq, a chain consists of a subset $v_{i_{1}}, \ldots, v_{i_{s-1}}$ of pairwise comparable vertices, that is, a subset of vertices such that their induced subdrawing is generalized twisted (all edges cross r). An antichain, $v_{j_{1}}, \ldots, v_{j_{t-1}}$, consists of a subset of pairwise incomparable vertices, that is, a subset of vertices such that their induced subdrawing is monotone (no edge crosses r). Therefore, the first part of the theorem follows from applying Theorem 12 to the set of vertices of D and the partial order \preceq.

Finally, observe that if $s=t \leq\lceil\sqrt{n}$, then $(s-1)(t-1)+1 \leq n$. Thus, D contains a complete subgraph $K_{\lceil\sqrt{n}\rceil}$ whose induced subdrawing is either generalized twisted or monotone.

D Generalized twisted drawings contain a pair of antipodal vi-cells

In this section, we will show that every drawing weakly isomorphic to a generalized drawing of K_{n} contains a pair of antipodal vi-cells (Theorem 16). Before proving the theorem, we will see some useful properties of generalized twisted drawings. Recall that in a generalized twisted drawing, vertices are labeled $v_{1}, v_{2}, \ldots, v_{n}$ counterclockwise around the origin O, the ray emanating from O and passing through a vertex v_{i} is denoted by r_{i}, and the ray r that emanates from O and crosses every edge once is between r_{n} and r_{1}, counterclockwise from r_{n}.

- Lemma 20. Let D be a generalized twisted drawing of K_{n} with $n \geq 4$. Suppose the two edges $v_{i} v_{j}$ and $v_{k} v_{l}$ of D cross, and $i<j<k<l$. Then the crossing point between these two edges is in the wedge W defined by r_{j} and r_{k}, counterclockwise from r_{j} to r_{k}.

Proof. Assume for contradiction that the crossing point is not in W, so it is in the wedge defined by r_{l} and r_{i}, counterclockwise from r_{l}. There are four cases, depending on whether v_{k} and v_{l} are to the left or the right of the directed edge $v_{j} v_{i}$; see Figure 19 In any of the four cases, there is no way of connecting v_{k} and v_{j} without crossing either $v_{i} v_{j}$ or $v_{k} v_{l}$, which is a contradiction.

Lemma 21. For every generalized twisted drawing D with $n \geq 3$ vertices, the following statements hold.
i) There exists a vertex v_{i}, with $1 \leq i \leq n-1$, such that the bounded region $R B$ defined by the edge $v_{i} v_{i+1}$ and the segments $\overline{O v_{i}}$ and $\overline{O v_{i+1}}$ is empty.

Figure 19 Illustrating the proof of Lemma 20
ii) There exists a vertex $v_{j} \neq v_{i}$, with $1 \leq j \leq n-1$, such that the unbounded region $R U$ defined by the edge $v_{j} v_{j+1}$ and the segments $\overline{O v_{j}}$ and $\overline{O v_{j+1}}$ is empty.

Proof. We show statement i), we take the first edge $v_{i} v_{k}$ (with $i<k$) that crosses r and we show that v_{i} satisfies i. Let x be the crossing point between $v_{i} v_{k}$ and r, and let R be the bounded region defined by the edge $v_{i} v_{k}$ and the segments $\overline{O v_{i}}$ and $\overline{O v_{k}}$.

Figure 20 Illustrating the proof of Lemma 21
Suppose that there is a vertex v_{l} inside R. See Figure 20 left. Then there is no way of connecting v_{l} and v_{i} without crossing r before x, which contradicts that $v_{i} v_{k}$ is the first edge crossing r. Thus, R must be empty.

Suppose now that $k \neq i+1$, so there is a vertex v_{l} with $i<l<k$. See Figure 20, right. The edge $v_{l} v_{k}$ must cross r at a point after x. But then there is no way of adding the edge $v_{i} v_{l}$ without crossing r before x or without crossing $v_{l} v_{k}$. Therefore, $k=i+1$ and i) follows. The proof of $i i$) is analogous by taking the last edge crossing r. In addition, v_{i} and v_{j} must be different since a same edge $v_{i} v_{i+1}$ cannot be at the same time the first and the last edge crossing r.

- Lemma 22. Let D be a generalized twisted drawing of K_{n} with $n \geq 3$ vertices. Then the cell containing O and the unbounded cell have at least one vertex on their boundaries.

Proof. We show that the cell containing O is a vi-cell. The proof for the unbounded cell follows analogously.

By Lemma $21 i$, there exists a vertex v_{i}, with $1 \leq i \leq n-1$, such that the bounded region $R B$ defined by the edge $v_{i} v_{i+1}$ and the segments $\overline{O v_{i}}$ and $\overline{O v_{i+1}}$ is empty. We now show that either the segment $\overline{O v_{i}}$ or the segment $\overline{O v_{i+1}}$ is uncrossed. Thus, it follows immediately that O lies in a vi-cell (with either v_{i} or v_{i+1} on the boundary).

Figure 21 One of the segments $\overline{O v_{i}}$ and $\overline{O v_{i+1}}$ is uncrossed.

Suppose to the contrary that neither segments are uncrossed, so there is an edge $v_{j} v_{k}$, with $j<k$, crossing the segment $\overline{O v_{i}}$, and another edge $v_{j^{\prime}} v_{k^{\prime}}$, with $j^{\prime}<k^{\prime}$, crossing the segment $\overline{O v_{i+1}}$.

Observe now the following. First, since $R B$ is empty, an edge $v_{i+1} v_{l}$ cannot cross $\overline{O v_{i}}$ for any l, so neither v_{j} nor v_{k} can be v_{i+1}. Second, suppose that $j, k>i+1$. Since both
vertices are outside $R B$, if $v_{j} v_{k}$ crosses $\overline{O v_{i}}$, then it must also cross $v_{i} v_{i+1}$ (see Figure 21a). Hence, by Lemma 20, the crossing point between $v_{j} v_{k}$ and $v_{i} v_{i+1}$ is in the wedge defined by r_{i+1} and r_{j}. But then, after crossing $v_{i} v_{i+1}$ and $\overline{O v_{i}}$, the edge $v_{j} v_{k}$ must cross $v_{i} v_{i+1}$ a second time to reach v_{k}, which is a contradiction. Therefore, $j, k<i$.

Using an analogous reasoning, we also obtain that if an edge $v_{j^{\prime}} v_{k^{\prime}}$ crosses $\overline{O v_{i+1}}$, then $j^{\prime}, k^{\prime}>i+1$. As a consequence, the relative position of these three edges of D is as shown in Figures 21b and 21 c After emanating in v_{k}, the edge $v_{k} v_{j}$ crosses $v_{i} v_{i+1}$ at a point in the wedge defined by r_{k} and r_{i}; then it crosses $\overline{O v_{i}}$, and reaches v_{j} surrounding $v_{i} v_{i+1}$ by the exterior. The edge $v_{j^{\prime}} v_{k^{\prime}}$ must do the same but in opposite direction, crossing first $v_{i} v_{i+1}$ at a point in the wedge defined by r_{i+1} and $r_{j^{\prime}}$, then crossing $\overline{O v_{i+1}}$ and reaching $v_{k^{\prime}}$ surrounding $v_{i} v_{i+1}$ by the exterior. Note that $v_{j} v_{k}$ and $v_{j^{\prime}} v_{k^{\prime}}$ necessarily cross, and that the crossing point must be in the wedge defined by r_{i} and r_{i+1}. Hence, $v_{j^{\prime}}$ must be to the left of the oriented edge $v_{k} v_{j}$ and v_{k} must be to the right of the oriented edge $v_{j^{\prime}} v_{k^{\prime}}$. Otherwise, if $v_{j^{\prime}}$ is to the right of the oriented edge $v_{k} v_{j}$ or v_{k} is to the left of the oriented edge $v_{j^{\prime}} v_{k^{\prime}}$, then edges $v_{j} v_{k}$ and $v_{j^{\prime}} v_{k^{\prime}}$ would cross twice.

For the vertices v_{j} and $v_{k^{\prime}}$, there are two possibilities, depending on whether $v_{k^{\prime}}$ is to the right (see Figure 21b) or to the left (see Figure 21c) of the oriented edge $v_{k} v_{j}$. But in the first case, the edge $v_{j^{\prime}} v_{i+1}$ would cross $v_{j} v_{k}$ twice, and in the second case, the edge $v_{i} v_{k}$ would cross $v_{j^{\prime}} v_{k^{\prime}}$ twice. Therefore, at least one of $\overline{O v_{i}}$ and $\overline{O v_{i+1}}$ is uncrossed.

- Lemma 23. Let D be a generalized twisted drawing of K_{n} with $n \geq 3$ vertices. Then the cell of D containing O an the unbounded cell are a pair of antipodal vi-cells.
Proof. Let c be the segment $\overline{O Z}$, where O is the origin and Z is a point on r in the unbounded cell. By Lemma 22 both O and Z lie in vi-cells. We will show that those cells are antipodal. Since r crosses every edge of D exactly once and Z lies in the unbounded cell, also the segment c crosses every edge exactly once. Consequently, c crosses the boundary of every triangle of D exactly three times. Since every triangle of D is plane, this means c starts and ends at different sides of every triangle. Thus, O and Z have to lie in antipodal cells.

Figure 22 A triangle-flip.
We extend Lemma 23 to drawings weakly isomorphic to generalized twisted drawings using Gioan's Theorem [6, 15] that any two weakly isomorphic drawings of K_{n} can be transformed into each other with a sequence of triangle-flips and at most one reflection of the drawing. A triangle-flip is the operation that transforms a triangular cell \triangle that has no vertex on its boundary, by moving one of its edges across the intersection of the two other edges of \triangle (see Figure 22).

- Theorem 16. Every simple drawing of K_{n} which is weakly isomorphic to a generalized twisted drawing of K_{n}, with $n \geq 3$, contains a pair of antipodal vi-cells. In generalized twisted drawings the cell containing O and the unbounded cell form such a pair.

Proof. Let D be a simple drawing of K_{n} that is weakly isomorphic to a generalized twisted drawing D^{\prime}. By Lemma 23, the cell in which O lies in D and the unbounded cell of D
are antipodal vi-cell pairs. Without loss of generality, we can assume that O is very close to a vertex v on the boundary of C_{1} and Z is very close to a vertex w on the boundary of C_{2}. Using Gioan's Theorem, it is enough to show that afer every triangle flip that can be transformed on a drawing \tilde{D} containing antipodal vi-cells, the resulting drawing \tilde{D}_{2} still contains antipodal vi-cells.

As triangle-flips are only applied to cells without vertices on its boundary, and points O and Z are close enough to vertices on the boundary of their cell in \tilde{D}, they stay in vi-cells (with the vertices they are close to) after every triangle-flip. What remains to be shown is that the vi-cells stay antipodal.

Let T be a triangle of \tilde{D}. (Note that a triangle of the drawing is the simple cycle formed by the three edges connecting three vertices of the graph, and not the triangular cells on which we perform triangle flips.) Whenever a flip is performed on a cell \triangle, the cell \triangle disappears and a new cell appears. The new cell might (but not has to) be on the other side of T, but no other cells are affected. In particular, since triangle flips are never applied on vi-cells, any pair of vi-cells that was antipodal before stays antipodal after the flip.

E Characterizing via antipodal vi-cells

In this section, we prove that in any simple drawing D of K_{n} containing antipodal vi-cells it is possible to add a simple curve crossing every edge of D exactly once (Theorem 17). To this end, we will use the following lemmata that show some properties of antipodal vi-cells.

- Lemma 24. Let D be a drawing of K_{n} with $n \geq 4$, and let $\left(C_{1}, C_{2}\right)$ be a pair of antipodal vi-cells. Then there is no vertex that lies on the boundary of both cells.

Proof. Assume, for a contradiction, that a vertex v_{1} lies on the boundary of both cells C_{1} and C_{2}. See Figure 23. Consider another cell C^{\prime} different from C_{1} and C_{2}, with v_{1} on its boundary. Since v_{1} has degree $n-1 \geq 3$, this cell exists. Let u_{1} and u_{2} be the two vertices whose edges to v_{1} are on the boundary of that cell C^{\prime}. Then the triangle formed by vertices u_{1}, u_{2}, and v_{1} always have the cells C_{1} and C_{2} on the same side, contradicting that C_{1} and C_{2} are antipodal.

Figure 23 Edges of the star $S\left(v_{1}\right)$ incident to v_{1} are drawn black; the antipodal cells are filled purple; the additional cell is indicated in cyan; the different ways to draw the edge $u_{1} u_{2}$ are drawn dashed in blue.

Lemma 25. Let D be a simple drawing of K_{n} that contains two antipodal vi-cells C_{1} and C_{2}. Let v_{1} be a vertex on the boundary of C_{1}. Let T be a triangle formed by v_{1} and two other vertices u_{2} and u_{3}. If there is a vertex u that lies on the same side of T as C_{1}, then the edge $v_{1} u$ lies completely on that side.

Proof. Assume, for a contradiction, that the edge $v_{1} u$ does not lie completely on the same side of T as C_{1}, and thus crosses the boundary of T. See Figure 24. The only edge it can cross is $u_{2} u_{3}$, as the other edges are incident to v_{1}. Thus, the drawing induced by v_{1}, u_{2}, u_{3} and u contains a crossing between $v_{1} u$ and $u_{2} u_{3}$. Since any simple drawing of K_{4} contains at most one crossing, the edges $u u_{2}$ and $u u_{3}$ cannot cross the boundary of T. Thus, the triangle T^{\prime} formed by u, u_{2} and u_{3} has to lie on the same side of T as C_{1}, but keeping C_{1} and C_{2} on one of its sides, which is a contradiction to the definition of antipodal.

Figure 24 An illustration of Lemma 25. The vertex v_{2} is placed as an example in one of the possible faces and could be at another place, but C_{1} and C_{2} lie on different sides of the triangle $v_{1} u_{2} u_{3}$ by definition. Thus, by construction of the triangle $u u_{2} u_{3}$, the cells C_{2} and C_{1} lie on the same side of $u u_{2} u_{3}$.

Now, we can prove Theorem 17

- Theorem 17. In any simple drawing D of K_{n} that contains a pair of antipodal vi-cells, it is possible to draw a curve c that crosses every edge of D exactly once.

Proof. Let $\left(C_{1}, C_{2}\right)$ be a pair of antipodal vi-cells of D, v_{1} a vertex on the boundary of C_{1}, v_{2} a vertex on the boundary of C_{2}, and $S\left(v_{1}\right)$ the star of v_{1}. Note that by Lemma 24, v_{1} and v_{2} are different. We draw a simple curve c from v_{1} to v_{2} such that it emerges from v_{1} in the cell C_{1} and ends in the cell C_{2} very close to v_{2}, and the following holds:

1. The curve c does not cross any edges of $S\left(v_{1}\right)$.
2. All intersections of c with edges of D are proper crossings.
3. Over all curves for which 1 and 2 hold, the curve c has the minimum number of crossings with edges of D.

Since $S\left(v_{1}\right)$ is a plane drawing that has only one face in which both v_{1} and v_{2} lie, drawing c is always possible. See for example Figure 25 We will prove that c crosses every edge of $D \backslash S\left(v_{1}\right)$ exactly once. To show that c crosses an arbitrary edge $w_{2} w_{3}$ exactly once, we will first show that c crosses $w_{2} w_{3}$ an odd number of times and then show that c crosses $w_{2} w_{3}$ at most twice.

To observe that c has to cross $w_{2} w_{3}$ an odd number of times, consider the triangle T formed by v_{1}, w_{2} and w_{3}. Since c connects two antipodal cells, the endpoints of c have to be on two different sides of T. Thus, c has to cross the boundary of T an odd number of times. Since c does not cross $S\left(v_{1}\right)$, it has to cross $w_{2} w_{3}$ an odd number of times.

We show now that c crosses $w_{2} w_{3}$ at most twice. Assume to the contrary that c crosses $w_{2} w_{3}$ at least three times. Without less of generality, we may assume that C_{1} is inside T and C_{2} is outside. Given two crossing points x and y between c and $w_{2} w_{3}$ that are consecutive

Figure 25 Edges of the star $S\left(v_{1}\right)$ incident to v_{1} are drawn black; the antipodal cells are filled purple; the curve c is drawn in red.
on c when going from v_{1} to v_{2}, a lens is the region to the left of the cycle formed by the arc $x y$ on c and the arc $y x$ on $w_{2} w_{3}$. See Figure 26 for an illustration. The pairs of two consecutive crossing points between c and $w_{2} w_{3}$ on c define a set of lenses on both sides of T, possibly nested (see Figure 26). Note that since c crosses $w_{2} w_{3}$ at least 3 times, there is at least one lens on each side of T. Among all the lens on the same side of T as C_{1}, we take one that does not contain any other lens in its interior. This lens L always exists by taking the "innermost" one in a set of nested lenses.

Figure 26 The curve c crossing several times the edge $w_{2} w_{3}$. If there are nested lenses in T, we take a minimal one that does not contain any nested lenses. This minimal lens L is shaded green.

Let x and y be the two crossing points defining the lens, so the boundary of L consists of arc $x y$ on c and arc $y x$ on $w_{2} w_{3}$. We claim that there is no vertex in L. Assume that there is a vertex u inside L (see Figure 27). By Lemma 25, the edge $u v_{1}$ cannot cross the edge $w_{2} w_{3}$. Thus, it has to cross c in order to get from u inside the lens to v_{1} outside the lens. This is a contradiction to c being drawn such that it does not cross $S\left(v_{1}\right)$. Thus, there is no vertex in L, as claimed.

Since L does not contain any vertex, then every edge that crosses the arc $y x$ on $w_{2} w_{3}$ has to also cross at least once the arc $x y$ on the curve c (as there is no vertex in the lens where it could stop and it cannot cross the edge $w_{2} w_{3}$ more than once); see Figure 28 (left). Thus, c can be drawn such that it stops before x, follows an arc very close to the arc $x y$ on $w_{2} w_{3}$ until a point very close to y, and then continues as c did before; see Figure 28 (right). This way the new drawing of the curve is still simple and does not have any crossings that the original one did not, but two less crossings with $w_{2} w_{3}$, which is a contradiction to the

Figure 27 There is no vertex in L. If there is a vertex u inside L, then the edge from u to v_{1} (drawn dashed) would have to cross c, which it cannot by construction.
minimality of c. In conclusion, the curve c cannot cross any edge $w_{2} w_{3}$ more than twice.

Figure 28 Left: The lens L does not contain any vertices, thus all edges crossing $w_{2} w_{3}$ within the lens have to leave the lens crossing c. Right: The curve c is redrawn such that it has fewer crossings.

Therefore, since c crosses all edges in $D \backslash S\left(v_{1}\right)$ an odd number of times and at most twice, it follows that it crosses all edges in $D \backslash S\left(v_{1}\right)$ exactly once, while (per construction) it does not cross any edges of $S\left(v_{1}\right)$.

We can transform c to a curve that crosses all edges exactly once in the following way: Instead of the starting point being v_{1} we remove an ε of the curve on this end such that it starts very close to v_{1} in the cell C_{1} (and consequently still crosses exactly the edges it crossed before). Then, on that start in C_{1}, we extend the curve by going around the vertex v_{1} so close to v_{1} that the extension crosses exactly the edges of $S\left(v_{1}\right)$, and then ending again in C_{1}; see Figure 29 This way the extension crosses all edges of $S\left(v_{1}\right)$ exactly once and consequently, we obtained a curve crossing all edges exactly one, with its endpoints not lying on any edges or vertices of D.

F Characterizing via a Curve Crossing Everything

In this section we prove Theorem 18 .

- Theorem 18. Let D be a simple drawing of K_{n} in which it is possible to draw a simple curve c that crosses every edge of D exactly once. Then, D can be extended by two vertices O and Z (at the position of the endpoints of the curve), and edges incident to those vertices such that the obtained drawing is a simple drawing of K_{n+2}, no edge incident to O crosses any edge incident to Z, and all edges in D cross the edge $O Z$.

Figure 29 The resulting curve after the extension. The last part crossing $S\left(v_{1}\right)$ is drawn bold.

We first show several properties for drawings such that there is a simple curve $c=O Z$ crossing every edge once. Then, we show that we can extend the drawing $D=D_{n}$ to a drawing D_{n+2} of K_{n+2} by adding O and Z as vertices, the curve c as an edge, and edges from O and Z to each vertex w of D_{n} in such a way that D_{n+2} fulfills the following properties.
(P1) D_{n+2} is a simple drawing. (This implies in particular that none of the curves incident to O crosses another curve incident to O and no curve incident to Z crosses another curve incident to Z.)
(P2) No edge incident to O crosses any edge incident to Z.

Notation and Basic Properties

Assume that D_{n} is a simple drawing of K_{n} and $c=O Z$ a simple curve crossing every edge of D_{n} once.

We will consider two orientations for each edge of D_{n}. By $u v$ we denote the edge oriented from u to v, and by $v u$ the same edge oriented from v to u. If x, y are points placed in that order on the edge $u v$ of D_{n+2}, then the portion of the curve $u v$ placed between x and y is called the arc $x y$. We also consider the arcs oriented from the first point to the second point. Consequently, $y x$ has the same points as $x y$ but with the opposite orientation. We orient c from O to Z. When considering the star $S(w)$ of a vertex w, we will always consider the edges oriented from w to the other endpoint.

When the edge $w u$ crosses $O Z$ in a crossing point x we know that this crossing can be of two different ways, depending on the radial order of the arcs $x O, x w, x Z, x u$ around point x. We will say that $w u$ is a top edge if around x the $\operatorname{arcs} x u, x O, x w, x Z$ appear clockwise in this order, and $w u$ is a bottom edge when that clockwise order is $x u, x Z, x w, x O$. In the figures we draw the curve $c=O Z$ as a horizontal line, thus the directed edges reaching that line by its top side are precisely the top edges. Note that if $w u$ is a top edge, then $u w$ is a bottom edge.

Three arcs, $x y$ on the edge $e_{1}, y z$ on the edge e_{2} and $z x$ on the edge e_{3}, form a cycle and divide the plane (or the sphere) into two regions A, B. By triangular region $x y z$ we mean the region (A or B) found on the left side when we walk the cycle in the order x, then y, then z, and returning to x, using the corresponding arcs in e_{1}, e_{2}, e_{3}. In the same way, if the $\operatorname{arcs} x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{k-1} x_{k}, x_{k} x_{1}$ form a simple cycle, the region found on the left side when we walk the cycle in the order $x_{1}, x_{2}, \ldots, x_{k}, x_{1}$ will be denoted by $x_{1} x_{2} \ldots x_{k}$. We suppose that the drawings are on the sphere S^{2}, so we consider drawings homeomorphic in S^{2} as topologically identical, like the left and right drawings of Figure 30 However, in the figures,

Figure 30 Top edges are drawn in black, bottom edges are drawn in blue.
as the drawings are shown on the plane, a given region can be bounded or unbounded. For example, region $w x_{1} y_{1}$ is bounded in the left drawing of Figure 30 and unbounded in the right drawing. But in both drawings, the arcs, vertices and crossings inside region $w x_{1} y_{1}$ are the same.

In our constructions, we are going to draw new arcs that are close to (or glued to) arcs of D_{n}. A new arc a^{\prime} is close or glued to the arc $u x$ if
(g1) An edge crosses a^{\prime} if and only if it crosses $u x$.
(g2) All the crossing points on a^{\prime} and on $u x$ have the same order.
(g3) The arcs a^{\prime} and $u x$ do not cross each other. (They can share the endpoints, points u, x, but do not have to.)

- Lemma 26. Let w be a vertex of D_{n}. The edges of $S(w)$ satisfy the following properties:
(a_{1}) When exploring counterclockwise around w the edges of $S(w)$, the top edges are consecutive, $w u_{1}, w u_{2} \ldots, w u_{k}$, and cross the curve $c=O Z$ at points x_{1}, \ldots, x_{k} in that order. Then the bottom edges are consecutive, $w v_{1}, \ldots, w v_{k^{\prime}}$ (where $k^{\prime}=n-k-1$), and cross the curve $c^{\prime}=Z O$ at points $y_{1}, \ldots, y_{k^{\prime}}$ in that order. See Figure 30 .
$\left(a_{2}\right)$ Let z_{1} and z_{n-1} be the first and the last crossing points of $S(w)$ on the curve c. Then the endpoints of the bottom edges of $S(w)$ are inside the triangular region $z_{1} z_{n-1} w$, and the endpoints of the top edges are outside that region. See Figure 31.

Proof. ($\left.\mathbf{a}_{1}\right)$ Draw a new arc a glued to $O Z$ by its top part, and another arc a^{\prime} glued to $Z O$ on the bottom part. Both have endpoints O and Z, and thus a, a^{\prime} define a cycle C. The edges of the star $S(w)$ in counterclockwise order have to reach (that is, have their first crossing point with) the cycle C at points placed in clockwise order on C. The top edges of $S(w)$ are the ones reaching C on the $\operatorname{arc} a$, and the corresponding crossing points x_{1}, \ldots, x_{k} on $O Z$ are in increasing order (from O to Z). Then come the bottom edges reaching C on the arc a^{\prime}, their corresponding crossing points $y_{1}, \ldots, y_{k^{\prime}}$ in this order on $Z O$.
$\left(\mathbf{a}_{2}\right)$ Notice that z_{1} can be either x_{1} or $y_{k^{\prime}}$. Similarly, z_{n-1} can be x_{k} or y_{1}. In any case, the only way to connect w to a vertex v placed inside the triangular region $z_{1} z_{n-1} w$ and crossing $O Z$, is crossing the arc $z_{1} z_{n-1}$ from its bottom part. For the same reason, all the vertices placed outside that region are precisely the endpoints of the top edges of $S(w)$. See Figure 31

- Lemma 27. Assume $w u_{1}, \ldots, w u_{k}$ are the top edges of $S(w), k \geq 2$, and let x_{1}, \ldots, x_{k} be the corresponding crossing points on $O Z$. Consider two of those edges $w u_{i}, w u_{j}$, with x_{i} placed before x_{j}. Then

Figure 31 Property a_{2} : The vertices placed in the regions with a blue circle can be reached from w only with bottom edges.
($\mathbf{b}_{\mathbf{1}}$) If $e=u_{i} u_{j}$ is bottom, it must cross c at a point x placed on $O x_{i}$. If it is top, it must cross c at a point y placed on $x_{j} Z$. See Figure 32.
$\left(b_{2}\right)$ Suppose that there is an edge e of D_{n} crossing both arc $w x_{1}$ and arc $w x_{k}$. Then the two endpoints of e, vertices v, v^{\prime}, have to be endpoints of bottom edges of $S(w)$, and not both vertices can be inside the triangle $x_{1} x_{k} w$.

Proof. ($\left.\mathbf{b}_{1}\right)$ Suppose $e=u_{i} u_{j}$ is a bottom edge; the other case follows analogously. Since the two endpoints u_{i}, u_{j} are outside the triangular region $x_{i} x_{j} w$, the edge $u_{i} u_{j}$ cannot enter in that region without breaking the simplicity, and therefore $u_{i} u_{j}$ cannot cross the arc $x_{i} x_{j}$. If the edge e crosses $O Z$ at a point x on $x_{j} Z$, just after crossing $O Z, e$ is outside the region $u_{i} x x_{j} w$, but vertex u_{j} is inside that region, so it is impossible to reach u_{j} without either breaking the simplicity of D_{n} or crossing the curve $O Z$ twice. Hence, e must cross $O Z$ on the arc $O x_{i}$. See Figure 32 left.

\square Figure 32 Property b_{1} : The edge $u_{i} u_{j}$ must cross $O Z$ as in the left figure or as in the right figure.
$\left(\mathbf{b}_{\mathbf{2}}\right)$ Suppose that the edge $e=v v^{\prime}$ crosses both $w x_{1}$ and $w x_{k}$.
We first analyze the case when both endpoints of e, vertices v, v^{\prime}, are inside the triangular region $x_{1} x_{k} w$, and therefore, by Property (\mathbf{a}_{2}, both are endpoints of bottom edges of $S(w)$. Let y be the crossing point of $w v$ with $O Z$. Then, $e=v v^{\prime}$ cannot cross the arc $x_{1} x_{k}$ because otherwise the boundary of $x_{1} x_{k} w$ is crossed three times, contradicting that both v, v^{\prime} are in that region. So, $v v^{\prime}$ has to first cross either the arc $w x_{1}$ or $w x_{k}$. In the first case, after crossing $w x_{1}$, the edge is in the region $w y x_{1}$ and the vertex v^{\prime} is outside that region, hence the edge cannot leave that region keeping the simplicity. See Figure 33 left. Similarly, if $v v^{\prime}$ first crosses $w x_{k}$, it enters in the region $w x_{k} y$, but the vertex v^{\prime} is outside that region, therefore the edge cannot leave that region without breaking the simplicity.

Figure 33 Property b_{2} : Edge e cannot cross both $w x_{1}, w x_{k}$ if its endpoints are inside $x_{1} x_{k} w$ or when one of them is an endpoint of a top edge.

Suppose now that v is inside the region $x_{1} x_{k} w$, and v^{\prime} is an endpoint of a top edge $w v^{\prime}$ crossing $O Z$ at a point x. As above, let y be the crossing point of $w v$ with $O Z$, and suppose that y is placed before x on $O Z$. See Figure 33 centre. Then, v is in the region $w y x$ and v^{\prime} is outside that region, therefore the edge $e=v v^{\prime}$ has to cross the arc $y x$. On the other hand, since neither v^{\prime} nor v are in the region $x x_{k} w$ and e crosses $w x_{k}$, it has to cross also the arc $x x_{k}$, hence e should cross $O Z$ twice, a contradiction. A similar analysis can be done in the symmetric case, when y is placed after x.

Finally, suppose that v is outside the region $x_{1} x_{k} w$, and v^{\prime} is an endpoint of a top edge $w v^{\prime}$ crossing $O Z$ at point x. As both vertices v, v^{\prime} are outside the region $x_{1} x_{k} w$, the edge $v v^{\prime}$ cannot cross three times the boundary of that region, so e cannot cross the arc $x_{1} x_{k}$. However, when e enters in that region, by crossing $w x_{1}$ or $w x_{k}$, as it cannot cross the arc $w x$, it should cross $x_{1} x_{k}$, again a contradiction. See Figure 33 right.

If we consider a mirror drawing of D_{n} on the horizontal line $O Z$, all the top edges become bottom and vice versa, then, $\left(\mathbf{b}_{\mathbf{1}}\right)$ has a symmetric Property $\left(\mathbf{b}_{\mathbf{1}}^{\prime}\right)$:

If $w u_{i}, w u_{j}$ are bottom edges and the crossing point x_{i} is placed before x_{j}, then if $e=u_{i} u_{j}$ is top, it must cross c at a point x placed on $O x_{i}$, and if it is bottom, it must cross c at a point y placed on $x_{j} Z$.

- Lemma 28. There is one vertex w_{1} such that all the edges emanating from w_{1} are top.

Lemma 28 is depicted in Figure 34

Figure 34 Lemma 28 There is a vertex w_{1} such that all the edges of $S\left(w_{1}\right)$ are top.

Proof. We prove the existence of such a vertex by induction on the number of vertices n. For $n=2$ the lemma obviously is true. Now, consider a simple drawing D_{n} of K_{n} and assume that the lemma holds for any simple drawing of K_{n-1} (with all their edges crossed by a
curve). By removing a vertex w^{\prime} of D_{n}, we obtain a simple drawing of K_{n-1}, by induction, containing a vertex w such that all the edges of $S(w)$ are top. If $w w^{\prime}$ is also top in D_{n}, all the edges of $S(w)$ are top in D_{n}, and w is the sought vertex. Suppose now that $w w^{\prime}$ is bottom and let x_{1}, x_{k} be the crossing points of the first and last edges of $S(w)$. If $w w^{\prime}$ crosses the arc $x_{1} x_{k}, w^{\prime}$ has to be inside the region $x_{1} x_{k} w$. Then, as all the other vertices are outside that region, by Property $\left(\mathbf{b}_{\mathbf{2}}\right)$ all the edges of $S\left(w^{\prime}\right)$ must cross first $x_{1} x_{k}$ and therefore they are top. Finally, if $w w^{\prime}$ is bottom and does not cross $x_{1} x_{k}$ it has to cross $O Z$ through a point y on the arc $x_{k} Z$ or on the arc $O x_{1}$. Suppose y is on $x_{k} Z$ (the other case is symmetric), then w^{\prime} is in the triangular region $x_{1} y w$, and all the other vertices out of that region. Thus, again by Property $\left(\mathbf{b}_{\mathbf{2}}\right)$ all edges incident to w^{\prime} have to cross first the top part of $O Z$, and therefore w^{\prime} is the sought vertex.

By removing w_{1}, we obtain a subdrawing with one vertex w_{2} of which all the edges are top, by removing w_{2} another vertex w_{3}, and so on. Thus, we obtain an order of the vertices w_{1}, \ldots, w_{n} such that for each vertex w_{i} the edges $w_{i} w_{j}$ with $j>i$ are top edges $(n-i$ edges) and the edges $w_{i} w_{l}$, with $l<i$ are bottom edges ($i-1$ edges).

Construction of the drawing D_{n+2}

Beginning with the simple drawing D_{0}^{\prime} formed by D_{n} and the curve $c=O Z$, we build new drawings $D_{1}^{\prime}, \ldots, D_{i}^{\prime}, \ldots, D_{n}^{\prime}$, where drawing D_{i}^{\prime} is obtained from drawing D_{i-1}^{\prime} by adding two simple curves $O w_{i}, w_{i} Z$, following the order $w_{1}, w_{2}, \ldots w_{n}$ explained above. Hence, we start adding $O w_{1}, w_{1} Z$, where w_{1} is the unique vertex such that all the edges of $S\left(w_{1}\right)$ are top, and we finish by adding $O w_{n}, w_{n} Z$, where w_{n} is the unique vertex such that all the edges of $S\left(w_{n}\right)$ are bottom. We build the new drawings in such a way that in D_{i}^{\prime}, the following invariants are satisfied:

1. The curves $O Z, Z w_{i}, w_{i} O$ form a well defined triangular region (region $R_{i}=O Z w_{i}$) containing the triangular region $R_{i-1}=O Z w_{i-1}$, and containing no vertex w_{j} with $j>i$. Notice that this invariant implies that R_{i} contains precisely the vertices w_{l} with $l<i$, and that neither $O w_{i}$ nor $Z w_{i}$ can properly cross any edge $O w_{l}$ or $Z w_{l}$ with $l<i$.
2. The drawing D_{i}^{\prime} is a simple drawing.

The last drawing obtained, D_{n}^{\prime}, taking O and Z as vertices, provides the sought drawing D_{n+2}, since Invariants 1 and 2 imply that it satisfies properties (P1) and (P2)

To prove that D_{i}^{\prime} satisfies Invariants 1 and 2 we suppose that D_{i-1}^{\prime} satisfies these two invariants. Then, the crossing points of the edges of D_{i-1}^{\prime} with the boundary of $O Z w_{i-1}$ must satisfy the properties given in the following lemma.

- Lemma 29. Suppose that D_{i-1}^{\prime} satisfies Invariants 1, 2, and let x_{s}, x_{t}, x be the crossing points of $O Z$ with the edges $w_{i-1} w_{s}, w_{i-1} w_{t}, w_{s} w_{t}$, respectively. Then
(\boldsymbol{c}_{1}) All the top edges of $S\left(w_{i-1}\right)$ are counterclockwise between $w_{i-1} O$ and $w_{i-1} Z$, and the bottom edges are counterclockwise between $w_{i-1} Z$ and $w_{i-1} O$.
($\boldsymbol{c}_{\mathbf{2}}$) Any edge $w_{s} w_{t}$ with $s<t<i-1$ crosses first $O Z$ then one of the curves $O w_{i-1}$ or $Z w_{i-1}$.
Besides, if $w_{s} w_{t}$ crosses $Z w_{i-1}$, the order of the above crossing points on $O Z$ is x_{t}, x_{s}, x, and if $w_{s} w_{t}$ crosses $O w_{i-1}$, this order is x, x_{s}, x_{t}.
(\boldsymbol{c}_{3}) Any edge $w_{s} w_{t}$ with $s<i-1<t$ crosses first $O Z$ and it does not cross any other arc of the boundary of $O Z w_{i}$.

Besides, if w_{s} is in the region $O x_{t} w_{i-1}$, the order of the above crossing points on $O Z$ is x_{s}, x, x_{t}, and if w_{s} is in the region $x_{t} Z w_{i-1}$, the order is x_{t}, x, x_{s}.
(\boldsymbol{c}_{4}) Any edge $w_{s} w_{t}$ with $i-1<s<t$ first crosses one of $O w_{i-1}$ or $Z w_{i-1}$, then $O Z$. Besides, if $w_{s} w_{t}$ crosses $Z w_{i-1}$, the order of the crossing points is x_{s}, x_{t}, x, and if it crosses $O w_{i-1}$, the order is x, x_{t}, x_{s}.

Proof. ($\left(\mathbf{c}_{1}\right)$ A top edge $w_{i-1} w_{t}$ with $t>i-1$ of $S\left(w_{i-1}\right)$ has to reach $O Z$ by inside of $O Z w_{i-1}$, and since D_{i-1}^{\prime} is simple, it must start entering in that region, hence it must be counterclockwise between $w_{i-1} O$ and $w_{i-1} Z$. The same reasoning works for bottom edges $w_{i-1} w_{s}$ with $s<i-1$.
$\left(\mathbf{c}_{\mathbf{2}}\right)$ Since $s<t<i-1$, by Invariant 1, the vertices w_{s}, w_{t} are both in $O Z w_{i-1}$. Hence, the edge $w_{s} w_{t}$ must cross the boundary of $O Z w_{i-1}$ an even number of times. And since it has to cross $O Z$, it has to cross also only one of the boundary curves $O w_{i-1}, w_{i-1} Z$. Finally, since $w_{s} w_{t}$ is a top edge, it has to cross first $O Z$ then the other boundary curve.

On the other hand, suppose that the edge $w_{s} w_{t}$ crosses $w_{i-1} Z$ at a point z. Then, the vertex w_{i-1} is in the region $x Z z$, like the vertices w_{s}, w_{t}. Therefore, if $w_{t} w_{i-1}$ (or $w_{s} w_{i-1}$) leaves that region crossing the arc $x Z$, it cannot reach w_{i-1} without crossing again the boundary of that region, breaking the simplicity of D_{i-1}^{\prime}. Therefore, x_{s}, x_{t} have to be placed before x on $O Z$. Finally, $w_{t} w_{i-1}$ cannot cross the $\operatorname{arc} x_{s} w_{s}$ (on the edge $w_{i-1} w_{s}$) or the arc $w_{s} x$ (on the edge $w_{s} w_{t}$), therefore it cannot cross $O Z$ between x_{s} and x, and the order of the crossing points must be x_{t}, x_{s}, x. The same arguments can be used when the edge $w_{s} w_{t}$ crosses $O w_{i-1}$
$\left(\mathbf{c}_{\boldsymbol{3}}\right)$ By Invariant $1 w_{s}$ is inside the region $O Z w_{i-1}$ and w_{t} is outside, so the edge $w_{s} w_{t}$ has to cross the boundary of $O Z w_{i-1}$ an odd number of times. Suppose that it crosses the three curves of the boundary, curves $O Z, O w_{i-1}, w_{i-1} Z$. It cannot cross first $O w_{i-1}$ (or $\left.w_{i-1} Z\right)$ then $O Z$ because $w_{s} w_{t}$ is a top edge. It cannot cross first $O Z$ then $O w_{i-1}$ and finally $w_{i-1} Z$ because then, by $\left(\mathbf{c}_{\mathbf{1}}\right)$ it has to cross the top edge $w_{i-1} w_{t}$. By the same reason it cannot cross the boundary in the order first $O Z$, next $w_{i-1} Z$ and then $O w_{i-1}$. Finally, if it crosses first $O w_{i-1}$, next $w_{i-1} Z$ and then $O Z$, then, again by ($\left.\mathbf{c}_{1}\right)$ it has to cross the bottom edge $w_{i-1} w_{s}$.

Besides, since $w_{i-1} w_{t}$ is a top edge, the arc $w_{i-1} x_{t}$ divides the region $O Z w_{i-1}$ into two disjoint regions $O x_{t} w_{i-1}$ and $x_{t} Z w_{i-1}$. Then, if w_{s} is in the region $O x_{t} w_{i-1}$, the edge $w_{s} w i-1$ has to cross by the arc $O x_{t}$. And then, necessarily the crossing point x must be between x_{s} and x_{t}. The same argument can be used when w_{s} is in the region $x_{t} Z w_{i-1}$. (\mathbf{c}_{4}) Since $i-1<s<t$, both vertices w_{s}, w_{t} are outside region $O Z w_{i-1}$, and we use the same reasonings as in ($\mathbf{c}_{\mathbf{2}}$) The boundary of $O Z w_{i-1}$ has to be crossed twice, and since $w_{s} w_{t}$ is a top edge, first one of $O w_{i-1}$ or $Z w_{i-1}$ is crossed, then $O Z$.

Now, if $w_{s} w_{t}$ crosses $w_{i-1} Z$ at a point z, then none of the edges $w_{i-1} w_{s}, w_{i-1} w_{t}$ can cross the arc $x z$ (placed on $w_{s} w_{t}$), so they cannot cross the arc $x Z$ either. Therefore the crossing points x_{s}, x_{t} have to be placed before x on $O Z$. Finally, w_{i-1} and w_{t} are in different sides of the region $x_{s} x w_{s}$ and the edge $w_{i-1} w_{t}$ cannot cross the arc $w_{s} x_{s}$ (on edge $w_{i-1} w_{s}$) or the arc $w_{s} x$ (on the edge $w_{s} w_{t}$), therefore it has to cross $O Z$ between x_{s} and x, and the order of the crossing points must be x_{s}, x_{t}, x. The same arguments can be used when the edge $w_{s} w_{t}$ crosses $O w_{i-1}$.

Observe that, as we suppose that D_{i-1}^{\prime} satisfies Invariants 11 and 2 properties $\left(\mathbf{c}_{2}\right)$ $\left(\mathbf{c}_{3}\right),\left(\mathbf{c}_{4}\right)$ imply that no edge of D_{n} can cross simultaneously the curve $O w_{i-1}$ and the curve $w_{i-1} Z$.

Figure 35 Step 1: How to draw $O w_{1}, Z w_{1}$.

For the construction of the drawings D_{i}^{\prime}, we will make a first step (for D_{1}^{\prime}), a generic step (for D_{i}^{\prime} with $1<i<n$), and a final step (for D_{n}^{\prime}).

Step 1. Let x_{1}, \ldots, x_{n-1} denote the crossing points of $S\left(w_{1}\right)$ with $O Z$. We draw $O w_{1}$ following (slightly counterclockwise) the curve $O Z$ until the point x_{1}, then we turn counterclockwise following the arc $x_{1} w_{1}$; see Figure 35. We draw $Z w_{1}$ analogously, following $Z O$ until x_{n-1}, then following the arc $x_{n-1} w_{1}$. If we denote the arcs $O x_{1}, x_{1} w_{1}, Z x_{n-1}, x_{n-1} w_{1}$ by $a_{1}, b_{1}, a_{2}, b_{2}$ respectively, then $O w_{1}$ has a first part glued to a_{1}, then a second part glued to b_{1}, and in the same way, $Z w_{1}$ consists of two parts glued to a_{2} and b_{2} respectively. Clearly, $O Z w_{1}$ is a well defined region and by Property $\left(\mathbf{a}_{2}\right)$ there are no vertices in the triangular region $w_{1} x_{1} x_{n-1}$, hence region $O Z w_{1}$ does not contain any vertices. That establishes Invariant 1

Suppose now that the edge $w_{s} w_{t}, 1<s<t \leq n-1$ crosses the arc a_{1}, and let x_{s}, x_{t} be the crossings points on $O Z$ of $w_{1} w_{s}, w_{1} w_{t}$, respectively. Notice that x_{s} can be placed before or after x_{t}, but x is placed before these two points. Then, by Property $\left(\mathbf{b}_{\mathbf{1}}\right)$, since the bottom edge is $w_{t} w_{s}, x_{t}$ has to be placed before x_{s}, and the order of the crossing points on $O Z$ must be x, x_{1}, x_{t}, x_{s}. Besides, the arc b_{1} must start at w_{1} by outside the triangular region $w_{1} w_{t} w_{s}$ (because it is the first top arc), and it finishes at x_{1}, a point also placed outside $w_{1} w_{t} w_{s}$. Therefore, the arc b_{1} cannot cross $w_{s} w_{t}$, the unique edge of the triangle $w_{1} w_{t} w_{s}$ not incident to w_{1}. A symmetric argument can be used to prove that an edge $w_{s} w_{t}, 1 \leq s<t<n-1$ crossing a_{2} cannot cross b_{2}. This establishes Invariant 2 for D_{1}^{\prime}.

Step i $(2 \leq i \leq n-1)$. We will draw $O w_{i}$ in two different ways, Way 1 and Way 2, depending on whether the first top edge of $S\left(w_{i}\right)$, edge e_{1}, first crosses $O w_{i-1}$ or $w_{i-1} Z$. When e_{1} first crosses $O w_{i-1}$ at a point z_{1}^{\prime}, we draw $O w_{i}$ in Way 1, which is the following: $O w_{i}$ follows the curve $O w_{i-1}$ (very close to that curve, slightly counterclockwise) until it reaches the crossing point z_{1}^{\prime}, then $O w_{i}$ continues close to $z_{1}^{\prime} w_{i}$ until it reaches its endpoint w_{i}; see Figure 36 left.

When e_{1} crosses first $w_{i-1} Z$, by Property ($\left.\mathbf{c}_{4}\right)$ applied to e_{1} (e_{1} is some $w_{i} w_{t}$ with $i-1<i<t$), the edge $w_{i-1} w_{i}$ has to cross $O Z$ before x_{1}^{\prime} (the crossing point of e_{1} with $O Z$), and therefore, the last bottom edge of $S\left(w_{i}\right)$, edge $e_{k^{\prime}}^{\prime}$, crosses $O Z$ at a point $y_{k^{\prime}}^{\prime}$ placed before x_{1}^{\prime} (or $e_{k^{\prime}}^{\prime}$ coincides with $w_{i} w_{i-1}$). In this case, we draw $O w_{i}$ in Way 2, which is the following: $O w_{i}$ follows the curve $O Z$ (very close to that curve, slightly clockwise) until it reaches the crossing point $y_{k^{\prime}}^{\prime}$, then $O w_{i}$ continues close to the arc $y_{k^{\prime}}^{\prime} w_{i}$ on $e_{k^{\prime}}^{\prime}$ until it reaches the endpoint w_{i}; see Figure 36 right.

In both ways, we consider the curve $O w_{i}$ as consisting of two arcs a_{1} and b_{1}. In Way 1, the arcs of $O w_{i}$ are first a_{1} glued to $O z_{1}^{\prime}$ and second b_{1} glued to $z_{1}^{\prime} w_{i}$. In Way 2 , the arcs are first a_{1} glued to $O y_{k^{\prime}}^{\prime}$ and then b_{1} glued to $y_{k^{\prime}}^{\prime} w_{i}$.

Figure 36 Case 1 and Case 2.

Symmetric constructions are used for drawing $Z w_{i}$. When e_{k}, the last top edge of $S\left(w_{i}\right)$, first crosses $w_{i-1} Z$ at a point $z_{k}^{\prime}, Z w_{i}$ is drawn in Way 1: $Z w_{i}$ consists of the arcs a_{2} and b_{2} glued to $Z z_{k}^{\prime}$ and $z_{k}^{\prime} w_{i}$ respectively. When e_{k} first crosses $O w_{i-1}$, then $O Z$ at a point x_{k}^{\prime}, the first bottom edge of $S\left(w_{i}\right)$, edge e_{1}^{\prime}, has to cross $O Z$ at a point y_{1}^{\prime} placed after x_{k}^{\prime}. Then, we build $Z w_{i}$ in Way 2: it consists of an arc a_{2} (counterclockwise) close to $Z y_{1}^{\prime}$, then an arc b_{2} glued to $y_{1}^{\prime} w_{i}$ on edge e_{1}^{\prime}.

As construction Way 2 can only be used in one of the two curves $O w_{i}, Z w_{i}$, we only need to see that Invariants 1.2 hold in two cases: Case 1, when construction Way 1 is used for both $O w_{i}$ and $w_{i} Z$, and Case 2, when Way 2 is used for $O w_{i}$ and Way 1 for $w_{i} Z$. The case when Way 2 is used for $Z w_{i}$ and Way 1 for $O w_{i}$ is symmetric to Case 2; see Figure 36

To prove that Invariants 2 holds for D_{i}^{\prime}, we will see that in both Case 1 and Case 2, each edge of D_{n} crosses at most one of the $\operatorname{arcs} a_{1}, b_{1}$ and at most one of the $\operatorname{arcs} a_{2}, b_{2}$ of D_{i}^{\prime}.

Case 1.-
By construction, the curves $O w_{i}$ and $w_{i} Z$ do not cross each other, the triangular region $O Z w_{i}$ contains the region $O Z w_{i-1}$, and $O w_{i}, w_{i} Z$ cannot properly cross any edge $O w_{l}, w_{l} Z$, with $l<i$, because these last edges are inside $O Z w_{i}$. Notice that the order of the edges around O and Z are counterclockwise $O Z, O w_{1}, \ldots, O w_{i}$ and $Z O, Z w_{i}, \ldots, Z w_{1}$, respectively. Moreover, by Property $\left(\mathbf{a}_{2}\right)$ all the vertices in the triangular region $x_{1}^{\prime} x_{k}^{\prime} w_{i}$ must be reached from w_{i} via a bottom edge (where $x_{1}^{\prime}, \ldots, x_{k}^{\prime}$ are the crossing points of the top edges of $S\left(w_{i}\right)$ with curve $\left.O Z\right)$. On the other hand, all the vertices $w_{s}, s \leq i-1$ are in $O Z w_{i-1}$ (w_{i-1} on the boundary), and these are precisely the endpoints of the bottom edges of $S\left(w_{i}\right)$. Therefore, the subregion $z_{1}^{\prime} w_{i-1} z_{k}^{\prime} w_{i}$ must be empty, and $O Z w_{i}$ contains all w_{s} with $s<i$ and does not contain vertices $w_{t}, t>i$.

To prove the simplicity of D_{i}^{\prime}, it is enough to prove that for any edge $w_{s} w_{t}$ of D_{n}, the drawing formed by $O w_{i}, w_{i} Z, w_{s} w_{t}$ is simple. The following subcases $1,2,3,4,5$ prove that simplicity for edges $w_{s} w_{t}$ when $s=i, s=i-1, s<t<i-1, s<i-1<i<t$ and $i<s<t$, respectively.
-1 No edge of $S\left(w_{i}\right)$ can cross any of the arcs $a_{1}, b_{1}, a_{2}, b_{2}$.
For the arcs b_{1}, b_{2}, this is obvious since these arcs are glued to edges of $S\left(w_{i}\right)$. Besides, no top edge of $S\left(w_{i}\right)$ can cross arc a_{1} because this arc follows the curve $O w_{i-1}$ until precisely the first crossing point with a top edge of $S\left(w_{i}\right)$. By the same reason, top edges of $S\left(w_{i}\right)$ cannot cross a_{2} either. Finally, by the simplicity of D_{i-1}^{\prime} the bottom edge $w_{i} w_{i-1}$ cannot $\operatorname{cross} a_{1}$ or a_{2}, and by Property ($\mathbf{c}_{\mathbf{3}}$) applied to an edge $w_{i} w_{s}$ with $s<i-1<i$, this bottom edge of $S\left(w_{i}\right)$ cannot cross $O w_{i-1}$ or $Z w_{i-1}$, and therefore it cannot cross a_{1} or a_{2}.
-2 Any edge of $S\left(w_{i-1}\right)$ crosses at most one of the arcs a_{1}, b_{1} and at most one of the arcs a_{2}, b_{2}.
Since the edges of $S\left(w_{i-1}\right)$ cannot cross the arc a_{1} nor the arc a_{2}, the result follows.

Figure 37 Left: $w_{s} w_{t}$ crosses in the order $O Z, b_{2}, a_{2}$. Right: It crosses in the order $O Z, b_{1}, a_{1}$.

Figure $38 w_{s} w_{t}$ crosses b_{2} and a_{2}. The edge $w_{t} w_{i-1}$ cannot be drawn.
-3 Any edge $e=w_{s} w_{t}, s<t<i-1$ crosses at most one of the arcs a_{1}, b_{1} and at most one of the $\operatorname{arcs} a_{2}, b_{2}$.
Suppose that the edge $w_{s} w_{t}$ crosses both a_{2} and b_{2}. By Property ($\left.\mathbf{c}_{\boldsymbol{2}}\right)$ this edge first crosses $O Z$ at a point x, then reaches a_{2} at a point z before finishing at w_{t}. Since $b_{2}=w_{i} z_{k}^{\prime}$ is outside $O Z w_{i-1}$ the crossing of b_{2} with $w_{s} w_{t}$ must be at a point in the $\operatorname{arc} x z$, as shown in Figure 37left. Observe that after crossing b_{2}, which is an arc on the last top edge of $S\left(w_{i}\right)$, the edge $w_{s} w_{t}$ enters in $O Z w_{i-1}$ crossing a_{2}, therefore it cannot cross again the last top edge of $S\left(w_{i}\right)$, and thus w_{t} has to be placed inside the region $x_{k}^{\prime} Z z_{k}^{\prime}$. A totally symmetric case occurs when the edge $w_{s} w_{t}$ crosses both a_{1} and b_{1}, then w_{t} must be inside the region $O x_{1}^{\prime} z_{1}^{\prime}$, see Figure 37 right.
Let us analyze only the first case, when $e=w_{s} w_{t}$ crosses $O Z, b_{2}, a_{2}$ in that order, because the other case is totally symmetric. We are going to prove that the edge $w_{t} w_{i-1}$ cannot be drawn without breaking the simplicity. By Property $\left(\mathbf{c}_{\boldsymbol{2}}\right)$ applied to $w_{s} w_{t}$, the crossing point of $w_{t} w_{i-1}$ with $O Z$, must be placed before x on $O Z$. On the other hand, if x^{\prime} is the crossing point of $w_{i-1} w_{i}$ with $O Z$, by Property (\mathbf{c}_{4}) applied to e_{k} (the last top edge of $\left.S\left(w_{i}\right)\right)$, the point x^{\prime} has to be placed before x_{k}^{\prime}. Then, by Property ($\mathbf{c}_{\boldsymbol{3}}$ applied to $w_{t} w_{i}$ $(t<i-1<i)$, as w_{t} is in region $x^{\prime} Z w_{i-1}$, the edge $w_{t} w_{i-1}$ has to cross $O Z$ after x^{\prime}. Therefore, the edge $w_{t} w_{i-1}$ should cross $O Z$ after x^{\prime} and before x, and this is not possible when x is placed before x^{\prime}; see Figure 38 (left). Finally, if x is placed after x^{\prime}, then x^{\prime} is inside the region $x Z z, w_{i}$ outside that region, and therefore the arc $x^{\prime} w_{i}$ has to cross the $\operatorname{arc} x z$ at some point y, see Figure 38 (right). But then, the edge $w_{t} w_{i-1}$ has to cross $O Z$ on the arc $x^{\prime} x$, entering into the region $x^{\prime} x y$, bounded by arcs on the edges $w_{s} w_{t}$ and $w_{i} w_{i-1}$, that cannot be crossed by $w_{t} w_{i-1}$ without breaking the simplicity of D_{n}.

Figure 39 Left: Case 2 for drawing $O w_{i}, Z w_{i}$. Right: Edges of $S\left(w_{i-1}\right)$ at most cross one of a_{1}, b_{1}.
-4 Any edge $w_{s} w_{t}, s<i-1<i<t$ crosses at most one of the $\operatorname{arcs} a_{1}, b_{1}$ or a_{2}, b_{2}.
Observe that w_{s} is inside the triangular region $O Z w_{i-1}$ and w_{t} is outside that region. Then, by Property ($\left.\mathbf{c}_{\boldsymbol{3}}\right)$, the edge $w_{s} w_{t}$ must first cross $O Z$ and it cannot enter the region $O Z w_{i-1}$ again. Therefore, it cannot cross a_{1} or a_{2}.
-5 Any edge $w_{s} w_{t}, i<s<t$ crosses at most one of the $\operatorname{arcs} a_{1}, b_{1}$ or a_{2}, b_{2}.
First observe that by Property $\left(\mathbf{b}_{\mathbf{2}}\right)$ applied to $S\left(w_{i}\right)$, the edge $w_{s} w_{t}$ cannot cross both b_{1} and b_{2} (because $w_{i} w_{s}$ and $w_{i} w_{t}$ are top edges of that star). Besides, w_{s} and w_{t} are outside the triangular region $O Z w_{i}$, therefore if edge $w_{s} w_{t}$ crosses b_{1} or b_{2} it has to cross also $z_{1}^{\prime} w_{i-1}$ or $w_{i-1} z_{k}^{\prime}$. Finally, according to Property ($\left.\mathbf{c}_{4}\right)$ the edge $w_{s} w_{t}$ must enter to $O Z w_{i-1}$ crossing only one of $a_{1}, z_{1}^{\prime} w_{i-1}, a_{2}, w_{i-1} z_{k}^{\prime}$, then leaving through $O Z$, therefore it cannot cross both a_{1}, b_{1} or both a_{2}, b_{2}.

Case 2.-

Again, by the method that the construction is done, the curves $O w_{i}$ and $w_{i} Z$ do not cross each other and the triangular region $O Z w_{i}$ contains the region $O Z w_{i-1}$, hence $O w_{i}$, $w_{i} Z$ cannot properly cross any edge $O w_{l}, w_{l} Z$, with $l<i$. See Figure 36 right. Moreover, by Property $\left(\mathbf{a}_{2}\right)$ all the vertices in region $O w_{i-1} z_{k}^{\prime} w_{i} y_{k^{\prime}}^{\prime}$ are endpoints of bottom edges of $S\left(w_{i}\right)$, but all these endpoints w_{1}, \ldots, w_{i-1} of the bottom edges of $S\left(w_{i}\right)$ must be inside the region $O Z w_{i-1}$ (w_{i-1} on the boundary). Therefore, region $O w_{i-1} z_{k}^{\prime} w_{i} y_{k^{\prime}}^{\prime}$ is empty and $O Z w_{i}$ only contains inside the $i-1$ endpoints w_{1}, \ldots, w_{i-1}. So, Invariant 1 , holds.

Like in Case 1 , to prove the simplicity of D_{i}^{\prime} we analyze the same five subcases.
-1 No edge of $S\left(w_{i}\right)$ can cross any of the arcs $a_{1}, b_{1}, a_{2}, b_{2}$.
As in Case 1, no edge of $S\left(w_{i}\right)$ can cross the arcs b_{1}, b_{2}, no a top edge of that star can cross a_{2}. Besides, by Property (\mathbf{c}_{3}) a bottom edge $w_{i} w_{s}, s<i-1<i$, cannot cross $Z w_{i-1}$, therefore it cannot cross a_{2} either. Finally, a top edge cannot cross either arc a_{1}, (because the crossing points $x_{1}^{\prime}, \ldots, x_{k}^{\prime}$ are after $y_{k^{\prime}}^{\prime}$), and a bottom edge cannot cross $a_{1}=O y_{k^{\prime}}^{\prime}$ because $y_{k^{\prime}}^{\prime}$ is the first crossing point of those edges.
-2 Any edge of $S\left(w_{i-1}\right)$ crosses at most one of the arcs a_{1}, b_{1} or one of a_{2}, b_{2}.
See Figure 39 left. Since they cannot cross a_{2}, we only have to prove that one of this edges cannot cross both a_{1} and b_{1}. In the definition of Way 2 , we have seen that the crossing point x^{\prime} of $w_{i} w_{i-1}$ with $O Z$ must be placed before x_{1}^{\prime} and after $y_{k^{\prime}}^{\prime}$. Hence, if x_{t} is the crossing point on $O Z$ of a top edge $w_{i} w_{t}, t>i$, then x^{\prime} is placed between $y_{k^{\prime}}^{\prime}$ and x_{t}. But then, by Property ($\left(\mathbf{c}_{4}\right)$ applied to $w_{i} w_{t}, i-1<i<t$, the crossing point of
$w_{i-1} w_{t}$ on $O Z$ must be placed between x^{\prime} and x_{t}, so after $y_{k^{\prime}}^{\prime}$. Therefore, the top edges $w_{i-1} w_{t}, t>i-1$ of $S\left(w_{i-1}\right)$ cannot cross a_{1}.
Finally, suppose that an edge $w_{s} w_{i-1}, s<i-1$ crosses both a_{1} and b_{1}. Necessarily, $w_{s} w_{i-1}$ first crosses $O Z$ at a point x, then b_{1} at a point y, finishing at w_{i-1}. See Figure 39 right. Then, the vertices w_{i}, w_{s} must be both inside the region $x Z w_{i-1}$. However, the bottom edge $w_{i} w_{s}$ cannot cross a_{1}, (remember that $y_{k^{\prime}}^{\prime}$ is the first crossing point of those bottom edges). Therefore, by Property ($\left(\mathbf{c}_{\boldsymbol{3}}\right), w_{i} w_{s}$ cannot cross $O w_{i-1}$ or $w_{i-1} Z$, and it has to enter in $O Z w_{i-1}$ crossing through the bottom of the arc $y_{k^{\prime}}^{\prime} Z$, but then it should first cross the arc $x w_{i-1}$ (on $w_{s} w_{i-1}$), contradicting the simplicity of D_{n}.
-3 Any edge $e=w_{s} w_{t}, s<t<i$ crosses at most one of the arcs a_{1}, b_{1} or one of a_{2}, b_{2}.
A scheme of this situation is shown in Figure 40, where the two blue curves mark the boundary of regions $O Z w_{s}$ and $O Z w_{t}$.

Figure 40 Case $2-3$

On the contrary, suppose that $w_{s} w_{t}$ crosses both a_{1} and b_{1}. Necessarily, it first crosses a_{1} at a point x, next b_{1} at a point y, then entering in region $O Z w_{i-1}$ by crossing either $O w_{i-1}$ or $w_{i-1} Z$ at a point z, until reaching w_{t}. See Figure 41 left. But then, by the same reasonings as in the previous Case $2-2$ the edge $w_{i} w_{s}$ cannot be drawn. As above, w_{s} and w_{i} are in the region $x Z z$, if z is on $w_{i-1} Z$, or in the region $x Z w_{i-1} z$ when z is on $O w_{i-1}$. However, $w_{i} w_{s}$ cannot cross a_{1} or $O w_{i-1}$ or $w_{i-1} Z$, so it has to enter in $O Z w_{i-1}$ crossing through the arc $y_{k^{\prime}}^{\prime} Z$, and therefore so it should first cross the arc $x z$ (on $w_{s} w_{t}$), a contradiction.

Figure 41 Case 2 Left, $w_{s} w_{t}$ crosses a_{1}, then b_{1}. Right, $w_{s} w_{t}$ crosses b_{2}, then a_{2}.
Finally, suppose that $w_{s} w_{t}$ crosses a_{2} and b_{2}. We are exactly in the same situation as in Case 1-3 (see Figure 38): necessarily the edge first crosses $O Z$ at a point x, next crosses b_{2}, then reaches a_{2} at a point z before finishing at w_{t}. And we have seen that a contradiction is reached in this situation. It does not matter if the edge $w_{s} w_{t}$ crosses a_{1} (like in Figure 41 right) or not.

Figure 42 Case $2-4$
-4 Any edge $w_{s} w_{t}, s<i-1<i<t$ crosses at most one of the $\operatorname{arcs} a_{1}, b_{1}$ or a_{2}, b_{2}.
By Property ($\mathbf{c}_{\mathbf{3}}$, an edge $w_{s} w_{t}$ with $s<i<t$ cannot cross $w_{i-1} Z$, hence, it cannot cross a_{2}. So we have to prove that it cannot cross both a_{1} and b_{1}. Let us see that in this situation the edge $w_{s} w_{i}$ cannot be drawn without breaking the simplicity of the drawing. If $w_{s} w_{t}, s<i-1<t$ crosses both a_{1} and b_{1}, necessarily it starts crossing $O Z$ through a_{1}, then crossing b_{1} at a point y, finishing at vertex w_{t}, see Figure 42. Then, w_{s} has to be inside the region $w_{i} y w_{t}$. On the other hand, the bottom edge $w_{i} w_{s}$ must start from w_{i} counterclockwise after the arc b_{2} (on the last top edge of $S\left(w_{i}\right)$), and before the arc b_{1} (on the last bottom edge of $S\left(w_{i}\right)$). Therefore, $w_{i} w_{s}$ should start outside the region $w_{i} y w_{t}$, and should finish at w_{s}, placed inside that region. However, $w_{i} w_{s}$ cannot cross any of the arcs of the boundary of $w_{i} y w_{t}$, because they are on edges incident to either w_{i} or w_{s}.

Figure 43 Case $2 w_{s} w_{t}$ enters into region R_{i} crossing either b_{1} or b_{2} or a_{2}.
-5 Any edge $w_{s} w_{t}, i<s<t$ crosses at most one of the arcs a_{1}, b_{1} or a_{2}, b_{2}.
Since w_{s} and w_{t} are outside the triangular region $O Z w_{i-1}$, by Property $\left(\mathbf{c}_{4}\right)$ w $w_{s} w_{t}$ must cross first either $O w_{i-1}$ or $w_{i-1} Z$, and then $O Z$. On the other hand, w_{s} and w_{t} are outside the region $R=y_{k^{\prime}}^{\prime} Z z_{k}^{\prime} w_{i}$, bounded by the four arcs $y_{k^{\prime}}^{\prime} Z, a_{2}, b_{2}, b_{1}$, so edge $w_{s} w_{t}$ has to enter into that region crossing first either b_{1} or b_{2} or a_{2} and it has to cross either two or four of those arcs. Suppose that it enters by crossing b_{1}, then it cannot exit by crossing b_{2} or a_{2}, because then all the top edges of $S\left(w_{i}\right)$ would be crossed, contradicting Property $\left(\mathbf{b}_{\mathbf{2}}\right)$ So, it has to exit crossing first $O w_{i-1}$ or $w_{i-1} Z$, then crossing $y_{k^{\prime}}^{\prime} Z$. After crossing $y_{k^{\prime}}^{\prime} Z$ it cannot cross again the boundary $O w_{i-1}, w_{i-1} Z$, so it cannot cross a_{2}, and therefore in this case, only b_{1} and $y_{k^{\prime}}^{\prime} Z$ can be crossed. See Figure 43
Similarly, if $w_{s} w_{t}$ enters in R crossing through b_{2}, then it cannot exit by crossing b_{1},
that contradicts the Property $\left(\mathbf{b}_{\mathbf{2}}\right)$, not by crossing a_{2}, because then the boundary $O w_{i-1}, w_{i-1} Z$ would be crossed twice, so, it has to exit crossing $O w_{i-1}$ or $w_{i-1} Z$, then crossing $y_{k^{\prime}}^{\prime} Z$, and again after that crossings, the edge cannot enter again in R. Therefore in this case, only b_{2} and $y_{k^{\prime}}^{\prime} Z$ are crossed.
Finally, if $w_{s} w_{t}$ enters in R by crossing a_{2}, again, it cannot exit by crossing b_{1}, that contradicts the Property $\left(\mathbf{b}_{\mathbf{2}}\right)$, not by crossing b_{2}, the boundary $O w_{i-1}, w_{i-1} Z$ would be crossed twice, so, it has to exit crossing $y_{k^{\prime}}^{\prime} Z$. After crossing $y_{k^{\prime}}^{\prime} Z$, the edge cannot cross b_{1} or b_{2}, because it should cross both, contradicting again Property ($\mathbf{b}_{\mathbf{2}}$). Therefore in this last case, only a_{2} and $y_{k^{\prime}}^{\prime} Z$ are crossed.

These 5 subcases prove that Invariant 2 holds also for D_{i}^{\prime} in Case 2 .

Figure 44 Final Step.

Final Step.- After D_{n-1}^{\prime} has been built, we have to add the curves $O w_{n}, w_{n} Z$ to D_{n-1}^{\prime}, where w_{n} is the last vertex, the one with only bottom edges in $S\left(w_{n}\right)$. That is done as in Step 1, changing bottom for top, and counterclockwise by clockwise; see Figure 44. Again, by construction, the curves $O w_{n}$ and $w_{n} Z$ do not cross each other, the triangular region $O Z w_{n}$ contains the region $O Z w_{n-1}$, and $O w_{n}, w_{n} Z$ cannot properly cross any edge $O w_{l}$, $w_{l} Z$, with $l<n$. Since the arcs a_{1}, b_{1} forming the curve $O w_{n}$ are build in Way 2, the reasonings used in Cases $2 \sqrt[-1]{2-2} 2-3$, to prove the simplicity for the arcs a_{1}, b_{1}, also work in this final step, with $i=n$. By symmetry, the same arguments prove the simplicity for the $\operatorname{arcs} a_{2}, b_{2}$.

This finishes the proof: The last drawing obtained, D_{n}^{\prime}, satisfies Invariants 1. 2 Then, taking O and Z as vertices, it is the sought drawing D_{n+2}, the one satisfying the Properties (P1) and (P2).

[^0]: This work (without appendix) is available at the 38th International Symposium on Computational Geometry (SoCG 2022). Some results of this work have also been presented at the Computational Geometry: Young Researchers Forum in 2021 [3] and at the Encuentros de Geometría Computacional 2021 [4].

[^1]: ${ }^{1}$ In their definition for simple drawings, convex means that there is a labeling of the vertices to $v_{1}, v_{2}, \ldots, v_{n}$ such that $\left(v_{i}, v_{j}\right)(i<j)$ crosses $\left(v_{k}, v_{l}\right)(k<l)$ if and only if $i<k<j<l$ or $k<i<l<j$, and twisted means that there is a labeling of the vertices to $v_{1}, v_{2}, \ldots, v_{n}$ such that $\left(v_{i}, v_{j}\right)(i<j) \operatorname{crosses}\left(v_{k}, v_{l}\right)$ $(k<l)$ if and only if $i<k<l<j$ or $k<i<j<l$.

