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Abstract. Simple drawings are drawings of graphs in which two edges
have at most one common point (either a common endpoint, or a proper
crossing). It has been an open question whether every simple drawing
of a complete bipartite graph Km,n contains a plane spanning tree as a
subdrawing. We answer this question to the positive by showing that for
every simple drawing of Km,n and for every vertex v in that drawing, the
drawing contains a shooting star rooted at v, that is, a plane spanning
tree containing all edges incident to v.
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1 Introduction

A simple drawing is a drawing of a graph on the sphere S2 or, equivalently, in the
Euclidean plane where (1) the vertices are distinct points in the plane, (2) the
edges are non-self-intersecting continuous curves connecting their incident points,
(3) no edge passes through vertices other than its incident vertices, (4) and every
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pair of edges intersects at most once, either in a common endpoint, or in the
relative interior of both edges, forming a proper crossing. Simple drawings are
also called good drawings [4,6] or (simple) topological graphs [10,11]. In star-
simple drawings, the last requirement is softened so that edges without common
endpoints are allowed to cross several times. Note that in any simple or star-
simple drawing, there are no tangencies between edges and incident edges do not
cross. If a drawing does not contain any crossing at all, it is called plane.

The search for plane subdrawings of a given drawing has been a widely
considered topic for simple drawings of the complete graph Kn which still holds
tantalizing open problems. For example, Rafla [13] conjectured that every simple
drawing of Kn contains a plane Hamiltonian cycle, a statement which is by now
known to be true for n ≤ 9 [1] and several classes of simple drawings (e.g., 2-page
book drawings, monotone drawings, cylindrical drawings), but still remains open
in general. A related question concerns the least number of pairwise disjoint
edges in any simple drawing of Kn. The currently best lower bound is Ω(n1/2)[2],
which is improving over several previous bounds [7,8,9,11,12,14,15], while the
trivial upper bound of n/2 would be implied by a positive answer to Rafla’s
conjecture. A structural result of Fulek and Ruiz-Vargas [9] implies that every
simple drawing of Kn contains a plane sub-drawing with at least 2n− 3 edges.

We will focus on plane trees. Pach et al. [11] proved that every simple drawing

of Kn contains a plane drawing of any fixed tree with at most c log1/6 n vertices.
For paths specifically, every simple drawing of Kn contains a plane path of length
Ω( logn

log logn ) [2,16]. Further, it is trivial that simple drawings and star-simple
drawings of Kn contain a plane spanning tree, because every vertex is incident
to all other vertices and adjacent edges do not cross. Thus, the vertices together
with all edges incident to one vertex form a plane spanning tree. We call this
subdrawing the star of that vertex.

In this work, we consider the search for plane spanning trees in drawings of
complete bipartite graphs. Finding plane spanning trees there is more involved
than for Kn. In fact, not every star-simple drawing of a complete bipartite graph
contains a plane spanning tree; see Fig. 1.

Fig. 1. Star-simple drawing of K2,3 that does not contain a plane spanning tree.
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Fig. 2. Left: Simple drawing of K3,3. Right: its stereographic projection from r1.

It is not hard to see that straight-line drawings of complete bipartite graphs
always contain plane spanning trees. Consider the star of an arbitrary vertex v.
The prolongation of these edges creates a set of rays originating at v that partitions
the plane into wedges, which we divide into two parts using the angle bisectors.
We connect the vertices in each part of a wedge to the point on the ray that
bounds it. These connections together with the star of v form a plane spanning
tree of a special type called shooting star. A shooting star rooted at v is a plane
spanning tree with root v that has height 2 and contains the star of vertex v.
Aichholzer et al. showed in [3] that simple drawings of K2,n and K3,n, as well as
so-called outer drawings of Km,n, always contain shooting stars. Outer drawings
of Km,n [5] are simple drawings in which all vertices of one bipartition class lie
on the outer boundary.

Results. We show in Section 2 that every simple drawing of Km,n contains
shooting stars rooted at an arbitrary vertex of Km,n. The tightness of the
conditions is shown in Section 3 and in Section 4 we discuss algorithmic aspects.

2 Existence of Shooting Stars

In this section, we prove our main result, the existence of shooting stars:

Theorem 1. Let D be a simple drawing of Km,n and let r be an arbitrary vertex
of Km,n. Then D contains a shooting star rooted at r.

Proof. We can assume that D is drawn on a point set P = R ∪ B, R =
{r1, . . . , rm}, B = {b1, . . . , bn}, in which the points in the two bipartition classes
R and B are colored red and blue, respectively. Without loss of generality let
r = r1.

To simplify the figures, we consider the drawing D on the sphere and apply a
stereographic projection from r onto a plane. In that way, the edges in the star
of r are represented as (not necessarily straight-line) infinite rays; see Fig. 2. We
will depict them in blue. In the following, we consider all edges oriented from
their red to their blue endpoint. To specify how two edges cross each other, we
introduce some notation. Consider two crossing edges e1 = ribk and e2 = rjbl
and let x be their crossing point. Consider the arcs xri and xbk on e1 and xrj and
xbl on e2. We say that e2 crosses e1 in clockwise direction if the clockwise cyclic
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Fig. 3. Left: e2 crosses e1 in clockwise direction. Right: e2 crosses e1 in counterclockwise
direction.

order of these arcs around the crossing x is xri, xrj , xbk, and xbl. Otherwise, we
say that e2 crosses e1 in counterclockwise direction; see Fig. 3.

We prove Theorem 1 by induction on n. For n = 1 and any m ≥ 1, the whole
drawing D is a shooting star rooted at any vertex, and in particular at r.

Assume that the existence of shooting stars rooted at any vertex has been
proven for any simple drawing of Km,n′ with n′ < n. By the induction hypothesis,
the subdrawing of D obtained by deleting the blue vertex b1 and its incident
edges contains at least one shooting star rooted at r. Of all such shooting stars,
let S be one whose edges have the minimum number of crossings with rb1, and
let M be the set of edges of S that are not incident to r. We will show that
S ∪{rb1} is plane and hence forms the desired shooting star. Note that it suffices
to show that M ∪ {rb1} is plane, since rb1 cannot cross any edges of {

⋃n
j=2 rbj}

in any simple drawing.

Assume for a contradiction that rb1 crosses at least one edge in M . When
traversing rb1 from b1 to r, let x be the first crossing point of rb1 with an edge
rkbt in M . W.l.o.g., when orienting rb1 from r to b1 and rkbt from rk to bt, rkbt
crosses rb1 in counterclockwise direction (otherwise we can mirror the drawing).

Suppose first that the arc rkx (on rkbt and oriented from rk to x) is crossed
in counterclockwise direction by an edge incident to b1 (and oriented from the red
endpoint to b1). Let e = rlb1 be such an edge whose crossing with rkx at a point
y is the closest to x. Otherwise, let e be the edge rkb1 and y be the point rk. In
the remaining figures, we represent in blue the edges of the star of r, in red the
edges in M , and in black the edge e.

We distinguish two cases depending on whether e crosses an edge of the star
of r. The idea in both cases is to define a region Γ and, inside it, redefine the
connections between red and blue points to reach a contradiction.

Case 1: e does not cross any edge of the star of r. Let Γ be the closed region
of the plane bounded by the arcs yb1 (on e), b1x (on rb1), and xy (on rkbt); see
Fig. 4. Observe that all the blue points bj lie outside the region Γ and that for
all the red points ri inside region Γ , the edge rib1 must be in Γ . Let MΓ denote
the set of edges rib1 with ri ∈ Γ and note that rkb1 ∈ MΓ . Consider the set
M ′ of red edges obtained from M by replacing, for each red point ri ∈ Γ , the
(unique) edge incident to ri in M by the edge rib1 in MΓ , and keeping the other
edges in M unchanged. In particular, the edge rkbt has been replaced by the
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Fig. 4. Illustration of Case 1.

edge rkb1. The edges in MΓ neither cross each other nor cross any of the blue
edges rbj . Moreover, we now show that the non-replaced edges in M must lie
completely outside Γ . These edges can neither cross rkbt (by definition of M)
nor the arc b1x (on rb1). Thus, if they are incident to b1, they cannot cross the
boundary of Γ ; If they are not incident to b1, both their endpoints lie outside Γ
and they can only cross the boundary of Γ at most once (namely, on the arc b1y).
Therefore, M ′ satisfies that M ′ ∪ {

⋃n
j=2 rbj} is plane and has fewer crossings

with rb1 than M , since at least the crossing x has been eliminated and no new
crossings have been added. This contradicts the definition of M as the one with
the minimum number of crossings with rb1.

Case 2: e crosses the star of r. When traversing e from rk or rl (depending
on the definition of e) to b1, let I = {α, β, . . . , ρ} be the indices of the edges
of the star of r in the order as they are crossed by e and let yα, . . . , yρ be the
corresponding crossing points on e. Note that, when orienting e from rk or rl
to b1, the edges rbξ, ξ ∈ I, oriented from r to bξ, cross e in counterclockwise
direction, since they can neither cross rkbt (by definition of M) nor rb1.

The three arcs ryα (on rbα), yαb1 (on e), and b1r divide the plane into two
(closed) regions, Πleft, containing vertex rk, and Πright, containing vertex bt. For
each ξ ∈ I, let Mξ be the set of red edges of M incident to some red point in
Πright and to bξ. Note that all the edges in Mξ (if any) must cross the edge e.
When traversing e from rk or rl to b1, we denote by xξ, zξ the first and the
last crossing points of e with the edges of Mξ ∪ rbξ, respectively; see Fig. 5 for
an illustration. We remark that both xξ and zξ might coincide with yξ and, in
particular, if Mξ = ∅ then xξ = yξ = zξ.

We now define some regions in the drawing D. Suppose first that there are
edges in M (oriented from the red to the blue point) that cross rb1 (oriented
from r to b1) in clockwise direction. Let rsbη be the edge in M whose clockwise
crossing with rb1 at a point x′ is the closest one to x (recall that the arc b1x on
rb1 is not crossed by edges in M). Then, if η /∈ I, we denote by Wη the region
bounded by the arcs rx′ (on rb1), x′bη (on rsbη), and rbη and not containing b1;
see Fig. 5 (left). If η ∈ I, we define Wη as the region bounded by the arcs rx′ (on
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Fig. 5. Illustration of Case 2. Region Πright is striped in gray, region Γ is shaded in blue,
and regions in

⋃
ξ∈IWξ ∪Wη are shaded in yellow. Left: bη does not cross e (η /∈ I).

Right: bη crosses e (η ∈ I).

rb1), x′bη (on rsbη), bηzη, zηyη (on e), and yηr (on rbη) and not containing b1;
see Fig. 5 (right). If no edges in M cross rb1 in clockwise direction, then η is
undefined and we set Wη = ∅ for convenience. Moreover, for each ξ ∈ I \ {η},
we define Wξ as the region bounded by the arcs xξbξ, bξzξ, and zξxξ (and not
containing b1); see again Fig. 5.

We can finally define the region Γ for Case 2, which is the region obtained
from Πleft by removing the interior of all the regions Wξ, ξ ∈ I plus region Wη if
η /∈ I (otherwise it is already contained in

⋃
ξ∈IWξ). Now consider the set of red

and blue vertices contained in Γ . Let J denote the set of indices such that for all
j ∈ J , the blue point bj lies in Γ (note that 1 ∈ J). Since bt is not in Γ , we can
apply the induction hypothesis to the subdrawing of D induced by the vertices
in Γ plus r. Hence there exists a set of edges MΓ connecting each red point in Γ
with a blue point bj , j ∈ J such that MΓ ∪ {

⋃
j∈J rbj} is plane. Moreover, all

the edges in MΓ lie entirely in Γ : An edge in MΓ cannot cross any of the edges
rbj , with j ∈ J . Thus, it cannot leave Πleft, as otherwise it would cross e twice.
Further, if it entered one of the regions in

⋃
ξ∈IWξ ∪Wη, it would have to leave

it crossing e, and then it could not re-enter Γ .

Consider the set M ′ of red edges obtained from M by replacing, for each red
point ri ∈ Γ , the edge ribξ in M by the edge ribj , j ∈ J , in MΓ , and keeping
the other edges in M unchanged. In particular, the edge rkbt has been replaced
by some edge rkbj , j ∈ J . The edges in MΓ neither cross each other nor cross
any of the blue edges rbj , j ∈ J nor any of the other ones, lying completely
outside Γ . Moreover, the non-replaced edges in M cannot enter Γ since the only
boundary part of Γ that they can cross are arcs on e. Therefore, M ′ satisfies
that M ′ ∪ {

⋃n
j=2 rbj} is plane and has fewer crossings with rb1 than M . This

contradicts the definition of M as the one with the minimum number of crossings
with rb1. ut
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Fig. 6. Left: A simple drawing of Km,n where no plane subdrawing has more edges
than a shooting star. Right: convex (n+m)-gon on the convex hull (green).

3 Some Observations on Tightness

There exist simple drawings of Km,n in which every plane subdrawing has at most
as many edges as a shooting star. For example, consider a straight-line drawing of
Km,n where all vertices are in convex position such that all red points are next to
each other in the convex hull; see Fig. 6 (left). The convex hull is an (m+ n)-gon
which shares only two edges with the drawing of Km,n; see Fig. 6 (right). All
other edges of the drawing of Km,n are diagonals of the polygon. As there can
be at most (m+ n)− 3 pairwise non-crossing diagonals in a convex (m+ n)-gon,
any plane subdrawing of this drawing of Km,n contains at most m+ n− 1 edges.

Furthermore, both requirements from Theorem 1—the drawing being simple
and containing a complete bipartite graph—are in fact necessary: As mentioned
in the introduction, not all star-simple drawings of Km,n contain a plane spanning
tree. Further, if in the example in Fig. 6 (left), we delete one of the two edges
of Km,n on the boundary of the convex hull, then any plane subdrawing has at
most m+ n− 2 edges and hence it cannot contain any plane spanning tree.

4 Computing Shooting Stars

The proof of Theorem 1 contains an algorithm with which we can find shooting
stars in given simple drawings. We start with constructing the shooting star for
a subdrawing that is a Km,1 and then inductively add more vertices. Every time
we are adding a new vertex, the shooting star of the step before is a set fulfilling
all requirements of M1 ∪{

⋃n
j=2 rbj} in the proof. By replacing edges as described

in the proof, we obtain a new set with the same properties and fewer crossings.
We continue replacing edges until we obtain a set of edges (M in the proof) that
form a shooting star for the extended vertex set. We remark that the runtime of
this algorithm might be exponential, as finding the edges of MΓ might require
solving the problem for the subgraph induced by Γ . However, we believe that
there exists a polynomial-time algorithm for this task.

Open Problem 1 Given a simple drawing of Km,n, is there a polynomial-time
algorithm to find a plane spanning tree contained in the drawing?
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For some relevant classes of simple drawings ofKm,n we can efficiently compute
shooting stars. This is the case of outer drawings. In [3] it was shown that these
drawings contain shooting stars and this existential proof leads directly to a
polynomial-time algorithm to find shooting stars in outer drawings. In Appendix A
we show that monotone drawings of Km,n, which are simple drawings in which
all edges are x-monotone curves, admit an efficient algorithm for computing a
shooting star. Fig. 7 shows an illustration. The idea is as follows. Let the sides
of the bipartition be R and B and let v be the leftmost vertex (without loss
of generality assume r ∈ R). We first consider the star of r, which we denote
by T . For each vertex w ∈ R not in T we shoot two vertical rays, one up and
one down. If only one of those vertical rays intersects T we connect w with the
endpoint in B of the first intercepted edge. If both vertical rays intersect T we
consider the endpoints in B of the first edge intercepted by the upwards and the
downwards ray. We connect w with the horizontally closest one of the two. If
neither of the rays intersects T we connect w with the horizontally closest vertex
in B. In Appendix A we prove that this indeed constructs a shooting star and
we show how to efficiently compute it.

r

Fig. 7. An example of a shooting star rooted at r in a monotone drawing of K9,5.
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A Monotone Drawings

In this section we consider monotone drawings of Km,n. We assume the informa-
tion about the drawing is given as the rotation system (clockwise cyclic order of
the edges around each vertex) together with the crossings sorted along each edge
and the vertices sorted by x-coordinate. The linear separator of a vertex v in an
x-monotone drawing is the vertical line going through the vertex. It separates
the edges incident to v into the set of edges going to vertices left of v and the
set of edges going to the vertices right of v. Note that the linear separators are
implicitly given.

Theorem 2. Given a monotone drawing of the complete bipartite graph Km,n

we can compute a shooting star in linear time in the size of the input.

Proof. Let the sides of the bipartition be R (red vertices) and B (blue vertices),
and without loss of generality assume the leftmost vertex is r ∈ R. We denote the
star of r by T . We construct a set M of edges such that T ∪M forms a shooting
star rooted at r. For each red vertex w ∈ R not in T , we shoot two vertical rays,
one up (r↑) and one down (r↓). There are three possible cases (see Fig. 8 for an
illustration):

r

w

bw = bi

bj

Fig. 8. Construction of the shooting star in a monotone drawing. The star of r (T ) is
shown in red. The edge incident to w picked by the algorithm is highlighted.

(i) If only one of those vertical rays intersects T , let rbi be the edge in T
producing the intersection that is closest to w, that is, bi is the endpoint in B
of the first intercepted edge in T . We define bw := bi and add wbw to M .

(ii) If both vertical rays intersect T we consider the endpoints bi and bj in B
of the first edge intercepted by r ↑ and by r ↓, respectively. More precisely,
rbi (rbj) is the edge in T producing the intersection with the upwards (resp.
downwards) ray that is closest to w. Let bw ∈ {bi, bj} be the point that is
horizontally closest to w. We add wbw to M .
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(iii) If neither of the rays intersects T , let bi be the horizontally closest vertex
in B. We define bw := bi and add wbw to M .

We next prove that T ∪M is indeed a shooting star and we show how to
efficiently compute it. The first part relies on the following claim:

Claim. Let w ∈ R be a red vertex not in T . The edge wbw does not cross T .

Proof. The proof for case (i) follows from the monotonicity property and the fact
that the uncrossed ray, the part of the crossed ray until the first intersection,
and the edge rbw cannot be crossed by any edge in T . For case (ii), note that
wbw must be contained in the region bounded by rbi, rbj , and the vertical lines
through w and bw. The boundary of this region cannot be crossed by any edge
in T ; see the shaded region in Fig. 8 for an illustration. For case (iii), since r is
the leftmost vertex, bi is horizontally closer to w than r. Thus, the horizontally
closest point to w in T is bw = bi and the statement follows immediately from
monotonicity. ut

To prove that T ∪M is indeed a shooting star it remains to show that no two
edges in M cross each other. Consider a red vertex w ∈ R in T and the edge wbw.
By construction, the first intersection of a vertical ray up (or vertical ray down)
from any point in the edge wbw with edges of T is with the same edge if any.
This means that shooting a ray from any point in the edge wbw we find the same
situation as the one that defines the case: If w falls under case (i), the vertically
closest edge in T above or below wbw is, at any point, rbi and no other edge
from T lies on the opposite side; if w falls under case (ii), the vertically closest
edges in T above and below wbw are, at any point, rbi and rbj , respectively; and
if w falls under case (iii), no edge from T is above or below wbw at any point.
This implies that no two edges in M can cross, since by the definition of simple
drawings incident edges do not cross.

For the algorithmic part, note that if w fall under case (iii) this is easy to
detect and wbw is easy to compute just using the horizontal sorting of the points
(and the existence of crossings with T ). Otherwise, we consider the edges incident
to w on the right side of the linear separator sorted clockwise around w (starting
the sweeping from a vertical up direction). The edge wbw is either the first or the
last such edge that does not cross any edge from T . More precisely, among those
it is the one with the leftmost blue endpoint. This allows to efficiently compute
M and therefore the shooting star. ut
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